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Abstract. The aim of the present paper is to present o short survey of basic
properties of Serstnev random normed gpaces, wilh reophesis one best approsi-
rbion problems in ench spoes
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1. Tntroduction

Probebilistic (or random) metric epaces are speoes on which there s a "dis-
tance function” taking sy valuss dizteilvstion functions—-the "distanes” beowesn
e points pUg 3 6 distribution function (in the sense of probabilicy bheory)
Fue whoea walue F..(r) ot © ¢ R can be iuterpreted as the prrabsbility chat
the distance between p and g be leas than = Probabilistic metric S[MLCEE Were
first congidersd in 1942 by K. Menger 112, whe made important contributions (e
the sulect, followed aloat immedincely by A, Wald (24, Tor a zood historical
acconnt on the developmest of probebilistic metric spaces sse the ntroductory
chapter of the bock of B, Scheeizer and A. Sklar 7).

Ir che mean time the theory developed in variows dicections, an impor
tant one being that of fived poinls in probabilistic melric sproes. &t present,
bessicle Schweizer and Sklar's book mentioned abune, there are several hooks
dealing with various aspects of probabilistic metric spaces - V. Talritesen 9.
T Tstrigesou and Gl Comstantin [4, 5], V. Radu [16], (). Hadzif 7|, O. Hadzir
and E. Pap [§].

Tn 1962 A N. Serstnev [18] defined random normed spaces (RNS) a5 a gen-
erilization of usual normedl spaces, and scudied gquestions concerning the com-
pleteness and the completion of NS, and the problem of best, Approximation in
LNS. Mugtari [13] proved s Mazue-Tlam type theorsm: every surjective imnme-
try between two IUNE iz affine. Soowe best approdmation problems in RNS wore
atudlied] also by 1 Beg [1].
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The aim of the prosent paper s to presenl o shore survey on the basie
properties of RNS, with amphasis on best approsimeation jrrvhilemns,

A diatribution function s a function F: B ML) that is nondecreasing
il loft eontinuous on B. We denote by A the set of all distribution i et inms
and by 1 its subclass formed by all Fe A eaticfying the conditing::

Fl—ma) 1= ,EE'-“ Firl =0 and Fle) = T]_l:!.,:- Fizh =1
Lhe weak convergenere ol o soquence [FL) in A te F & A meana thal Felz) —
Fix] for every continuity point » of the limit function F, ‘There is & meeric g
an A called the modified L evy metrie, wrhich porteratss chis comvergencs, and
the metrie space (A by} is vompact, henee cormplete (see |17.0h 4]).
In: the definition of random normed spuces, Seratney '14] nzad ihe olpszes

B=iFil-FeAl wd. Bes{F:l-FeD)

formed by nemincreasing and left continuous funetions from B to [@ 1) Foe F e
43 ome requires further that #—m0) = 1 and Fli oes) == [k The: avcade’ conivergrnce
i chefined- as abov and o)y (F G e dpil—= Fol &), F.6G ¢ B, i« metric
un B generating the weak convergence and the metrlc spice (B, ;) s compart,
benee omplets, oo, The weak carvergence of & sequence ['FlL, 1 in B4 F e His
denctod by

The dreder in Bis define [OINE L

2. Random normed spaces

In this aeciion we introdues the random normed apaces following Serstnes
118,18, 20, 21, 23]: The wain ides isvo wse functiois in the class B+ g values
forthe tivrm instead of positive read qumbers and. some intermal operations
Beting o 87 called triongle functions, to sapply s anakogue of the irinngle
Iequadity. For (his reason, che functions in the olass 5% will he callad dislanoe
Funecltions. A apecil rale play the distance funetions defineil fir o =0 e

Fulmh=L il &5 an. Baim= 0 if 2 0 11l 2i1)
The function B is the least element of B
A triangle function s & mapping p: 8% « BY 2% which sstiafies the

fellowing conditions:

commutalivity:  p(F.G) - 2, F;

L
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iy meoriativiey: — pl{alFUG) HY= glF, uliz HILE

(i) (B F)=F,

fiv) monotony: F < F aml G 2y implies gl FG) € p(Fy G
() WLE, G)x) < infiprg . find P(te) & G )1,

for any &G, He B~ and z ¢ R

Twn important triangle functions are

pplF Y e = inf min{ Fite) = Gi(1 - t}x), 1}, (2.2
X e[, :

which was used above in (v}, aod

f;_nlf_b: G} = :Eiigllma;{-: Fllsh f;I:I:L ~ 1z} s 2.5

A random nveemed epooe [ANS for short] is e triple (L, p) where Lis'a
vector apace over the feld K = R or T, » is a mapping » - [ — 87 and 1 is 0
triangle Mfunetion satisfying the conditions {1}—{v]. The values of v at @ & L wrill
be denoted by vie) = |l¢l sad for = € R, ¢l)s) = [l =] Ome supposes that
the Following conchitions hold:

(RM1] el=En == =48 [the aullelement of L

(BNZ) [apiel = e 1, we b acK

(BN3) |l £ 0l = sllel e, e s L

We adopt the eonvention:

s =1 = Ealx) =10 - w2

The Tunction @ is called a mndom norm o T

Example 2.1 A ususl normed linesr space (L, p) can be viewmd asoa BNE
Ty taking the triangle function g, gheen by {200 and pulling

gl =1 3 == pleehs il =0 i x> pler).

In fact; we have ||| = gy, where K, i3 ghwen T [2.1]:

Example 2.2 A countable normesl space is elso a TTNS.

Lat (L, {pn}) be & Havsdorff locally convex space where:

Mo s

is & countable Family of seminurms generating the topalogy of Lo The foct that
the topology of L iz Hausdorff means that for every @ & L, @ #£ #, thero
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exists o2 B osuch that g {520 = 0, For gopveniencs, we add the null semincrm
pny pafw} = U, ¥y © L, to the sequece of seminorms. Put also By = B {0},
where H = {1, 2, ..} is the set of natural nmbers.

Let (11,, P be & probability apace amd v 5 0 — B & ramdormn, wariabde an 5
auch thal

TN C My and Plosrfwlzal >0 YrobHg (2.4}
Taks the triangle function p, given by (23] and pul
sl = Plu s pegyiie) Bl (2.5]

(e can shoa I:aFyP [33} Bhaate W, ey 15 an BN space,
TUeing e rndom norm one can define a metrizable wector topology on a
RHS,

Bor [ <6 =0 1 and & =10 lec
Des={wedl: I8l < ek 12.6]

Seratnewy !|:“-'~: 14, '?.'3]_ has, showp that & = {Us 0 < ¢ <L & 0}
1@ a local base on L generating s vector topology 7 heving I as a base of #-
neighborhoods, Sinee (L -1 -1 1 7 € M} i3 a countable base of &-neighhorhoods it
follows chat che topology T s mencizable, so that 16 is completely determined
by the enmvergent sequences in (D7) The random norm 1= continuous with
respect o this topology. If o <0 ju, then each (.5 is convex &0 that ia a locally
comvex topolery on L.

Recall chat a subsst ¥ of a lopologizal vector spece X 13 called bounded
il for every neighborhood Voof @£ X there exista’ X > 0 such that AY o 17,
Acsuhaet of W BINS & onlled bounded if it 13" bounded in the vector Topolney
penerated by the local bese' (26T

T'he following theorem follows immediately from Lhe definitions of f-neighborhoods
in a IS and of & bounded 2at.

Theorem 2.1. {[21, ld]) Bet ¥ be o subsel of o ANS (L v, o). The following
comechiions e eqevedont;

1. The set Y i hounded, :

E Ve De=1 thereemiols 0> such fhal Yo e} oo < e

3 There ewigts F e BT suwelt thal Ve e ¥V | < F

Serstuev [18) studied slso the problem of completeness of a RNS and the
pussibility ©h construct & completion of an incornplate RS,
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We present, following Radu [14, 157, some questions roncerning spares of
operalors between two RN,

Let (Ly.py.p), 1= L2 betwe RN aned T : Ly -+ Lo alinear operalor.
The operator T is called bounded il for every F & BT there exista &' ¢ B
gitch thmt

woo L el < F = wmlp =6 (2.7

By Theorem 2.1. the operator T ia hounded 10T it sends bounded stz in Ly
ante Botirided setein Ly, Denote by (L4, L2 the space of all bawndded lnesr
opevatars from Ly to Lo, and by (L, L2} the space of all contimuous linear
operalorg from Ly ta Ls. Obwiously that every continnous linear operator -
benmderd.  Cancerning boundedness and continuity we mentio Lhe  following
resule:

Proposition 2.2 If ¢ = p, then s(Fq, Fa) = (Ly, La)

Supposs that M is & bounded absorbing subeet of Ly wnd, for a limear oper
ator ‘T: Ty — L, puc

Bl M) = aup ||Te: x| amd wag (F)x) = ‘ir_l__'l:;f-'M:_T]I:t]. y2.a)
Fe M &5

Wi have

Theorem 2.3 1. [f the operaier T 1is bounded then vy (1) £ .

2 The spoae (Ly, Lg) v, po) % o ANS, ond the random topology of the
sy [y, Dg) gemerated by e mondom noevm ey defined by (2.5) s sironger
thin the tapalogy of pointunse convergencs, e

T —T im [L-|,L]:I = "-'-"I,c:'ELl Tr;l,ﬂ—FT':{-'.

(Concerning the completeness of the space [y, Ly) we can prove:

Theorem 2.4 If M i a boweded neighberiumd of §c Ly and the NS Ly
iw gomplete then the spoce. (Lo, Do), vaei ) s momnplete,

Other reaults coneerning the spaces | Ly, L) con be found in Radu [14. 15]
and Bocgan [2].

A well known theorem of 5, Mazur and 8, Ulam {11} (see, &g, Day |6,
p.142]) assarts that every, surjective isometry between two real normed apaces
iz an afine mapping. :

D. Mugtari [13] proved that a similar result holds in the case of NG, An
wometry between too RNS (L, vy, ). 1= 1,2, is an apphication T2 Ly = Lz
such that vo{Ts — T = e — ) forall ¢ < L.
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Theorem 2.5 Jf T 15 a surjective esomrelry bobween tuo FNS (L i b )y i =
1.2, then T 15 an affine muappring.

3. Best approximation in BNS

The problem of best approximation was first studied by Serstoev |30, 24].
Lat [Lyw ) be o RNS and ¥ a solset of L For o € L puot

A = lo-vl: 92T

The probleni of best p-approcimotion wnsists in finding the minimal ele-
mentks of the st A, Le., thoae elements [l - 00 & Ag with @y £ ¥ for which
Wrere: s mo 4 € ¥ with [le— dyl < g — gl The elenwnts ¥ < Y for whicl
lyz = 2 38 ayminimal element, of ,4.,, are called elemenis of best p-approcimalion
of & by elements in ¥, Denote by Min 4, the set of minimal points of A,

Az usual, the problems which niturelly ariss are those of the mistenee,
unbeeness, cheracterization aml algorithms for the besl v-spproximation els-
mients, In what follows, we shall be coneerned only with existence and unigue-
niss,

Example 3,1 Consider first the example of the RNS associnted to a usual
norred space 83 in Example 2.1, Let (L, o) be a normed space and let {1, v}
bi: the associaned RNG, with

ll#i =)l = Epgylz)

for x =10, whers Fopey 1 given by {201] and b (223)) Let' ¥ ba a oty
subset of L and w & LY Y. Since'che st A = {E . 0 f@ 2 ¥} s totelly
orceraul, it fallows thet every minimal slement of the set is in fact the miniooom
rthe least eloment) of this set. The equivalence
e = vl <he = il +=" Bl =) 2w - 1),

which follows from the definition of the random wosm, shiows that the proh-
lemn of best d-approsimation and the problem of usual best approsimation are
ejuivalent

Example 3.2 Consider now the BNS mssochated to a countably normed
space (L, P, where s o’ increasing countable family of aeminorms mlg
Pz = ... generating s Hausdorff locally conane copology on £ Tt {13 4L F) e
8 prabability apace and ¢ 01— R & rendom variable satishing a atranper
emulition than (2.4}, namelv:
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wne M Plosriw) sate . a1

Lot ¥ he a nosempty subset of L snd o & TUVY An element o, © Y dadled
P minimal for 2in ¥ if thare i= no ¢, © Y such that

(f) ¥n & M pule—9) < pole - wp) el
({1 I B pelp —dy1 < mls =gl [(.1]

The following result holds:

Theorem 3.1 [[23]] The cement iby € ¥ i3 o beat p-approzimalion cemend
of e LAY of amd ondy if i1 49 @ T - minémad elemeant for @ m ¥

We call the subset ¥ ool the BNS (Lp, p) e-promameeed of for every @ © L
the get Min Af 14 momerr sl

The following exdstence thecrem i inspived by & reault in K othe (10, p3(12]].

Theorenm 3.2 [[3]1 A locadiy compoet closed sonpes subset of a NS (L, w, i),
with jo % o 88 L-proziminad

An inmwslhale eonsequence of the above thourem is e following corollary:

Corollary 3.3 [Seratnev [23]) Any finite dimensional sebspoes of a RNS
(Lovp) i p-proziminal.

T |:r|i-:'.|'.|.-|!1:|ea_=| qu«eﬂir_‘m rr_:qui_l_'l:q i earalul E:-l.ﬁ.l]‘.li.l:'l.ati.l.‘.l1.'|.| berause we work
with mminimal elements of the norm set and it is possible to esxdsta minimal
elements which are incomparable (i.e there iz no & relation order hetwesn tham |

Teel [ Lo, ) be s BNS, V' C L sl o € Lo We say thet ¥ iy s umigueness
sef for the hest p-approdmation if for every o & [ and every minimal elenwent
F of A_ there exists al most one element ¢ © Y with [l = || = F. The set ¥
ie. called -Chebpsherran af il b e-proximinal and & uniqueness sot.

We introduce now 8 notion, similar o strict convexity of normed spaces,
which will guarantes the unigquencss of bt e-approximation elements. A BMS
P ey, gy ], where (ke triangle function g, is given by (2.3), & called sivicily
oo if

ll + 2l = pallpllllal) o =TT S0 g9 = dha (3.3)

fove [23]).

Theorem 3.4 Let (L, v, ) be o BN ond o £ L.

If o= py ond ¥ C L is convex then for ewery mendmad elemment B of ,-'1.“
the aci

{et: |le—w|=F} (3.4)
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(L T L

Tf Il.'{_.!"__ I'_-:'ll[..-'_l = Iix -: .F'[.'.-.']: GI:.'.'.:I}: ek e BT . el the sulbeet ¥ood
Lis Lecomen then the set/[3.4) 5 Loomvne bao,

The uniqueness result is L:-:-:Lt-u.iJ:Lr d in the following theorem:

Theorem 3.5 1. Every g-mwer gishset .:-f a atrictly conoer RNS | v )
L wnliienese gel,

2 E1_.'r_.=rj,r rdinerd i'-':-r:n:h_.;,l arrael sonaer sohge) r.l_|r i .‘i.'T?l':I'.!:',l e §NS _E-\.
p-Uhebpahevian,

I partioular, elery fbfe dunensionod subspace of o abrictly conver ANS
Ehwe g ) oo e Chenlipsbaon.

El_‘;nstm". |23 comsidered wlse the fillowiog approccmacion prabler Supxse
that ¥ iz a subset of & BNS (L, 1), For oo L let

SO

Ml = | fleizlaz
S0

bethe mesn talue of he sendom normn and

-1 s i -
v {liell) - J[‘ Iz, MU= Tl £ 7= i’f e i+ I:j e x| :J-IJ
i i

Il
(3.5)

b the dispersion of |||
TI'u,, & L Lhen an elament "-’u £ Y i3 called an element of best 72 -approcimation
For-gs im0 af

7l aall Vo imf e - 2l € VR

Cerstnev [21] has shown thet each element of best 5#*-approcimetion i an
alpment ol bt L-ApORimAaLion.

In the ease of an ordinery ‘Do space (L ol and’ the seseciated TENS
(L, 2, 1.1 Uin the sense 'of Lxample 2.1), the problems'of best r-approdmation
and the problem of beat o*-approximation are equivalent, and are equivalent to
e spsnal bBest approsimation problem i (L.

I::l:-1;||:-e"r|'|ir|\|_-l1 Lhe exigbencs af e alagrents ol hest n""‘:-.'lE:-|:-;|T,:-};i_'L|'_|.|.t.;i,r,:|n EF_':E’:]:E"E'
|23 prosed:

Theorem 3.6 Let (L., p) Be a BNS and o, O < 0 < mhe {:rtmr{y
fmdependent E-!emr:-lm in L such Mot _|';] Bl 2MalE < oo, £ 2T K Then
oy fws o best o -appm:m:-mﬁ:mz element in e ne-dimenatenal '-:J.Tr's_ru'l:r:r- T el
Ly pemernted by oy, @
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