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New stable semi-explicit Runge-Kutta
methods

IULIAN COROIAN

Abstract. Semi-explicit Runge-Kutta methods of order 3 with four stages and order
4 with five stages are discussed, from stability point of view. Some A-stable and L-stable
subclasses of such methods are highlighted.

1. Introduction

For initial value problem

(1.1) y′(x) = f(x, y(x)), y(x0) = y0,

where f : [a, b]×Rm −→ Rm, x0 = a, y0, y ∈ Rm, we consider the numerical
solution obtained by special implicit Runge-Kutta methods, called semi-
explicit or diagonally-implicit (see [2], [3]).

Many authors have investigated such methods: J.C. Butcher [2], [3],
E. Hairer, C. Lubich, G, Wanner [7], [8], P.J. Houwen van der and B.P.
Sommeijer [9], K. Burrage [1] etc.

In this paper we will construct some subclasses of semi-explicit Runge-
Kutta schemes of order 3 with four stages and order 4 with five stages for
problem (1.1). These methods will be A-stable or L-stable thus they are
suitable for solving stiff problems.
Without loss of generality, the analysis will be performed when (1.1) is a
scalar problem.

2. Preliminaries

Let xn, n = 0, 1, 2, . . . , N be, equal spaced points from interval [a, b],
with x0 = a, xn − xn−1 = h, n = 0, 1, 2 . . . , xN = x0 + Nh = b, and let
yn be, the approximate value of exact solution y(x) of (1.1) at the point
xn, n = 0, 1, 2 . . . , N .
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Definition 2.1. A semi-explicit or diagonally-implicit Runge-Kutta method
with s stages for numerical solution of the problem (1.1) is defined by the
relations

(2.1) ki,n = hf

xi
n, yn +

s∑
j=1

aijkj,n

 , i = 1, 2, . . . , s

(2.2) yn+1 = yn +
s∑

i=1

biki,n; n = 0, 1, 2 . . . ,

where xi
n = xn + cih, and bi, aij , ci, i, j = 1, 2, . . . , s are real parameters

such that

aij = 0, for j > i and aii = λ, for all i, j = 1, 2, . . . , s.

A semi-explicit Runge-Kutta method is usually displayed in the Butcher’s
array

(2.3)
c A

bT

where c = (c1, c2, . . . , cs)T , bT = (b1, b2, . . . , bs),

(2.4) A =


λ 0 0 · · · 0

a21 λ 0 · · · 0

a31 a32 λ · · · 0
· · · · · · · · · · · · · · ·
as1 as2 as3 · · · λ

 ,

should satisfy

(2.5) c = A · e,
with e = (1, 1, . . . , 1)T ∈ Rs.

We will focus our attention only to methods with s = 4 stages and s = 5
stages. For s = 4 and s = 5 stages the Runge-Kutta methods are generated
respectively by the arrays

(2.6)

c1 λ 0 0 0

c2 a21 λ 0 0

c3 a31 a32 λ 0

c4 a41 a42 a43 λ

b1 b2 b3 b4

and

c1 λ 0 0 0 0

c2 a21 λ 0 0 0

c3 a31 a32 λ 0 0

c4 a41 a42 a43 λ 0

c5 a51 a52 a53 a54 λ
b1 b2 b3 b4 b5
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The stability function for such methods, depends only on parameter λ (see
[9]) and it is given by

(2.7) R(z, λ) =
P (z, λ)
Q(z, λ)

, z complex,

where

P (z, λ) = 1 + (1− 4λ)z +
(

1
2
− 4λ + 6λ2

)
z2+

+
(

1
6
− 2λ + 6λ2 − 4λ3

)
z3 +

(
1
24
− 2

3
λ + 3λ2 − 4λ3 + λ4

)
z4,(2.8)

(2.9) Q(z, λ) = (1− λz)4 ,

for s = 4, and

P (z, λ) = 1 + (1− 5λ)z +
(

1
2
− 5λ + 10λ2

)
zλ+

+
(

1
6
− 5

2
λ + 10λ2 − 10λ3

)
z3 +

(
1
24
− 5

6
λ + 5λ2 − 10λ3 + 5λ4

)
z4+

+
(

1
120

− 5
24

λ +
5
3

λ2 − 5λ3 + 5λ4 − λ5

)
z5,(2.10)

(2.11) Q(z, λ) = (1− λz)5 ,

if the methods have s = 5 stages.

A-stability of the semi-explicit Runge-Kutta methods generated by the
arrays (2.6) is equivalent (see [4]) to requirements that the polinomial Q
should have no zeros in the left half-plane, that is λ > 0, and E-polynomial
of Nørsett, [10],

(2.12) E(y2, λ) := |Q(iy, λ)|2 − |P (iy, λ)|2 ,

should satisfy

(2.13) E(y2, λ) ≥ 0, ∀ y ∈ R,

for some λ > 0.
For L-stability, the stability function should satisfy the A-stability, re-

quirements and more

(2.14) lim
|z|→+∞

R(z, λ) = 0.
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3. The construction of A-stable and L-stable methods of
order 3

To obtain semi-explicit methods of order 3 with s = 4 stages, we impose
the order conditions (see [2]), together with (2.5), which, in case of semi-
explicit methods, become

b1 + b2 + b3 + b4 = 1,(3.1)

b1c1 + b2c2 + b3c3 + b4c4 =
1
2
,(3.2)

b1c
2
1 + b2c

2
2 + b3c

2
3 + b4c

2
4 =

1
3
,(3.3)

b2a21c1 + b3(a31c1 + a32c2) + b4(a41c1 + a42c2 + a43c3) =
1
6
− λ

2
,(3.4)

c1 = λ, c2 = a21 + λ, c3 = a31 + a32 + λ,(3.5)

c4 = a41 + a42 + a43 + λ.(3.6)

So, we are seeking values of parameters from the tableaux (2.6), usually

0 < ci ≤ 1, i = 1, 2, 3, 4, that is 0 < λ ≤ 1, such that the equations (3.1) -
(3.6) be satisfied and also (2.13) or (2.13) and (2.14).
We can state

Lemma 3.1. The solutions of the system (3.1) − (3.6) are depending on
the free parameters λ, c2, c3, c4 ∈ (0, 1], pairwise distinct and on the free
parameters b1, a31, a41, a42, arbitrary real numbers.
The solutions are given by

(3.7)

b2 = A2/6(c3 − c2)(c4 − c2),

b3 = −A3/6(c3 − c2)(c4 − c3),

b4 = A4/6(c4 − c2)(c4 − c3),

a43 = c4 − a41 − a42 − λ,

a32 = c3 − a31 − λ, a21 = c2 − λ, c1 = λ,

where

A2 = 2− 3(c3 + c4) + 6c3c4 − 6b1

[
λ2 − λ(c3 + c4) + c3c4

]
,(3.8)

A3 = 2− 3(c2 + c4) + 6c2c4 − 6b1

[
λ2 − λ(c2 + c4) + c2c4

]
,(3.9)

A4 = 2− 3(c2 + c3) + 6c2c3 − 6b1

[
λ2 − λ(c2 + c3) + c2c3

]
(3.10)
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and the free parameters λ, c2, c3, c4, b1, a31, a41, a42 should satisfy

A2λ(c2 − λ)(c4 − c3)−A3 [a31λ + c2(c3 − a31 − λ)] (c4 − c2)+

+A4 [a41λ + a42c2 + c3(c4 − a41 − a42 − λ)] (c3 − c2) =

= (1− 3λ)(c3 − c2)(c4 − c2)(c4 − c3).(3.11)

Proof. By solving the equations (3.1), (3.2) and (3.3) as a linear system
with respect to b2, b3, b4 and replacing the expressions of b2, b3, b4 into the
equation (3.4), and taking into account (3.5) and (3.6), after a long com-
putation, we obtain the conclusions (3.7) and (3.11). �

Remark 3.2. The formulas (3.7) provide the class of all semi-explicit
Runge-Kutta methods of order 3, with four stages, depending on 8 free
parameters λ, c2, c3, c4 ∈ (0, 1] distinct each other and b1, a31, a41, a42 ∈ R.

Example 3.3. We can check that the array

(3.12)

λ λ 0 0 0

2
5

2
5
− λ λ 0 0

3
5

8
3

(
3
5
− λ

)
5
3

(
λ−

3
5

)
λ 0

1 0 3(1− λ) 2(λ− 1) λ

0
10
9

−
5
12

11
36

represents a family of semi-explicit methods of order 3 with four stages
depending on one free parameter λ ∈ (0, 1], belonging to the class specified
in the Remark 3.2.

Now we will delimit two subsets of the class of semi-explicit Runge-
Kutta methods of order 3 with four stages, namely the subclass of A-stable
methods, and the subclass of L-stable methods.
We have

Theorem 3.4. For every λ ∈ [α, 1], c2, c3, c4 ∈ (0, 1], distinct each other

and every b1, a31, a41, a42 arbitrary real numbers, where α =
3 +

√
3

12
=

0.3943375673 . . . , the solutions (3.7) provide a subclass of A-stable semi-
explicit Runge-Kutta methods of order 3 with four stages.
Moreover, for the value λ = λ∗ = 0.5728160625 . . . , and the rest of free
parameters as above, the solutions (3.7) provide a subclass of L-stable semi-
explicit Runge-Kutta methods of order 3 with s = 4 stages.
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Proof. We seek values for λ such that the inequality (2.13) be satisfied. If
we write the polynomial E in the form

(3.13) E(y2, λ) = A(λ)y6 + B(λ)y8,

where A and B are the polynomials in λ

(3.14) A(λ) =
1
72
− 1

3
λ +

17
6

λ2 − 32
3

λ3 + 17λ4 − 8λ5,

(3.15) B(λ) = − 1
576

+
1
18

λ− 25
36

λ2 +
13
3

λ3− 173
12

λ4 +
76
3

λ5− 22λ6 + 8λ7,

and then, solve numerically the equations A(λ) = 0 and B(λ) = 0, we
obtain the real roots. A(λ) has the real roots

λ1 = 0.0939962451 . . . ; λ2 = 0.3486234981 . . . , λ3 = 1.2805797610 . . . ,

and B(λ) has the real roots:

λ′1 = 0.1056624327 . . . , λ′2 = 0.1072789060 . . . λ′3 = 0.2038425244 . . . ,

λ′4 =
1
4
; λ′5 = 0.3943375673 . . .

The polynomials A and B take the factorized forms

(3.16) A(λ) = −8(λ− λ1)(λ− λ2)(λ− λ3)(λ2 − aλ + b),

(3.17) B(λ) = 8(λ− λ′1)(λ− λ′2)(λ− λ′3)(λ− λ′4)(λ− λ′5)(λ
2 − a′λ + b′),

where λ2 − aλ + b and λ2 − a′λ + b′ have no real roots, that is, they take
only positive values.
We can now solve the system of inequalities

(3.18) A(λ) ≥ 0, B(λ) ≥ 0, 0 < λ ≤ 1,

by studding the sign of A(λ) and B(λ).
We obtain that (3.18) are satisfied if and only if λ ∈ [λ′5, 1].
Putting λ′5 = α = 0.3943375673 . . . it follows the first conclusion of the
theorem. If we take for λ the value λ = λ∗ = 0.5728160625 . . . , we see that
the coefficient of z4 in the numerator P of stability function (2.7), vanishes,
so the degree of P is less than the degree of Q and then we have (2.14).
Because λ∗ ∈ [α, 1] we can say that the subclass of semi-explicit methods
with λ = λ∗ are L-stable.
We have used the Maple 6 and Mathematica 5 packages for numerical
solving of equations A(λ) = 0 and B(λ) = 0. �
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Example 3.5. We present five example of semi-explicit Runge-Kutta meth-
ods of order 3 with four stages, the first four methods are A-stable and the
last, L-stable.

(3.19)

1
2

1
2

0 0 0

1
5

−
3
10

1
2

0 0

2
3

−
1
9

5
18

1
2

0

1 −
4
5

1
3
10

1
2

−
22
45

5
9

9
10

1
30

(3.20)

3
5

3
5

0 0 0

2
5

−
1
5

3
5

0 0

1
5

−
4
5

2
5

3
5

0

1 0 −
2
5

4
5

3
5

5
12

0
5
12

1
6

(3.21)

3
4

3
4

0 0 0

1
2

−
1
4

3
4

0 0

2
5

7
10

−
21
20

3
4

0

2
3

0
1
3

−
5
12

3
4

184
63

10
9

425
504

−
31
8
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(3.22)

3
5

3
5

0 0 0

1
5

−
2
5

3
5

0 0

2
5

1
10

−
3
10

3
5

0

4
5

1
5

3
5

−
3
5

3
5

1
3

5
9

−
1
4

13
36

(3.23)

0.573 0.573

0.400 −0.173 0.573

0.600 0.072 −0.045 0.573

1.000 0 1.281 −0.854 0.573

0
10
9

−
5
12

11
36

4. The construction of A-stable and L-stable methods of
oreder 4

Now, we are focusing on semi-explicit Runge-Kutta methods, generated
by the second tableau of (2.6), having order p = 4 and s = 5 stages.
The order conditions become, in this case (see [2, p.170])

(4.1)
5∑

i=1

bic
k−1
i =

1
k

, k = 1, 2, 3, 4

(4.2)
5∑

i=2

bi

i−1∑
j=1

aijcj =
1
6
− λ

2
,

(4.3)
5∑

i=2

bici

i−1∑
j=1

aijcj =
1
8
− λ

3
,

(4.4)
5∑

i=2

bi

i−1∑
j=1

aijc
2
j =

1
12
− λ

4
,

(4.5)
5∑

i=3

bi

i−1∑
j=2

aij

j−1∑
k=1

ajkck =
1
24
− λ

3
+

λ2

2
,
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with additional conditions (2.5), that is

c1 = λ, c2 = a21 + λ, c3 = a31 + a32 + λ ,(4.6)

c4 = a41 + a42 + a43 + λ ,(4.7)

c5 = a51 + a52 + a53 + a54 + λ .(4.8)

We are seeking for values of parameters bi, ci, aij , λ, usually 0 < ci ≤ 1
i = 1, 2, 3, 4, 5, so 0 < λ ≤ 1, distinct, such that the equations (4.1)-(4.8)
be satisfied and also the conditions (2.13) for A-stability or (2.13) and (2.14)
for L-stability satisfied.

The complete solutions of the nonlinear algebraic system (4.1)-(4.8) is
not an easy problem, but every solution of this system, provides one semi-
explicit (diagonally implicit) Runge-Kutta method of order 4 with s = 5
stages.
We will not give the complete solutions of the system (4.1)-(4.8) because it
has a very complicated form.
We can state

Theorem 4.1. The solution of the system (4.1)-(4.8) provide A-stable
Runge-Kutta methods of order 4 with five stages if and only if

λ ∈ [α, β] ∪ [γ, δ],

where

α = 0.0701257 . . . , β = 0.0726521 . . . ,

γ = 0.2402928 . . . , δ = 0.4732683 . . . .

Moreover for λ = λ1 = 0.07075122 . . . or λ = λ2 = 0.2780538 . . . , the
corresponding solutions of the system (4.1)-(4.8) provide two subclasses of
L-stable Runge-Kutta methods of order 4 with five stages.

Proof. The E-polynomial (2.12) for methods with s = 5 stages can be writ-
ten, using (2.10) and (2.11), as

(4.9) E(y2, λ) = A1(λ)y6 + A2(λ)y8 + A3(λ)y10 ,

where

(4.10) A1(λ) = − 1
360

+
1
12

λ− 5
6

λ2 +
10
3

λ3 − 5λ4 + 2λ5 ,
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A2(λ) =
1

960
− 1

24
λ +

47
72

λ2 − 31
6

λ3 +

+
265
12

λ4 − 151
3

λ5 + 55λ6 − 20λ7 ,(4.11)

A3(λ) = − 1
14400

+
1

288
λ− 41

576
λ2 +

56
9

λ3 − 89
18

λ4 +

+
563
30

λ5 − 505
12

λ6 +
160
3

λ7 − 35λ8 + 10λ9 .(4.12)

If we find numerically the real roots of the polynomials A1(λ), A2(λ), A3(λ),
then we can solve the inequalities

(4.13) A1(λ) ≥ 0, A2(λ) ≥ 0, A3(λ) ≥ 0, 0 < λ ≤ 1 ,

by studding the sign of A1(λ), A2(λ), A3(λ).
We obtain that (4.13) hold for λ ∈ [α, β]∪[γ, δ], where α = 0.0701257 . . . ,

β = 0.072652 . . . , γ = 0.2402928404 . . . , and δ = 0.4732683912 . . . , and
then with (4.9)

(4.14) E(y2, λ) ≥ 0, y ∈ R, λ ∈ [α, β] ∪ [γ, δ] .

The last condition is sufficient for A-stability of every method, solution of
the system (4.1)-(4.8), which ensures the order p = 4 of the method.

If we take λ = λ1 = 0.075122 . . . ∈ [α, β] and λ = λ2 = 0.2780538411 ∈
[γ, δ], then we can check that the coefficient of z5 of the polynomial P (z, λ)
from (2.10), vanishes. In this case the condition (2.14) is fulfilled, so every
solution of the system (4.1)-(4.8) with λ = λ1 or λ = λ2 provides one L-
stable semi-explicit Runge-Kutta method of order p = 4 with s = 5 stages.

Again, we mention that we used the Maple 6 and Mathematica 5 packages
for numerical root finding for polynomials (4.10), (4.11), (4.12).

In the next we will give only two particular solutions of the system (4.1)-
(4.8), i.e. two particular A-stable or L-stable methods. �

Example 4.2. We present two semi-explicit Runge-Kutta methods of order
4 with five stages i.e. two solutions of the system (4.1)-(4.8), the first
method (4.15) is A-stable and the last, (4.16), L-stable.
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It is clearly that the coefficients of the Runge-Kutta methods (3.23) and
(4.16) can be given with arbitrary accuracy.

(4.15)

2
5

2
5

3
5

1
5

2
5

4
5

1
5

1
5

2
5

1
5

1
19

−
8
19

16
95

2
5

1
1337
435

−
1934
435

454
261

304
1305

2
5

−
55
72

5
4

−
25
72

95
144

29
144

(4.16)
0.278053 0.278053

0.200000 −0.078053 0.278053

0.600000 −0.340512 0.667068 0.278053

0.800000 0.905887 0 −0.383939 0.278053

1.000000 20.823214 −13.830951 −9.962345 3.692028 0.278053

−4.221747 3.262906 4.168667 −2.926083 0.916683
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