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On strongly δ-continuous functions

Krishnendu Dutta and S. Ganguly

Abstract. In this paper attempt has been made to study a new class of function
called strongly δ-continuous function and special emphasis is given on homotopy and
retraction related properties.

1. Introduction

Here we have studied a new class of functions called strongly δ-continuous
functions whose definition is equivalent to the definition of super continuous
functions as introduced by Munhsi and Bassan [4]. This class is contained in
the class of continuous functions; however we find a condition under which
a continuous function is strongly δ-continuous. In the first two sections
we give some basic properties of this class and characterise such function
by means of graph topology. This class turns out to be an useful tool
in studying different types of compactness like properties. Last sections
are concerned with strong δ-retract and strong δ-homotopy; using N-R
topology [6], we have proved some results on the function space of strongly
δ-continuous functions. Throughout the paper spaces mean topological
spaces on which no separation axioms are assumed unless explicitly stated
and SD(X, Y ) would denote the set of all strongly δ-continuous functions
from a topological space X to a topological space Y .

2. Prerequisites and Basic Properties

Definition 2.1. [5] A subset S of a space X is said to be regular open (
respectively regular closed) if Int.(cl.(S))=S ( respectively Cl.(int.(S))=S),
where cl.(S) (respectively int.(S)) denotes the closure ( respectively interior)
of S. A point x ∈ X is said to be δ-cluster point of S if S ∩ U 6= ∅, for
every regular open set U containing x. The set of all δ-cluster points of S

is called the δ-closure of S and is denoted by [S]δ. If [S]δ = S then S is
said to be δ-closed. The complement of a δ-closed set is called a δ-open set.
Equivalently δ-open set can be defined as : a set G is said to be δ-open if
for each x ∈ G, ∃ a regular open set H such that x ∈ H ⊆ G i.e., G is
expressible as an arbitrary union of regular open sets.
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Definition 2.2. [3]A set A ⊂ (X, τ) is said to be N -closed in X or sim-
ply N -closed, if for any cover of A by τ -open sets, there exists a finite
sub-collection the interiors of the closures of which cover A; interiors and
closures are of course w.r.t τ .
A space (X, τ) is said to be nearly compact iff X is N -closed in X. A subset
A ⊂ (X, τ), will be called nearly compact iff A is nearly compact w.r.t its
subspace topology.

Definition 2.3. [2] A space is said to be semiregular if every point of the
space has a fundamental system of regular open neighbourhoods.

Definition 2.4. [5] A function f : X → Y is called a δ-continuous function
iff for every regular open set V of Y , f−1(V ) is δ-open in X.

This can be alternatively defined as follows : a function f : X → Y is
δ-continuous at a point x ∈ X iff for every regular open nbd. V of f(x) in
Y , ∃ a δ-open nbd. U of x such that f(U) ⊆ V .

Definition 2.5. [3] A space (X, τ) will be called locally nearly compact if
every point has a neighbourhood whose closure is N-closed.

Theorem 2.1. [3] The following conditions are equivalent for a T2 space :
(i) the space (X, τ) is locally nearly compact;
(ii)for each x in X and each regular open nbd. U of x there is an open set
V such that x ∈ V ⊂ V̄ ⊂ U and V̄ is N-closed.

Definition 2.6. [7] A function f : X → Y is strongly δ-continuous at a
point x ∈ X iff for any open nbd. V of f(x) in Y , ∃ a δ-open nbd. U of x

in X such that f(U) ⊆ V ; instead of taking an arbitrary nbd. of f(x) we
could take a sub-basic open set containing f(x) as well.

Definition 2.7. [6] Let X and Y be topological spaces and let

T (C, U) = {f ∈ Y X : f(C) ⊂ U};

let N denote the N-closed set in X and R denote the class of all regular
open sets in Y ; then

{T (C, U) : C ∈ N and U ∈ R}

is a subbase for some topology on Y X ; we call this topology the N-R topology
on Y X .

Theorem 2.2. For a function f : X → Y the following are equivalent:
(a) f is strongly δ-continuous .
(b) The inverse image of a closed set is δ-closed.
(c) The inverse image of an open set is δ-open.

(d) For each x ∈ X and each net xλ
δ

−→ x, the net f(xλ) → f(x).
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Remark 2.1. We know that for every topological space (X, τ), the col-
lection of all δ-open sets forms a topology for X, which is weaker than τ .
This topology τ∗, has a base consisting of all regular open sets in (X, τ).
Thus a set is δ-closed in (X, τ) iff it is closed in (X, τ∗). Hence we can
conclude that f : (X, τ) → Y is strongly δ-continuous iff f : (X, τ∗) → Y

is continuous.
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Observe that i : (X, τ) → (X, τ∗) in the above figure is continuous since
τ∗ ⊂ τ . Thus several results about strongly δ-continuous functions are
obtained from the known facts about continuous functions.

Theorem 2.3. Let f, g : (X, τ) → Y be strongly δ-continuous functions
and let Y be a T2 space. Then the set A = {x : f(x) = g(x)} is δ-closed in
X.

Theorem 2.4. Let f : X → Y be a strongly δ-continuous injective function
and Y be a T2 space . Then X is T2.

Theorem 2.5. If f : X → Y is strongly δ-continuous and g : Y → Z is
continuous then the composition gof : X → Z is strongly δ-continious.

Moreover the composition of two strongly δ-continuous function is strongly
δ-continuous.

Corollary 2.1. Let f : X → Y and g : Y → Z be any two mappings such
that gof is strongly δ-continuous. If one of f and g is an open, one-one
and onto mapping then the other is strongly δ-continuous.

Theorem 2.6. Let f : X →
∏

α∈Λ

Xα be a mapping. Then f is strongly

δ-continuous iff its composition with each projection
∏

α is strongly δ-
continuous.

Proof : If f is strongly δ-continuous, then
∏

α f is strongly δ-continuous
by the continuity of

∏
α and by Theorem 1.13.

Conversely, let V be a sub-basic open set in
∏

α∈Λ

Xα. Then

V =
∏−1

α (W )

for some open set W in Xα. Then
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f−1(V ) = f−1(
∏−1

α (W )) = (
∏

α f)−1(W )

is δ-open by the strong δ-continuity of
∏

α f . Thus f is strongly δ-continuous.

Definition 2.8. [1] Let f : X → Y be a function then the mapping
g : X → X × Y defined by g(x) = (x, f(x)) is called the graph function
of f .

Corollary 2.2. Let f : X → Y be a function and g : X → X × Y , given
by g(x) = (x, f(x)). Then f is strongly δ-continuous if g is strongly δ-
continuous. Further if g : X → X × Y is strongly δ-continuous then X is
semi-regular.

Proof : The first part is rather obvious. If g is strongly δ-continuous
and x ∈ X, then for any open set U containing x, U × Y is open in X × Y

and contains g(x) = (x, f(x)). Then there exists an open set V containing
x such that g(Int.cl.V ) ⊂ U × Y . Consequently x ∈ V ⊂ Int.cl.V ⊂ U .
Thus X is semi-regular.

Lemma 2.1. Let Uαi
⊂ Xαi

for each i = 1, 2, . . . , n. Then

Uα1
× Uα2

× · · · × Uαn
×

∏
α 6=αi

Xα ⊂
∏

α∈Λ

Xα

is δ-open iff Uαi
is δ-open in Xαi

for each i = 1, 2, . . . , n.

Proof: Suppose Uαi
⊂ Xαi

is δ-open in Xαi
for each i=1, 2, . . . , n .

Then for each i = 1, 2, . . . , n and each xαI
∈ Uαi

, there exists an open set
Vαi

containing xi such that xi ∈ Vαi
⊂ Int.cl.(Vαi

) ⊂ Uαi
. Thus for each

{xα} ∈ Uα1
× Uα2

× · · · × Uαn
×

∏
α 6=αi

Xα,

{xα} ∈ Vα1
× Vα2

× · · · × Vαn
×

∏
α 6=αi

Xα ⊂ Int.cl.(Vα1
) × Int.cl.(Vα2

) ×

· · · × Int.cl.(Vαn
) ×

∏
α 6=αi

Xα ⊂ Uα1
× Uα2

× · · · × Uαn
×

∏
α 6=αi

Xα.

This clearly shows that Uα1
× Uα2

× · · · × Uαn
×

∏
α 6=αi

Xα is δ-open.

The converse is obvious.

Theorem 2.7. Define
∏

α∈Λ

fα :
∏

α∈Λ

Xα →
∏

α∈Λ

Yα by {xα} → {fα(xα)}.

Then
∏

α∈Λ

fα is strongly δ-continuous iff each fα : Xα → Yα is strongly

δ-continuous.

Proof: Let V = Vα1
× Vα2

× · · ·Vαn
×

∏
α 6=αi

Xα be a basic open set in

∏
α∈Λ

Yα. Then if f−1
αi

(Vαi
) is δ-open in Xαi

for each αi, we have

(
∏

α∈Λ

fα)−1(V ) = f−1
α1

Vα1
× f−1

α2
Vα2

× · · · f−1
αn

Vαn
×

∏

α 6=αi

Xα
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is δ-open in
∏

α∈Λ

Xα by Lemma 1.18. This implies that
∏

α∈Λ

Xα is strongly

δ-continuous.
Conversely, suppose

∏
α∈Λ

fα is strongly δ-continuous . Let Vαi
⊂ Yαi

be

open. Then V = Vα1
× Vα2

× · · · × Vαn
×

∏
α 6=αi

Yα is a sub-basic open set in

∏
α∈Λ

Yα and

(
∏

α∈Λ

fα)−1(V ) = f−1
α1

(Vα1
) × f−1

α2
(Vα2

) × · · · × f−1
α1

(Vαn
) ×

∏
α 6=αi

Xα

is δ-open . Thus f−1
αi

(Vαi
) is δ-open in Xαi

, for each i = 1, 2, . . . , n, which
implies that fαi

is strongly δ-continuous.

3. Sufficient condition for strong δ-continuity

Theorem 3.8. Let f : X → Y be continuous . If Y is semiregular , then
f is strongly δ-continuous.

Proof : Let x ∈ X and let V be an open set in Y containing f(x). Since
Y is semi regular ∃ open set W such that f(x) ∈ W ⊂ Int.cl.(W ) ⊂ V .
This fact along with the continuity of f implies

x ∈ f−1(W ) ⊂ Int.cl.f−1(W ) ⊂ f−1(Int.cl.W ) ⊂ f−1(V ).

Now let U = f−1(W ). Then f(Int.cl.U) ⊂ V . Thus f is strongly δ-
continuous.

Definition 3.9. If f : X → Y is a function and G(f) = {(x, f(x)) : x ∈ X}
denotes the graph of f , we define G(f) to be δ-closed w.r.t X × Y if for
each (x, y) 6∈ G(f) ∃ δ-open sets U and V containing x and y respectively
such that (U × V ) ∩ G(f) = ∅.

With this definition we prove another sufficient condition for strongly
δ-continuity.

Theorem 3.9. Let f : X → Y have a δ-closed graph w.r.t X × Y . If Y is
compact, then f is strongly δ-continuous.

Proof : Let x ∈ X and let V be an open set containing f(x). Then
Y \ V is closed and for each y ∈ Y \ V , (x, y) 6∈ G(f). Then by the
above definition, ∃ two δ-open sets Uy(x) and W (y) containing x and y

respectively such that

(Uy(x) × W (y)) ∩ G(f) = ∅ ⇒ f(Uy(x)) ∩ W (y) = ∅.

The collection {W (y) : y ∈ Y \ V } forms an open cover of Y \ V . Since
Y is compact so Y \ V , being closed subset of a compact set is closed.
Consequently there is a finite collection {W (yi) : i = 1, 2, . . . , n} such that
Y \ V ⊂ ∪n

i=1W (yi). Now let U = ∩n
i=1Uyi

(x). Then U is an δ-open set
and f(U) ⊂ V . Hence f is strongly δ-continuous.
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Definition 3.10. The graph of f : X → Y is called δ-closed w.r.t X if
for each (x, y) 6∈ G(f), ∃ δ-open set U and open set V containing x and y

respectively such that (U × V ) ∩ G(f) = ∅.

Obviously every strongly δ-continuous function is δ-continuous. The
next theorem gives a criterion for a δ-continuous function to be strongly
δ-continuous function.

Definition 3.11. A space X is said to be rim-N-closed if the boundary of
every basic open set is N-closed.

Theorem 3.10. If Y is rim-N-closed and almost regular and f : X → Y

is a δ-continuous function whose graph is δ-closed w.r.t X, then f is a
strongly δ-continuous function.

Proof : Let x ∈ X and let W be an open set containing f(x). Since
Y is rim-N-closed, ∃ an open set V such that f(x) ∈ V ⊂ W with BdV

(BdV denotes the boundary of the basic open set V ) N-closed· · · (1).
Let y ∈ BdV , then y 6= f(x) (as f(x) ∈ V ) and then (x, y) 6∈ G(f). Since
G(f) is δ-closed, ∃ open ndbs. Ux

y & Uy of x and y respectively such that

Int.cl.(Ux
y × Uy) ∩ G(f) = ∅ i.e., (Int.cl.Ux

y × Int.cl.Uy) ∩ G(f) = ∅

and thus

f(Int.cl.Ux
y ) ∩ Int.cl.Uy = ∅ · · · (2).

Now {Int.cl.Uy : y ∈ BdV } is a covering of BdV by regular open sets and
thus has a finite subcovering say Int.cl.Uy1

, Int.cl.Uy2
, . . . , Int.cl.Uyn

. Now
f is δ-continuous at x and so there exists an open nbd.

U0 of x such that f(Int.cl.U0) ⊂ Int.cl.V .

Let U = Int.cl.U0 ∩ (∩n
i=1Int.cl.Ux

yi
); then U is a regular open nbd. of

x. Also

f(U) ∩ (Y \ V ) = f(U) ∩ BdV [as f(Int.cl.U0) ⊂ Int.cl.V ]
⊂ f(U) ∩ [∪n

i=1Int.cl.Uyi
] ⊂ ∪n

i=1(f(U) ∩ Int.cl.Uyi
) ⊂

∪n
i=1(f(Int.cl.Ux

yi
) ∩ Int.cl.Uyi

) = ∅ (by (2)).

Thus f(U) ⊂ V . U being a regular open nbd. of x f is strongly δ-
continuous.

Theorem 3.11. Let Y be a compact space. If f : X → Y has a graph
which is δ-closed w.r.t X, then f is strongly δ-continuous.

Proof : Let x ∈ X and let V be an open set containing f(x). Then
for each y ∈ Y \ V , we have (x, y) 6∈ G(f). Then by the condition of δ-
closed graph of f , ∃ δ-open set Uy(x) and open set W (y) containing x and y

respectively such that

(Uy(x) × W (y)) ∩ G(f) = ∅ ⇒ f(Uy(x)) ∩ W (y) = ∅.
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Now {W (y) : y ∈ Y \ V } is an open cover of the closed subset of the
compact set space Y i.e. the compact set Y \V . So it has a finite sub-cover
such that Y \ V ⊂ ∪n

i=1W (yi). Let U = ∩n
i=1Uyi

(x). Then U is an δ-open
set containing x and f(U) ∩ [∪n

i=1W (yi)] = ∅ so f(U) ⊂ V proving that f

is strongly δ-continuous.

Theorem 3.12. If f : X → Y is a strongly δ-continuous mapping and Y

is T2 then G(f) is δ-closed w.r.t X.

Proof : Let x ∈ X and let y 6= f(x). Then by the T2-ness of Y there are
open sets U and V containing f(x) and y respectively such that U ∩V = ∅.
Since f is strongly δ-continuous, there exists a δ-open set W containing x

such that f(W ) ⊂ U . Therefore

f(W ) ∩ V = ∅ ⇒ (W × V ) ∩ G(f) = ∅.

Thus G(f) is δ-closed w.r.t X.
Combining the above two Theorems we can state:

Theorem 3.13. Let Y be a compact T2 space. Then f : X → Y is strongly
δ-continuous iff G(f) is δ-closed w.r.t X.

Theorem 3.14. The graph mapping of a strongly δ-continuous function is
strongly δ-continuous.

Proof : Let f : X → Y be a strongly δ-continuous mapping and let
g : X → X×Y be the graph mapping of f . Let x ∈ X and let W be an open
nbd. of g(x) in X × Y . Then there exist open sets U1 and U2 of X and Y

respectively such that g(x) ∈ U1 × U2 ⊆ M . Since g(x) = (x, f(x)), it
implies that f(x) ∈ U2. Since f is strongly δ-continuous ∃ an open set V

containing x such that f(Int.cl.V ) ⊂ U2. Let M = V ∩ U1. Then M is an
open nbd. of x such that g(Int.cl.M) ⊆ U1 ×U2 ⊂ W . Hence g is strongly
δ-continuous.

Theorem 3.15. Let f : X → Y be a mapping and let x ∈ X. If ∃ a δ-open
nbd. N of x such that the restriction of f to N is strongly δ-continuous at
x, then f is strongly δ-continuous at x.

Proof : Let U be an open set containing f(x) in Y . Since f|N is strongly
δ-continuous at x, therefore there is a δ-open set V1 such that x ∈ N ∩ V1

and f(N ∩ V1) ⊂ U . Hence the result result follows from the fact that
N ∩ V1 ia a δ-open nbd. of x.

Corollary 3.3. Let f : X → Y be a mapping and let {Gλ : λ ∈ Λ} be an
δ-open cover of X. If for each λ ∈ Λ , f|Gλ

is strongly δ-continuous at each
point of Gλ, then f is strongly δ-continuous.

Theorem 3.16. Let f : X → Y be a mapping and let X = X1 ∪X2, where
X1 and X2 are δ-closed and f|X1

& f|X2
are strongly δ-continuous, then f

is strongly δ-continuous.



58 Krishnendu Dutta and S. Ganguly

Proof : Let A be a closed subset of Y . Since f|X1
& f|X2

are both

strongly δ-continuous then (f|X1
)−1(A) and (f|X2

)−1(A) are both δ-closed
in X1 and X2 respectively. Since X1 and X2 are δ-closed subsets of X,
therefore (f|X1

)−1(A) and (f|X2
)−1(A) are δ-closed subsets of X. Also

f−1(A) = (f|X1
)−1(A) ∪ (f|X2

)−1(A). Thus f−1(A) is the union of two
δ-closed set and hence δ-closed . Thus f is strongly δ-continuous.
Definition 2.14 : A point x of a subset A of a space X is called an δ-
interior point of A if ∃ a δ-open nbd. U of x which lies wholly within A. A
point of A is called a δ-boundary point of A if it is not a δ-interior point of
A, the δ-boundary of A is composed of precisely of all δ-boundary points
of A.

Theorem 3.17. The set of all points of a space X at which f : X → Y

is not strongly δ-continuous, is identical with the union of the δ-boundaries
of the inverse images of open subsets of Y .

Proof : Suppose f is not strongly δ-continuous at a point x ∈ X. Then
∃ an open set V containing f(x) and for every δ-open set U containing x,
we have f(U)∩ (Y \ V ) 6= ∅. Thus for every δ-open set U containing x, we
must have U ∩ (X \ f−1(V )) 6= ∅. Thus x cannot be an δ-interior point of
f−1(V ). But x ∈ f−1(V ). So x is a point of the δ-boundary of f−1(V ).

Now, let x belong to the δ-boundary of f−1(G), for some open subset
G of Y . Then f(x) ∈ G. If f is strongly δ-continuous at x, then there
is an δ-open set V such that x ∈ V and f(V ) ⊂ G. Thus x ∈ V ⊂
f−1(f(V )) ⊂ f−1(G). Therefore x is a δ-interior point of f−1(G), which is
a contradiction. Hence f is not strongly δ-continuous at x. This completes
the proof.

4. Properties preserved by strongly δ-continuous functions

Theorem 4.18. Let f : X → Y be a strongly δ-continuous function. If
A ⊂ X is an N -closed set then f(A) is compact.

Proof : Let A be an N -closed set in X and let U = {Uα : α ∈ Λ} be an
open cover of f(A). Then for each a ∈ A, there is an open set Ua ∈ U such
that f(a) ∈ Ua. Since f is strongly δ-continuous, there exists a δ-open set Va

containing a such that f(Va) ⊂ Ua. Now the collection {Va : a ∈ A} forms
a δ-open cover of A and so there exists a finite sub-collection {Va1

, . . . , Van
}

such that A ⊂ ∪n
i=1Vai

. Then f(A) ⊂ f(∪n
i=1Vai

) = ∪n
i=1(f(Vai

)) ⊂ ∪n
i=1Uai

so that U has a finite sub-collection {Uai
: i = 1, . . . , n} which covers f(A).

Thus f(A) is compact.

Corollary 4.4. If f : X → Y be a strongly δ-continuous surjective mapping
with X is N -closed then Y is compact.

Corollary 4.5. A strongly δ-continuous real valued function defined on an
N -closed space is bounded.
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Theorem 4.19. Let f : X → Y be a strongly δ-continuous open surjective
function. If X is locally nearly compact T2 and Y is T2 then Y is locally
compact.

Proof : Let y ∈ Y and x ∈ X be such that f(x) = y. Let y ∈ W

where W is open in Y ; we show that there exist an open set Uy containing

y such that y ∈ Uy ⊂ Uy ⊂ W where Uy is compact. Since f is strongly δ-
continuous, there exist an open set Ux containing x such that f(Int.cl.Ux) ⊂
W . Since Int.cl.Ux is a regular open nbd of x, there exists an open set Vx

containing x such that x ∈ Vx ⊂ V x ⊂ Int.cl.Ux where Vx is N -closed ([3]
Theorem 3.2). Now f being open f(Vx) is open nbd of y in Y . Again, by
Theorem 3.1 f(V x) is compact in Y · · · (1) and hence closed. Thus

y ∈ f(Vx) ⊂ f(Vx) ⊂ f(Int.cl.Ux) ⊂ W .

But f(Vx) being closed in Y is compact. Hence y ∈ f(Vx) ⊂ f(Vx) ⊂ W

and thus Y is locally compact.

Definition 4.12. A T2 space X is called p-compact if each closed set in X

is an N -closed set.

Theorem 4.20. Let f : X → Y be a strongly δ-continuous bijective func-
tion from a p-compact space X to a Hausdorff space Y , then X is homeo-
morphic to Y and both X, Y are compact.

Proof : Since f is strongly δ-continuous, f is continuous. Further as X

is p-compact so if A ⊂ X is closed then A is an N -closed set so that f(A) is
compact by Theorem 3.1 and hence closed in the Hausdorff space Y . This
shows that f is a homeomorphism from X onto Y . Now since X is itself
an N -closed set, f(X) = Y is compact again by Theorem 3.1 . It follows
that both X & Y are compact since they are homeomorphic.

Theorem 4.21. Let F be a mapping from SD(X, Y )×SD(Y, Z) to SD(X, Z)
by the rule F (f, g) = g◦f . If the topology of each of the function spaces is
N-R topology and Y is locally nearly compact T2, then F is continuous.

Proof : Let T (C, U) be a sub-basic open nbd. of g◦f in SD(X, Z) in
the N-R topology, where C is an N-closed subset of X and U is a regular
open set in Z. So

g◦f ∈ T (C, U) ⇒ (g◦f)(C) ⊂ U ⇒ f(C) ⊂ g−1(U).

Since f ∈ SD(X, Y ) and C is N-closed then f(C) is a compact subset
of Y and g ∈ SD(Y, Z) and U regular open in Z and hence open in Z so
g−1(U) is δ-open in Y .

Since Y is locally nearly compact T2 and f(C) has a δ-open nbd. g−1(U),
∃ a regular open nbd. V of f(C) such that V ⊂ g−1(U) with V N-closed
(by Theorem 1.16). Then clearly T (C, V ) is an open nbd. of f and T (V , U)
is an open nbd. of g in the N-R topology.
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It remains to show that F (T (C, V ) × T (V , U)) ⊂ T (C, U).
Let (f1, g1) ∈ T (C, V ) × T (V , U) then f1(C) ⊂ V & g1(V ) ⊂ U . So

F (f1, g1)(C) = (g1◦f1)(C) = g1(f1(C)) ⊂ g1(V ) ⊂ g1(V ) ⊂ U .

Hence (g1◦f1) ∈ T (C, U), which proves that F is continuous.

Theorem 4.22. Let f : X → Y be a strongly δ-continuous function and
Y is locally nearly compact T2. Then the map f+ : SD(Y, Z) → SD(X, Z)
induced by f defined by f+(g) = g◦f is continuous. The function spaces
are endowed with N-R topology.

Proof : Let T (C, U) be a subbasic open nbd.of g◦f in SD(X, Z) in the
N-R topology, where C is a N-closed subset of X and U a is regular open
set in Z. So

g◦f ∈ T (C, U) ⇒ (g◦f)(C) ⊂ U ⇒ f(C) ⊂ g−1(U).

Now f ∈ SD(X, Y ),f(C) is a compact subset of Y and g ∈ SD(Y, Z) then
g−1(U) is δ-open in Y .

Since Y is locally nearly compact T2 and f(C) has a δ-open nbd. g−1(U),
there exists a regular open nbd. V of f(C) such that V ⊂ g−1(U) with V

N-closed. Then T (V , U) is an open nbd. of g in the N-R topology. We
claim that f+(T (V , U) ⊂ T (C, U).
Let g1 ∈ T (V , U) ⇒ g1(V ) ⊂ U then

f+(g1)(C) = (g1◦f)(C) = g1(f(C)) ⊂ g1(V ) ⊂ g1(V ) ⊂ U.

So (g1◦f) ∈ T (C, U) and hence f+(T (V , U)) ⊂ T (C, U). Thus f+ is con-
tinuous.

Theorem 4.23. Let f : X → Y be a strongly δ-continuous map. Then f

induces a map f+ : SD(Z, X) → SD(Z, Y ) given by f+(g) = f◦g which is
continuous.

Proof : Let T (C, U) be a subbasic open nbd. of f◦g in SD(Z, Y ) in the
N-R topology, where C is a N-closed subset of Z and U is regular open set
in Y . So f◦g ∈ T (C, U) ⇒ (f◦g)(C) ⊂ U ⇒ g(C) ⊂ f−1(U). Since U

is regular open and f ∈ SD(X, Y ) so f−1(U) is δ-open in X.Then clearly
T (C, f−1(U)) is an open nbd. of g in the N-R topology of SD(Z, X). We
claim that f+(T (C, f−1(U))) ⊂ T (C, U).
Let g1 ∈ T (C, f−1(U)) ⇒ g1(C) ⊂ f−1(U). So

f+(g1)(C) = (f◦g1)(C) = f(g1(C)) ⊂ f(f−1(U)) ⊆ U .

Thus f+(T (C, f−1(U))) ⊂ T (C, U), which shows f+ is continuous.

5. Retraction and fixed point property

Definition 5.13. A subset A of a space X is said to be a strong δ-retract
of X if there exists a strongly δ-continuous mapping f : X → A such that
f is identity on A ( i.e., f(x) = x, ∀x ∈ A ).
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Theorem 5.24. Strong δ-retract B of a strong δ-retract A of X is a strong
δ-retract of X.

Proof : Since A is a strong δ-retract of X, there exists a strongly δ-
continuous mapping f : X → A such that f is identity on A. Since B

is a strong δ-retract of A, there exists a strongly δ-continuous mapping
g : A → B such that g is identity on B. Then the composition mapping
gof : X → B is strongly δ-continuous by Theorem 1.13. If x be any point
of B, then x ∈ A and thus (gof)(x) = g(f(x)) = g(x) = x. Thus gof is
identity on B. Hence B is a strong δ-retract of X.

Theorem 5.25. If X is a T2 space and A ⊂ X a strong δ-retract of X,
then A is δ-closed in X.

Proof : Since X is a T2-space for any two points x and y in X there
exist open sets Ux and Uy containing x and y such that Ux ∩Uy = ∅ · · · (1).

From (1), Ux ∩ Uy = ∅ i.e., Ux ∩ Int.cl.Uy = ∅ and Int.cl.Uy is an open
set. Again,

Int.cl.Uy ∩ Ux = ∅ ⇒ Int.cl.Uy ∩ Int.cl.Ux = ∅

and then x and y are strongly separated by regular open sets. Now, since
A is a strong δ-retract of X, there exist a δ-continuous map f : X → A

such that f(x) = x for each x ∈ A.
Let x 6∈ A; then f(x) 6= x in X, i.e., there exist two regular open sets U1

and U2 containing f(x) and x respectively such that U1 ∩U2 = ∅. Again f

being δ-continuous and U1 being regularly open there exists a regular open
nbd U3 of x such that f(U3) ⊂ U1; but U2∩U3 = U4(say) is again a regular
open nbd of x and f(U4) ⊂ U1; if possible let x ∈ [A]δ; then U4 ∩ A 6= ∅
i.e., there exist a ∈ A such that a ∈ U4 ; but since a ∈ A, f(a) = a and
thus a = f(a) ∈ f(U4) ⊂ U1; but U4 ⊂ U2 and U2 ∩ U1 = ∅ — and hence a
contradiction. Thus x 6∈ [A]δ hence [A]δ = A i.e., A is δ closed.

Theorem 5.26. A subset A of a space X is a strong δ-retract of X iff
for every space Y , every strongly δ-continuous mapping f : A → Y can be
extended to a strongly δ-continuous mapping from X into Y .

Proof : First let A be a strong δ-retract of X. Then there exists a
strongly δ-continuous mapping g : X → A such that g is identity on A. Let
f : A → Y be any strongly δ-continuous mapping. Then the composition
mapping fog : X → Y is a strongly δ-continuous mapping by Theorem
1.13. If x ∈ A then

(fog)(x) = f(g(x)) = f(x).

Thus fog is an extension of f .
Conversely suppose that for every space Y , every strongly δ-continuous

mapping f : A → Y can be extended to a strongly δ-continuous mapping
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g : X → Y . Let f : A → A be the mapping defined by f(a) = a, ∀a ∈ A.
Then f is strongly δ-continuous. By hypothesis ∃ a strongly δ-continuous
mapping g : X → A such that g|A = f . Let x ∈ A, then g(x) = f(x) = x.
Hence A is a strong δ-retract of X.

Definition 5.14. A space X is said to have the strong δ-fixed point property
if for every strongly δ-continuous mapping f : X → X, ∃ an x ∈ X such
that f(x) = x.

Theorem 5.27. If a space has the strong δ-fixed point property and A is
a strong δ-retract of X, then A has the strong δ-fixed point property.

Proof : Let f : A → A be any strongly δ-continuous mapping. Since
A is a strong δ-retract of X, f can be extended to a strongly δ-continuous
mapping g : X → A by Theorem 4.4. Since X has the strong δ-fixed point
property, there exists an x ∈ X such that g(x) = x. Since g is from X to
A so x ∈ A. It follows that f(x) = g(x) = x. Thus x is a fixed point of A.
Hence A has the strong δ-fixed point property.

6. Strong δ-homotopy

Definition 6.15. Two mappings f, g : X → Y are said to be strong δ-
homotopic if ∃ a strongly δ-continuous mapping Φ : I × X → Y , where
X, Y are any spaces and I is the closed interval [0, 1] with the countable
complement extension topology [i.e., a set O in I is open iff O = U \ A,
where U is any open set in the usual topology and A is a countable subset
of I] such that

Φ(0, x) = f(x) and Φ(1, x) = g(x), ∀x ∈ X.

Definition 6.16. Two mapping f, g : X → Y are said to lie in a common
strong δ-path component if there exists a strongly δ-continuous mapping

Φ̂ : I → SD(X, Y ), where X, Y are any two spaces and I = [0, 1] with the
countable complement extension topology such that

Φ̂(0) = f and Φ̂(1) = g.

Theorem 6.28. [7] The N-R topology on SD(Y, Z) is strongly δ-splitting
i.e., for every space X, the strong δ-continuity of a map α : X × Y → Z

implies the strong δ-continuity of the map α̂ : X → SD(Y, Z).

Theorem 6.29. [7] On the set SD(Y, Z), the N-R topology is strongly δ-
conjoining i.e., for every space X, the strong δ-continuity of a map α̂ :
X → SD(Y, Z) implies the strong δ-continuity of the map α : X × Y → Z,
provided Y is locally nearly compact T2 and Z is semiregular.

Theorem 6.30. Let the function space SD(X, Y ) be endowed with the N-
R topology. If two mappings f, g : X → Y are strong δ-homotopic then
they lie in a common strong δ-path component and conversely, if f and g
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lie in a common strong δ-path component then they are strong δ-homotopic
provided X is locally nearly compact T2 and Y is a semiregular space.

Proof : Let Φ be a strong δ-homotopy between f & g i.e., the mapping
Φ : I × X → Y is strongly δ-continuous then by Theorem 5.3 the associ-

ated map Φ̂ : I → SD(X, Y ) is strongly δ-continuous where SD(X, Y ) is
endowed with N-R topology. Also

Φ(0, x) = f(x) and Φ(1, x) = g(x)

for every x gives

[Φ̂(0)](x) = Φ(0, x) = f(x) and [Φ̂(1)](x) = Φ(1, x) = g(x) for all x.

Thus

Φ̂(0) = f and Φ̂(1) = g.

Hence Φ̂ is a strong δ-path joining f to g, i.e., f and g lie in a common
strong δ-path component.

Conversely, suppose Φ̂ : I → SD(X, Y ) be a strong δ-path joining f to g.
Since X is locally nearly compact T2 and Y is semi regular so by Theorem
5.4 the associated map Φ : I × X → Y is strongly δ-continuous. Also

φ(0, x) = [Φ̂(0)](x) = f(x) and Φ(1, x) = [Φ̂(1)](x) = g(x) ∀x ∈ X.

Thus f&g are strong δ-homotopic.

Theorem 6.31. If the function space are endowed with the N-R topology
and the two maps f, g : X → Y are strong δ-homotopic with Y a locally
nearly compact T2 space, then the maps f+, g+ : SD(Y, Z) → SD(X, Z)
induce by f and g are strong δ-homotopic.

Proof : Let Φ be the strong δ-homotopy between f and g, i.e., the
mapping Φ : I × X → Y is strongly δ-continuous. Then by Theorem 5.3

the associated map Φ̂ : I → SD(X, Y ) is strongly δ-continuous. Hence

Φ̂ × 1 : I × SD(Y, Z) → SD(X, Y ) × SD(Y, Z) is strongly δ-continuous.
We consider the mapping F : SD(X, Y )× SD(Y, Z) → SD(X, Z), since Y

is locally nearly compact T2, F is continuous by Theorem 3.7. Hence the

composition function F◦(Φ̂ × 1) : I × SD(Y, Z) → SD(X, Z) is strongly
δ-continuous by Theorem 1.10.

Put H = F◦(Φ̂ × 1); for any

f1 ∈ SD(Y, Z), H(0, f1) = (F◦(Φ̂ × 1))(0, f1) = F (Φ̂(0), f1) = f1◦Φ̂(0).

For any x ∈ X,

[H(0, f1)](x) = [f1(Φ̂(0))(x)] = f1◦f(x)

giving H(0, f1) = f1◦f = f+(f1). Similarly H(1, f1) = g+(f1).
Thus f+ & g+ are strong δ-homotopic.

Theorem 6.32. If f, g : X → Y are strong δ-homotopic and if X is a lo-
cally nearly compact T2 space, then the induced maps f+, g+ : SD(Z, X) →
SD(Z, Y ) are strong δ-homotopic.
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Proof : Let Φ be the strong δ-homotopy between f&g, i.e., the mapping
Φ : I×X → Y is strongly δ-continuous then by Theorem 5.3 the associated

map Φ̂ : I → SD(X, Y ) is strongly δ-continuous. Hence 1×Φ̂ : SD(Z, X)×
I → SD(Z, X) × SD(X, Y ) is strongly δ-continuous. Since X is locally
nearly compact T2 so the map F : SD(Z, X) × SD(X, Y ) → SD(Z, Y ), is

continuous. Thus the composition map F◦(1 × Φ̂) is strongly δ-continuous
by Theorem 1.10.

Set H = F◦(1 × Φ̂) : SD(Z, X) × I → SD(Z, Y ).
Then

H(f1, 0) = (F◦(1 × Φ̂))(f1, 0) = F (f1, Φ̂(0)) for every f1 ∈ SD(Z, X).

Thus for any z ∈ Z,

[H(f1, 0)](z) = [F (f1, Φ̂(0))](z) = [Φ̂(0)](f1(z))

= Φ(0, f1(z)) = f(f1(z)) = [f+(f1)](z).

Thus for any f1 ∈ SD(Z, X), H(f1, 0) = f+(f1).
Similarly H(f1, 1) = g+(f1) for any f1SD(Z, X).

Thus f+ & g+ are strong δ-homotopic.

Definition 6.17. A subspace A of X is said to have the strong δ-homotopy
extension property in X w.r.t a space Y , if for every continuous mapping
f : X → Y and every homotopy h : A × I → Y such that h(x, 0) =
f(x), ∀x ∈ A, there exists a strong δ-homotopy g : X × I → Y such that
g(x, t) = h(x, t), ∀(x, t) ∈ A × I & g(x, 0) = f(x), ∀x ∈ X.

Definition 6.18. A subspace A of a space X is said to have the absolute
strong δ-homotopy extension property in X if A has the strong δ-homotopy
extension property w.r.t every space X.

Theorem 6.33. If A is a δ-closed subset of a space X, then A has the
absolute strong δ-homotopy extension property in X iff (X ×{0})∪ (A× I)
is a strong δ-retract of X × I.

Proof : First, suppose that (X × {0}) ∪ (A × I) is a strong δ-retract
of X × I. Let Y be any space, f : X → Y be any cotinuous mapping and
let h : A × I → Y be a homotopy such that h(x, 0) = f(x) ∀x ∈ A. Let
g : (X×{0})∪(A×I) → Y be the mapping defined by g(x, t) = f(x) if t =
0 & g(x, t) = h(x, t) if t 6= 0. Obviously g is a cotinuous mapping . Since
(X×{0})∪(A×I) is a strong δ-retract of X×I then by Theorem 4.4 g can be
extended to a strongly δ-continuous mapping g∗X × I → Y . Since g∗ is an
extension of g so g∗(x, t) = g(x, t) ∀(x, t) ∈ A×I & g∗(x, 0) = f(x) ∀x ∈ X.
Hence A has the absolute strong δ-homotopy extension property in X.

Conversely, suppose A has the absolute strong δ-homotopy extension
property in X. Let Y = (X × {0}) ∪ (A × I) and let f : X → X × Y be
a mapping defined by f(x) = (x, 0) ∀x ∈ X. Then f is continuous. Let
g : A × I → Y be the homotopy defined by g(a, t) = (a, t) ∀(a, t) ∈ A × I.
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By hypothesis ∃ a strong δ-homotopy h : X × I → Y such that h(x, t) =
g(x, t) ∀(x, t) ∈ A × I & h(x, 0) = f(x) ∀x ∈ X. Obviously h is a strongly
δ-continuous mapping of X × I into (X ×{0})∪ (A× I). Let (x, y) ∈ Y . If
(x, y) ∈ (X ×{0}) then y = 0, so h(x, y) = h(x, 0) = f(x) = (x, 0) = (x, y).
Also if (x, y) ∈ A × I then x ∈ A so h(x, y) = g(x, y) = (x, y). Thus h is
identity on Y . Hence Y is a strong δ-retract of X × I.

Theorem 6.34. If A is a δ-closed subset of X, then (X ×{0})∪ (A× I)∪
(X ×{1}) is a strong δ-retract of X × I iff for every space Y and each pair
of continuous mapping f, g : X → Y , any given homotopy between f|A & g|A
can be extended to a strong δ-homotopy between f&g.

Proof : First suppose that (X × {0}) ∪ (A × I) ∪ (X × {1}) is a strong
δ-retract of X × I. Let Y be any space and let f : X → Y & g : X → Y be
continuous mapping. Let h : A× I → Y be a homotopy between f|A & g|A.
Define a mapping h∗ : (X × {0}) ∪ (A × I) ∪ (X × {1}) → Y by

h∗(x, t) = f(x) ; t = 0
= h(x, t) ; 0 < t < 1
= g(x) ; t = 1

Then h∗ is continuous. Also since, (X × {0}) ∪ (A × I) ∪ (X × {1}) is a
strong δ-retract of X × I, so h∗ can be extended to a strongly δ-continuous
mapping h∗∗ : X × I → Y . Now h∗∗ being an extension of h∗, h∗∗(x, 0) =
h∗(x, 0) = f(x) & h∗∗(x, 1) = h∗(x, 1) = g(x) ∀x ∈ X. Thus h∗∗ is a strong
δ-homotopy between f|A & g|A.

Conversely, suppose that if Y is any space and f : X → Y & g : X →
Y are continuous mappings, then given any homotopoy between f|A & g|A
can be extended to a strong δ-homotopoy between f & g. Let Y = (X ×
{0}) ∪ (A × I) ∪ (X × {1}). Let f : X → Y be the mapping defined by
f(x) = (x, 0)∀x ∈ X. Let g : X → Y be the mapping defined by g(x) =
(x, 1)∀x ∈ X. Then f & g are continuous mappings. Let h : A× I → Y be
the homotopy between f|A & g|A defined by h(a, t) = (a, t) ∀(a, t) ∈ A × I.
Then h can be extended to a strong δ-homotopy k : X × I → Y between
f & g. Let (x, y) ∈ Y . If (x, y) ∈ X × {0}, then

k(x, y) = k(x, 0) = f(x) = (x, 0) = (x, y). If (x, y) ∈ X × {1},

then k(x, y) = k(x, 1) = g(x) = (x, 1) = (x, y). If (x, y) ∈ A × I then
k(x, y) = h(x, y) = (x, y). Thus k is identity on Y . Hence Y is a strong
δ-retract of X × I.
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