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Positive solutions of nonlinear
functional-integral equations

ANDREI HORVAT-MARC

Abstract. In this paper we study the conditions are required for existence of at least
one positive solution of the functional-integral equation

u (x) = g (x) +
R h

0
k (x, s) F (u) (s)ds, x ∈ [0, h]

where F : C [0, h] → C [0, h] is an operator. Our approach to the problem is based on
the Krasnoselskii’s compression-expansion fixed point theorem.

1. Introduction

In this paper, we consider the nonlinear integral equation

(1.1) u (x) = g (x) +

h
∫

0

k (x, s)F (u) (s) ds, x ∈ [0, h]

where F : C [0, h] → C [0, h], g : [0, h] → R and k : [0, h] × [0, h] → R. In
particular case, when F is the Nemitskii’s operator attached to the function
f : [0, h] × R → R, i.e. for u ∈ C [0, h]

F (u) (x) = Nfu (x) = f (x, u (x)) , x ∈ [0, h],

then equation (1.1) became

(1.2) u (x) = g (x) +

h
∫

0

k (x, s) f (s, u (s)) ds, x ∈ [0, h] .

The existence of positive solutions for (1.2) was studied in several papers
[1, 2, 5, 7, 8, 9] and reference therein. For example, in [5] are established
existence results of positive solutions for (1.2) and their applications to
the boundary-value problem with integral boundary conditions. In [1], the
equation (1.2) is used to studie the solutions for the two-point boundary
value problem.

The idea of this paper was suggest in [7], where are presented existence
results of multiple nonnegative continuous solutions of a nonlinear integral
equation on both a compact interval and semi-infinite interval. Applications
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of this result to localize solutions of some boundary valued problem are
presented in [2, 4].

The main result is obtained by applying the well known fixed point the-
orem due to Krasnoselskii [6]. Let us recall this result:

Theorem 1.1. [Krasnoselskii’s compression-expansion fixed point theo-
rem] Let X be a Banach space, and let K ⊂ X be a con in X. Assume that

Ω1, Ω2 are two open subsets of X such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Consider

the operator T : K ∩
(

Ω2\Ω1

)

→ K be completely continuous and either

‖T (x)‖ ≤ ‖x‖ , x ∈ K ∩ Ω1 and ‖T (x)‖ ≥ ‖x‖ , x ∈ K ∩ Ω2

or

‖T (x)‖ ≥ ‖x‖ , x ∈ K ∩ Ω1 and ‖T (x)‖ ≤ ‖x‖ , x ∈ K ∩ Ω2

is true. Then T has a fixed point in K ∩
(

Ω2\Ω1

)

.

2. Preliminary results

Consider that C [0, h] is the Banach space of all continuous functions
u : [0, h] → R, endowed with the norm ‖·‖, where

(2.3) ‖u‖ = sup
x∈[0,h]

|u (x)| , u ∈ C [0, h] .

Let us suppose that the following conditions are satisfied:

(h1) 0 ≤ kx (s) = k (x, s) ∈ L1 [0, h] for x ∈ [0, h];
(h2) the map x 7→ kx is continuous from [0, h] to L1 [0, h];

(h3) there exists M ∈ (0, 1), k̃ ∈ L1 [0, h] and an interval [a, b] ⊂ [0, h] such

that k (x, s) ≥ Mk̃ (s) ≥ 0, x ∈ [a, b], a.e. s ∈ [0, h];

(h4) k (x, s) ≤ k̃ (s), x ∈ [0, h], a. e. s ∈ [0, h];
(h5) g ∈ C [0, h] with g (x) ≥ 0, x ∈ [0, h] and min

a≤x≤b
g (x) ≥ M ‖g‖.

By considering some arguments from [5], we obtain the following suf-
ficient conditions for (h3) and (h4), introduced by D. O’Regan and M.
Meehan in [7].

Lemma 2.1. Assume that

(CC) k (·, s) = k is nonnegative, concave and nondecreasing a.e. s ∈ [0, h],
then (h3) and (h4) hold.

Proof. Let η ∈ (0, h). Concavity of k implies

k (h) − k (0)

h
≥

k (h) − k (η)

h − η
.

Hence

(2.4) k (η) ≥
η

h
k (h) +

(

1 −
η

h

)

k (0) .
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Since k is nonnegative, we may have k (η) ≥ Mk (h). Therefore,

η

h
k (h, s) ≤ k (η, s) ≤ k (x, s) , x ∈ [η, h] , a.e. s ∈ [0, h] .

Hence, the hypothesis (h3) is satisfied for M =
η

h
, [a, b] = [η, h] and

k̃ (s) = k (h, s) for any η ∈ (0, h). �

Lemma 2.2. If we assume that

(CD) k (·, s) = k is nonnegative, concave and nonincreasing a.e. s ∈ [0, h],
then (h3) and (h4) hold.

Proof. Concavity of k implies (2.4). Since k is nonnegative, we can choose

k (η) ≥
(

1 −
η

h

)

k (0). Because k is nonincreasing, we get

(

1 −
η

h

)

k (0, s) ≤ k (η, s) ≤ k (x, s) , x ∈ [0, η] , a.e. s ∈ [0, h] .

Therefore, the hypothesis (h3) is satisfied for M = 1−
η

h
, [a, b] = [0, η] and

k̃ (s) = k (0, s) for any η ∈ (0, h). �

Let K : C [0, h] → C [0, h] be an operator defined as follows

Kv (x) = g (x) +
h
∫

0

k (x, s) v (s) ds, x ∈ [0, h].

Then equation (1.1) is equivalent to the fixed point problem

(2.5) Tu = u,

where T : C [0, h] → C [0, h] is given by T = KF .
Let [a, b] be the interval given by the hypothesis (h3) and

CK =

{

u ∈ C [0, h] ;u (x) ≥ 0, x ∈ [0, h] and min
x∈[a,b]

u (x) ≥ M ‖u‖

}

.

Lemma 2.3. If hypotheses (h1) − (h5) are satisfied, then the operator

K : CK → C [0, h] is well defined, continuous and completely continuous.

Proof. By conditions (h1), (h2) and (h5) results that K is completely con-
tinuous.

Let v ∈ C [0, h] be such that v (x) ≥ 0, x ∈ [0, h]. By (h1), (h2), (h4)
and (h5) we have

‖Kv‖ = sup
x∈[0,h]

(

g (x) +

∫ h

0
k (x, s) v (s) ds

)

≤ |g|0 +

∫ h

0
k̃ (s) v (s) ds.(2.6)
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By (h1)–(h3) and (h5) we obtain

min
x∈[a,b]

Kv (x) = min
x∈[a,b]

(

g (x) +

∫ b

a

k (x, s) v (s) ds

)

≥ M

(

‖g‖ +

∫ h

0
k̃ (s) v (s)

)

(2.7)

From (2.6) and (2.7) results min
x∈[a,b]

Kv (x) ≥ M ‖Kv‖. So, Kv ∈ CK for any

v ∈ CK . �

3. Main result

Theorem 3.2. Suppose that (h1)-(h5) are satisfied and

(H1) the operator F : C [0, h] → C [0, h] is continuous and increasing, i.e.

for u, v ∈ C [0, h] with u < v implies F (u) < F (v);

(H2) there exists α > 0 such that
α

‖g‖ + K1F (α)
> 1, where

K1 = sup
0≤x≤h

h
∫

0

k (x, s) ds > 0;

(H3) there exist β > 0, α 6= β and x0 ∈ [0, h] such that

β

g (x0) + F (Mβ)
b
∫

a

k (x0, s) ds

< 1;

hold. Then, (1.1) has at least one nonnegative solution u ∈ C [0, h] and

either

(A) 0 < α ≤ ‖u‖ ≤ β and u (x) ≥ Mα for x ∈ [a, b] if α < β;

or

(B) 0 < β ≤ ‖u‖ ≤ α and u (x) ≥ Mβ for x ∈ [a, b] if α > β.

holds.

Proof. Let Ω1 and Ω2 be a subsets in C [0, h] given by

Ω1 = {u ∈ C [0, h] ; ‖u‖ < α} and Ω2 = {u ∈ C [0, h] ; ‖u‖ < β}

Define the operator T : CK → CK by

(3.8) Tu (x) = KF (u) (x) = g (x) +

∫ h

0
k (x, s) F (u) (s) ds.

Since F is continuous and using Lemma 2.3, we have T completely con-
tinuous. In what it follows, we will apply the Krasnoselskii’s fixed point
theorem for T . Therefore, we prove that

(3.9) ‖Tu‖ < ‖u‖ , u ∈ CK ∩ ∂Ω1,
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and

(3.10) ‖Tu‖ > ‖u‖ , u ∈ CK ∩ ∂Ω2.

Let u ∈ CK ∩ ∂Ω1, i.e. u (x) ≥ 0, x ∈ [0, h] and ‖u‖ = α.
We have

sup
x∈[0,h]

|Tu (x)| = sup
x∈[0,h]

(

g (x) +

∫ h

0
k (x, s)F (u) (s) ds

)

≤ sup
x∈[0,h]

g (x) + F (α) sup
x∈[0,h]

∫ h

0
k (x, s) ds

≤ ‖g‖ + K1F (α)

< α = ‖u‖ .(3.11)

If u ∈ CK ∩ ∂Ω2, then u (x) ≥ 0, x ∈ [0, h], ‖u‖ = β and
Mβ ≤ u (x) ≤ β, x ∈ [a, b]. Then

T (u) (x0) = g (x0) +

∫ h

0
k (x0, s)F (u) (s) ds

≥ g (x0) +

∫ b

a

k (x0, s)F (u) (s) ds

≥ g (x0) + F (Mβ)

∫ b

a

k (x0, s) ds

> β = ‖u‖ .(3.12)

Therefore, (3.11), (3.12) proves (3.9), (3.10) respectively. �

If we replace the hypothesis (h3) and (h4) with (CC) from Lemma 2.1
we get the following result

Corollary 3.1. Suppose that (h1), (h2), (CC), (h5), (H1) and

(HC1) there exists α > 0 such that α > ‖g‖ + F (α)
∫ h

0 k (h, s) ds;

(HC2) there exists β > 0, β 6= α such that for η ∈ (0, h) we have

β < min
x∈[0,h]

g (x) + F

(

ηβ

h

)
∫ h

η

k (0, s) ds.

Then, (1.1) has at least one nonnegative solution u ∈ C [0, h] and either

(AC) 0 < α ≤ ‖u‖ ≤ β and u (x) ≥ ηα
h

for x ∈ [η, h] if α < β;

or

(BC) 0 < β ≤ ‖u‖ ≤ α and u (x) ≥ ηβ
h

for x ∈ [η, h] if α > β.

holds.

Using Lemma 2.2 we get

Corollary 3.2. Suppose that (h1), (h2), (CD), (h5), (H1) and

(HD1) there exists α > 0 such that α > ‖g‖ + F (α)
∫ h

0 k (0, s) ds;
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(HD2) there exists β > 0, β 6= α such that for η ∈ (0, h) we have

β < min
x∈[0,h]

g (x) + F

(

(h − η) β

h

)
∫ η

0
k (h, s) ds.

Then, (1.1) has at least one nonnegative solution u ∈ C [0, h] and either

(AD) 0 < α ≤ ‖u‖ ≤ β and u (x) ≥ (h−η)α
h

for x ∈ [0, η] if α < β;

or

(BD) 0 < β ≤ ‖u‖ ≤ α and u (x) ≥ (h−η)β
h

for x ∈ [0, η] if α > β.

holds.

These two corollaries contain conditions which are similar with conditions
required in [5] and are very easy to check in applications.
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