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Positive solutions of nonlinear
functional-integral equations

ANDREI HORVAT-MARC

ABSTRACT. In this paper we study the conditions are required for existence of at least
one positive solution of the functional-integral equation

u(r) =g(x)+ foh k(z,s) F (u) (s)ds, = € [0,h]
where F' : C'|0,h] — C'[0,h] is an operator. Our approach to the problem is based on
the Krasnoselskii’s compression-expansion fixed point theorem.

1. INTRODUCTION

In this paper, we consider the nonlinear integral equation

h
(1.1) (@) = g (2) ~|—/k:(:c,s)F(u) (s)ds, € 0,h]

where F' : C'[0,h] — C'[0,h], g : [0,h] — R and k : [0,h] x [0,h] — R. In
particular case, when F' is the Nemitskii’s operator attached to the function
f:[0,h] x R — R, ie. for u € C[0,h]

F(u) () = Nyu(z) = f(z,u(2)), =€l0,h],
then equation (1.1) became
h

(1.2) u(z)=g(x)+ /k‘ (z,s) f(s,u(s))ds, = €[0,h].
0

The existence of positive solutions for (1.2) was studied in several papers
[1, 2, 5, 7, 8 9] and reference therein. For example, in [5] are established
existence results of positive solutions for (1.2) and their applications to
the boundary-value problem with integral boundary conditions. In [1], the
equation (1.2) is used to studie the solutions for the two-point boundary
value problem.

The idea of this paper was suggest in [7], where are presented existence
results of multiple nonnegative continuous solutions of a nonlinear integral
equation on both a compact interval and semi-infinite interval. Applications
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of this result to localize solutions of some boundary valued problem are
presented in [2, 4].

The main result is obtained by applying the well known fixed point the-
orem due to Krasnoselskii [6]. Let us recall this result:

Theorem 1.1. [Krasnoselskii’s compression-expansion fixed point theo-
rem] Let X be a Banach space, and let K C X be a con in X. Assume that
Q1, Qo are two open subsets of X such that 0 € Qy and Q1 C Qy. Consider
the operator T : K N (ﬁg\Ql) — K be completely continuous and either

IT@)| < lzll, 2 € KN and [T (z)] = [lz], = € KN

or
IT@)| = 2], =€ KN and |T(2)]| < [z, 2 € KN
is true. Then T has a fixed point in K N (ﬁg\ Ql).

2. PRELIMINARY RESULTS

Consider that C'[0,h] is the Banach space of all continuous functions

u: [0, h] — R, endowed with the norm ||-||, where
(2.3) lull = sup |u(z)], uweC0,h].
z€[0,h]

Let us suppose that the following conditions are satisfied:
(h1) 0 <k (s) =k (x,s) € LY [0, h] for = € [0, h);
(ha) the map z +— k, is continuous from [0, A] to L' [0, A);
(h3) there exists M € (0,1), k € L' [0, h] and an interval [a,b] C [0, k] such
that k (z,s) > Mk (s) >0, z € [a,b], a.e. s €[0,h];
(hg) k(z,5) < k(s), z €[0,h], a. e. s € [0,h];
(hs) g € C[0,h] with g (x) > 0, z € [0,h] and min g () > M |g].

By considering some arguments from [5], we obtain the following suf-

ficient conditions for (hs) and (h4), introduced by D. O’Regan and M.
Meehan in [7].

Lemma 2.1. Assume that
(CC) k (-, s) = k is nonnegative, concave and nondecreasing a.e. s € [0, h],
then (hs) and (hy) hold.
Proof. Let n € (0,h). Concavity of k implies
k(h) —k(0)  k(h) —k(n)
h - h—n

Hence

(2.4) k(n) > 2 k(h)+ (1 - ﬂ) k (0).

h
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Since k is nonnegative, we may have k (n) > Mk (h). Therefore,

D k(h,s) <k(n,s) <k(z,s),z€[nh], ae sel0,h].

h
Hence, the hypothesis (h3) is satisfied for M = %, [a,b] = [n,h] and
k(s) =k (h,s) for any n € (0, h). O

Lemma 2.2. If we assume that
(CD) k (-, s) = k is nonnegative, concave and nonincreasing a.e. s € [0, h],

then (h3) and (hy) hold.

Proof. Concavity of k implies (2.4). Since k is nonnegative, we can choose

k(n) > (1 - %) k (0). Because k is nonincreasing, we get

(1— ﬂ)k(O,s) <k(ns) <k(z,s),xze€l0,n,ae sec]0,h].

h
Therefore, the hypothesis (hg) is satisfied for M = 1—%, [a, b] = [0,n] and
k(s) =k (0,s) for any n € (0,h). O

Let K : C'[0,h] — C'[0, h] be an operator defined as follows
h
Kv(z)=g(z)+ [k(z,s)v(s)ds, z€[0,h]
0

Then equation (1.1) is equivalent to the fixed point problem
(2.5) Tu = u,
where T': C'[0,h] — C'[0,h] is given by T'= KF.
Let [a, b] be the interval given by the hypothesis (h3) and
Ck = {u € C0,h];u(x) > 0,2 € [0,h] and min u (z) > MHUH}

z€la,b]

Lemma 2.3. If hypotheses (hy) — (hs) are satisfied, then the operator
K : Cxg — C[0,h] is well defined, continuous and completely continuous.

Proof. By conditions (hi), (he) and (hs) results that K is completely con-
tinuous.

Let v € C'[0,h] be such that v (z) > 0, z € [0,h]. By (h1), (h2), (ha)
and (hs) we have

Kol = s (9(0)+ /Ohkm,s)v(s)ds)

z€[0,h]

h~
(2.6) < |g|0+/0 k(s)v(s)ds.
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By (h1)—(hs) and (hs) we obtain

min Kv() = min (g(:c)+ /abk:(a:,s)v(s)ds>

z€la,b| xz€[a,b

v (Lol + | hl%<s>v<s>)

From (2.6) and (2.7) results min}KU () > M ||Kvl||. So, Kv € Ck for any

xz€[a,b

v e Ck. O

(2.7)

v

3. MAIN RESULT

Theorem 3.2. Suppose that (h1)-(hs) are satisfied and

(Hy) the operator F : C'[0,h] — C'[0,h] is continuous and increasing, i.e.
for u,v € C'[0, h] with u < v implies F (u) < F (v);
Hs) there exists a > 0 such that ————— > 1, where
) ol )
h
Ki= sup [k(z,s)ds>0;
0<z<h 0
(Hg3) there ezist § >0, a # 8 and xg € [0, h] such that

s

g (o) + F (MP)

<1

Q=

k (xo,s) ds

hold. Then, (1.1) has at least one nonnegative solution u € C'[0,h] and
either

(A)O0<a<|ul| <G andu(x) > Ma for z € [a,b] if a < ;

or

B)0<p<||ull| <a and u(z) > Mp for x € [a,b] if a > 3.

holds.

Proof. Let Q7 and Q9 be a subsets in C'[0, h] given by
Q ={ueC[0,h];|ul| <a}and Qy ={ue C[0,h];]|u]| < 5}

Define the operator T : Cx — Ck by

h
(3.8) Tu(z) = KF (u) (z) = g(x) +/O k(x,s) F(u)(s)ds.

Since F' is continuous and using Lemma 2.3, we have T completely con-
tinuous. In what it follows, we will apply the Krasnoselskii’s fixed point
theorem for T'. Therefore, we prove that

(3.9) |Tul| < ||lull,u € Cx N O,
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and
(3.10) |Tul| > ||ul|,u € Ckx N ON.
Let u € Cxg N Oy, ie. u(x) >0,z €[0,h] and |Ju|| = «.
We have

sup |[Tu(x)] = sup} <g (x) + /Ohk(:c,s)F(u) (s) ds)

2€[0,h] z€[0,h

h
< sup g(z)+ F () Sup}/ k(x,s)ds

z€[0,h] z€[0,h
< gl + KiF (o)
(3.11) < a=|ul.
If w € Cg N 0, then u(x) > 0, x € [0,h], [|ul| = B and

Mp <u(xz)<pB, x€la,b]. Then
h
T (u)(z0) = g(w0)+ / k (0, 5) F () (s) ds

b
> g(ao) + / k (20, 5) F (u) (s) ds

b
> g (o) —|—F(Mﬂ)/ k (xo,s)ds
(3.12) > B =l
Therefore, (3.11), (3.12) proves (3.9), (3.10) respectively. O

If we replace the hypothesis (h3) and (hys) with (CC) from Lemma 2.1
we get the following result

Corollary 3.1. Suppose that (h1), (h2), (CC), (hs), (H1) and

(HCy) there exists a > 0 such that o > ||g|| + F (« fo (h,s)ds;
(HC3) there exists 5 >0, B # « such that for n 6 (0, h) we have

: ns
B<xr€%%g( )+F<h>/n k (0, s) ds.

Then, (1.1) has at least one nonnegative solution u € C'[0, h] and either
(AC) 0 < a < lu|| < B and u(x) > B forx € [n,h] if a < ;

or

(BC) 0 < B < |Ju|| < o and u () > % for x € [n,h] if o> (.

holds.

Using Lemma 2.2 we get

Corollary 3.2. Suppose that (h1), (h2), (CD), (hs), (H1) and
(HDy) there exists a > 0 such that o > ||g|| + F (« fo (0,s)ds;
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(HD3y) there exists 3 >0, 3 # « such that for n € (0,h) we have

B < ming(x)+F<(h_h”)5> /Onk(h,s)ds.

z€[0,h]

Then, (1.1) has at least one nonnegative solution u € C'[0, h] and either
(AD) 0 < a < [Ju|| < B and u (z) > @ for x € [0,n] if « < B;

or

(BD) 0 < < ||lu|| € @ and u(z) > W forz €[0,n] if a > 5.
holds.

These two corollaries contain conditions which are similar with conditions
required in [5] and are very easy to check in applications.

[1]
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