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A class of bounded functions

GHEORGHE MICLĂUŞ

Abstract. In this note we show that the Libera generalized integral operator trans-
forms the class of convex functions and the class of functions subordinate to convex
functions into the class of bounded functions.

1. Introduction

Let f be analytic in the unit disc U = {z : | z| < 1} and let H(U) denote
the set of all analytic functions in U . In 1965 R. Libera showed that the
operator

L : H(U) → H(U)

defined by

(1.1) L(f)(z) =
2

z

z∫

0

f(t)dt

maps S∗ into S∗, where S∗ is the class of starlike functions. In 1969, S.
Bernardi considered the more general operator

(1.2) Lγ(f)(z) =
γ + 1

zγ

z∫

0

f(t) tγ−1dt

and showed that Lγ(S∗) ⊂ S∗ , if γ = 1, 2, . . . . Many authors have studied
this operator where f belongs to some special class of functions.

In this paper we show that the integral operator Lγ maps K into the
class of bounded functions where K denotes, as usual, the class of convex
functions. Also, if f is subordinate to a convex function then Lγ(f) is
bounded too.

2. Preliminaries

Let f and g be analytic in the unit disc U . We say that f is subordinate
to g, written f(z) ≺ g(z) or f ≺ g, if there exists a function w(z) analytic
in U which satisfies w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)). If g(z) is
univalent in U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).
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Let E ⊂ H(U) and let I be an integral operator, I : E → H(U). We call
I integral operator preserving subordination if

f ≺ g ⇒ I[f ] ≺ I[g].

For f ∈ H(U) and z = reiθ, we set

Mp(r, f) =







(
1

2π

2π∫

0

∣
∣f(reiθ)

∣
∣ p

dθ

)1
p

, for 0 < p < ∞ ,

sup
0≤θ≤2π

∣
∣f(reiθ)

∣
∣ , for p = ∞ .

A function is said to be of Hardy spaces Hp (0 < p < ∞) if Mp(r, f)
remains bounded as r ր 1. H∞ is the class of bounded analytic functions
in the unit disc. We will make use of the following lemmas:

Lemma 2.1. [2] If f ∈ K is not of the form

f(z) = a +
b

1 − zeiτ
,

for some complex a, b and real τ , then there exists ε = ε(f) > 0 such that

f ∈ H1+ε.

Lemma 2.2. (Integral theorem of Hardy-Littlewood). [1] If f ∈ Hp and

F (z) =
z∫

0

f(t)dt then F ∈ H
p

1−p for 0 < p < 1 and F ∈ H∞ for p ≥ 1.

3. Main results

Theorem 3.1. Let f, g ∈ H(U), g convex, g is not of the form

g(z) = a +
b

1 − zeiτ
, a, b ∈ C , τ ∈ R

and f ≺ g. If Lγ : H(U) → H(U)is the Libera generalized integral operator
defined by (2) then Ln

γ (f) and Ln
γ (g) are bounded, for all n ∈ N

∗, where

Ln
γ = Lγ ◦ Lγ ◦ . . . ◦ Lγ

︸ ︷︷ ︸

n

.

Proof. Let F , I and G be operators defined by

F [f ](z) =
γ + 1

zγ−1
f(z),

I[f ](z) =
1

z

z∫

0

f(t) dt,

G[f ](z) = f(z) · zγ−1.

A simple computation shows that Lγ can be written as:
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(3.1) Lγ = F ◦ I ◦ G.

From Lemma 2.1, we have that if g is convex function and is not of the
form

g(z) = a +
b

1 − zeiτ
, a, b ∈ C , τ ∈ R

then there exists ε = ε(g) > 0 such that

g ∈ H1+ε.

We have

Mp(r, G(f)) =




1

2π

2π∫

0

∣
∣
∣f(reiθ) · (reiθ)γ−1

∣
∣
∣

p

dθ





1
p

=

= k




1

2π

2π∫

0

∣
∣
∣f(reiθ)

∣
∣
∣

p

dθ





1
p

= kMp(r, f),(3.2)

where k constant.
Hence, G(f) and f have the same Hardy spaces, that is G(f) ∈ H1+ε.

From theorem of Hardy-Littlewood we have
z∫

0

g(t) dt ∈ H∞. But
z∫

0

g(t) dt

and I[g] have the same Hardy spaces. Hence (I ◦G)(g) ∈ H∞. Also, f and
F (f) have the same Hardy spaces. Hence we obtain (F ◦ I ◦ G)(g) ∈ H∞,
and Lγ(g) ∈ H∞. Because f ≺ g, from subordination theorem of Little-
wood we have f ∈ H1+ε, ε > 0. Hence G(f) ∈ H1+ ε and I(G(f)) ∈ H∞.
Analogous F (I(G(f))) ∈ H∞. Finally Lγ(f) ∈ H∞.

Because I(Lγ(f)) ∈ H∞ we have I(G(Lγ)) ∈ H∞ and F (I(G(Lγ(f))) ∈
H∞. Hence L2

γ(f) ∈ H∞. Applying the theorem of induction we obtain
the result.

Corollary 3.2. Let Let f, g ∈ H(U), g convex, g is not of the form

g(z) = a +
b

1 − zeiτ
, a, b ∈ C , τ ∈ R

and f ≺ g. Then, for the Libera integral operator defined by (1), we have
that Ln(f) and Ln(g) are bounded in U for all n ∈ N

∗, where

Ln = L ◦ L ◦ . . . ◦ L
︸ ︷︷ ︸

n

.

Indeed, if we let γ = 1 in Theorem 3.1 we obtain the result.
In other words, L maps K into the class of bounded functions without

exception. Also, the class of functions which are subordinate of convex
functions is maps into the class of bounded functions.
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Remark 3.3. For γ = 0 the Libera generalized integral operator becomes
the Alexander integral operator. In a similar way we can show that the
results is true for the Alexander operator.
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