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About some inequalities

OVIDIU T. POP

Abstract. In this article we prove some inequalities of Simpson’s type and we present
some applications.

1. Introduction

The following result was proved in [1]:

Theorem 1.1. Let f : [a, b] → R be a mapping with bounded variation on
[a, b]. Then we have the inequality

(1.1)
∣∣∣ ∫ b

a
f(x)dx− b− a

3

[f(a) + f(b)
2

+ 2f
(a + b

2

)]∣∣∣ ≤ 1
3
(b− a)

b∨
a

(f),

where
b

V
a

(f) denote the total variation of f on the interval [a, b]. The

constant
1
3

is the best possible.

Corollary 1.1. Suppose that f : [a, b] → R is a differentiable mapping

whose derivative is coutinuous on (a, b) and ‖f ′‖1 =
∫ b

a
|f ′(x)|dx < ∞.

Then we have the inequality

(1.2)
∣∣∣ ∫ b

a
f(x)dx− b− a

3

[f(a) + f(b)
2

+ 2f
(a + b

2

)]∣∣∣ ≤ 1
3
‖f ′‖1(b− a).

2. Main results

Theorem 2.1. Let f : [a, b] → R be a mapping with bounded variation on
[a, b]. Then we have the inequality

l
∣∣∣ ∫ b

a
f(x)dx −

[
2t

f(a) + f(b)
2

+ (1− 2t)f
(a + b

2

)]
(b− a)

∣∣∣ ≤(2.1)

≤ b− a

2

b∨
a

(f) max{2t, |1− 2t|(2.2)

for all t ∈ [0, 1].
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Proof: We define the function

st (x) =


x−

[
(1− t) a + tb

]
, x ∈

[
a,

a + b

2

)
x−

[
ta + (1− t)b

]
, x ∈

[a + b

2
, b

] , t ∈ [0, 1].

Using the integration by parts formula for Riemann-Stieltjes integral, for
t ∈ [0, 1] we have∫ b

a
st(x)df(x) =

∫ a+b
2

a
st(x)df(x) +

∫ b

a+b
2

st(x)df(x) =

=
∫ a+b

2

a

{
x−

[
(1− t)a + tb

]}
df(x)+

+
∫ b

a+b
2

{
x−

[
ta + (1− t)b

]}
df(x) =

=
({

x−
[
(1− t)a + tb

]}
f(x)

∣∣∣a+b
2

a
−

∫ a+b
2

a
f(x)dx

)
+

+
({

x−
[
ta + (1− t)b

]}
f(x)

∣∣∣b
a+b
2

−
∫ b

a+b
2

f(x)dx
)
,

therefore
(2.3)∫ b

a
st(x)df(x) =

[
2t

f(a) + f(b)
2

+ (1− 2t)f
(a + b

2

)]
(b− a)−

∫ b

a
f(x)dx,

for all t ∈ [0, 1].

Now assume that ∆n : a = x
(n)
0 < x

(n)
1 < . . . < x

(n)
kn

= b is a sequence of
divisions with lim

n→∞
‖∆n‖ = 0, where

‖∆n‖ = max
i∈{1,2,...,kn}

(x(n)
i − x

(n)
i−1) and ξ

(n)
i ∈ [x(n)

i−1, x
(n)
i ],

i ∈ {1, 2, . . . , kn}.
For t ∈ [0, 1], then∣∣∣ ∫ b

a
st(x)df(x)

∣∣∣ =
∣∣∣ lim

n→∞

kn∑
i=1

st(ξ
(n)
i )

[
f(x(n)

i )− f(x(n)
i−1)

]∣∣∣ ≤
≤ lim

n→∞

kn∑
i=1

∣∣∣st(ξ
(n)
i )

∣∣∣∣∣∣f(x(n)
i )−f(x(n)

i−1)
∣∣∣ ≤ max

x∈[a,b]
|st(x)| sup

∆n

kn∑
i=1

|f(x(n)
i )−f(x(n)

i−1)
∣∣∣,

so

(2.4)
∣∣∣∣∫ b

a
st (x) df (x)

∣∣∣∣ ≤ max
x∈[a,b]

|st (x)|
b
V
a

(f)
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for all t ∈ [0, 1].
Taking into account the fact that st is monotonic nondecreasing on the

intervals
[
a,

a + b

2

)
and

[a + b

2
, b

]
, and

st(a) = −t(b− a),

st

(a + b

2
− 0

)
=

(1− 2t)(b− a)
2

,

st

(a + b

2
+ 0

)
= −(1− 2t)(b− a)

2
,

st(b) = t(b− a),
we obtain that

(2.5) max
x∈[a,b]

|st (x)| = b− a

2
max {2t, |1− 2t|} for all t ∈ [0, 1].

Now using the inequalities (2.2) - (2.4), we get the desired result from (2.1).

Remark. Choosing t =
1
6

in Theorem 2.1 we get Theorem 1.1.

Remark. Suppose that f : [a, b] → R is a differentiable mapping whose
derivative is continuous on (a, b). Then∫ b

a
|f ′(x)|dx =

b∨
a

(f).

For choosing t =
1
6

in Theorem 2.1. we obtain Corollary 1.1.

Corollary 2.1. Let f : [a, b] → R be a differentiable mapping on [a, b] and
whose derivative f ′ : [a, b] → R is continuous on [a, b]. Then we have the
inequality

(2.6)
∣∣∣ ∫ b

a
f(x)dx−

[
2t

f(a) + f(b)
2

+ (1− 2t)f
(a + b

2

)]
(b− a)

∣∣∣ ≤
≤ b− a

2

b∨
a

(f) max{2t, |1− 2t|} ≤ (b− a)2

2
‖f ′‖∞max{2t, |1− 2t|}

for all t ∈ [0, 1].

Proof: Taking in acount that∫ b

a
|f ′(x)|dx =

b∨
a

(f),

∫ b
a |f

′(x)|dx ≤ (b− a) supx∈[a,b] |f ′(x)| = = (b− a)‖f ′‖∞

and then of Theorem 2.1.
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Corollary 2.2. Suppose that f : [a, b] → R is a differentiable mapping
whose derivative is continuous on [a, b]. Then we have the inequalities

(2.7)
∣∣∣ ∫ b

a
f(x)dx− (b− a)f

(a + b

2

)∣∣∣ ≤ b− a

2

b∨
a

(f) ≤ (b− a)2

2
‖f ′‖∞,

(2.8)
∣∣∣ ∫ b

a
f(x)dx− (b− a)

f(a) + f(b)
2

∣∣∣ ≤ b− a

2

b∨
a

(f) ≤ (b− a)2

2
‖f ′‖∞

and ∣∣∣ ∫ b

a
f(x)dx +

[
f
(a + b

2

)
− 2

f(a) + f(b)
2

]
(b− a)

∣∣∣ ≤(2.9)

≤ b− a

2

b∨
a

(f) ≤ (b− a)2

2
‖f ′‖∞.

Proof: If we choose in (2.5) t = 0, t =
1
2
, respectively t = 1, we get (2.6)

- (2.8).

Corollary 2.3. Suppose that f : [a, b] → R is a differentiable mapping
whose derivative is continuous on [a, b]. Then

(2.10)
∣∣∣ ∫ b

a
f(x)dx−

[
2t

f(a) + f(b)
2

+ (1− 2t)f
(a + b

2

)]
(b− a)

∣∣∣ ≤
≤ (b− a)

b∨
a

(f) ≤ (b− a)2‖f ′‖∞

for all t ∈ [0, 1].

Proof: Let function g : [0, 1] → R, g(t) = 2t−|1−2t|, t ∈ [0, 1]. We have

g (t) =


4t− 1, t ∈

[
0,

1
2

)
1, t ∈

[1
2
, 1

] ,

from where

max{2t, |1− 2t|} =


1− 2t, t ∈

[
0,

1
4

)
2t, t ∈

[1
4
, 1

]
and max

t∈[0,1]
max{2t, |1−2t|} = 2. Taking in account relation (2.5), we obtain

the (2.9) inequality.
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Corollary 2.4. Suppose that f : [a, b] → R is a differentiable mapping
whose derivative is countinuous on [a, b]. Then

max
{∣∣∣ ∫ b

a
f(x)dx− (b− a)f

(a + b

2

)∣∣∣, ∣∣∣ ∫ b

a
f(x)dx−(2.11)

−
[
f(a) + f(b)− f

(a + b

2

)]
(b− a)

∣∣∣} ≤

≤ (b− a)
b∨
a

(f) ≤ (b− a)2‖f ′‖∞.

Proof: Function h : [0, 1] → R,

h(t) =
[
f
(

a+b
2

)
− f(a)+f(b)

2

]
(b− a)2t+ +

∫ b

a
f(x)dx− f

(a + b

2

)
(b− a)

is at most 1 degree, so touches its extremes in t = 0 and t = 1. Then to be
applyed Corollary 2.3.

The following approximation of the integral
∫ b

a
f(s)dx holds:

Theorem 2.2. Let f : [a, b] → R be a differentiable mapping whose deriv-
ative is continuous on [a, b]. If In : a = x0 < x1 < . . . < xn−1 < xn = b is
a partition of [a, b] and hi = xi+1 − xi, i ∈ {0, 1, . . . , n− 1}, then

(2.12)
∫ b

a
f(x)dx = A(In, t, f) + R(In, t, f)

where

(2.13) A(In, t, f) = 2t
n−1∑
i=0

f(xi) + f(xi+1)
2

hi +(1−2t)
n−1∑
i=0

f
(xi + xi+1

2

)
hi

for all t ∈ [0, 1] and the remainder term satisfies the estimation

(2.14) |R(In, t, f)| ≤ 1
2

max{2t, |1− 2t|}
n−1∑
i=0

xi+1∨
xi

(f) · hi ≤

≤ 1
2

max{2t, |1− 2t|}
n−1∑
i=0

‖f ′‖(i)
∞h2

i ≤
1
2
‖f ′‖∞max{2t, |1− 2t|}

n−1∑
i=0

h2
i

for all t ∈ [0, 1], where ‖f ′‖(i)
∞ = sup

x∈[xi,xi+1]
|f ′(x)|, i ∈ {0, 1, 2, ..., n− 1}.

Proof: Applying Corollary 2.1 on the interval [xi, xi+1], i ∈ {0, 1, . . . , n−
1} we get
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−1
2

max{2t, |1− 2t|}‖f ′‖(i)
∞h2

i ≤ −1
2

max{2t, |1− 2t|}
xi+1∨
xi

(f)hi ≤∫ xi+1

xi

f(x)dx− −
[
2t

f(xi) + f(xi+1)
2

+ (1− 2t)f
(xi + xi+1

2

)]
hi ≤

1
2

max{2t, |1− 2t|}
xi+1∨
xi

(f)hi ≤ ≤ 1
2

max{2t, |1− 2t|}‖f ′‖(i)
∞h2

i , for all

t ∈ [0, 1].
Summing over i from o to n− 1, we get estimation (2.13).

Corollary 2.5. In condition of the Theorem 2.2., we have the inequalities

(2.15) |R(In, t, f)| ≤
n−1∑
i=0

xi+1∨
xi

(f) hi ≤
n−1∑
i=0

‖f ′‖(i)
∞ h2

i ≤ ‖f ′‖∞
n−1∑
i=0

h2
i

for all t ∈ [0, 1] and

(2.16) max
{
|R(In, 0, f)|, |R(In, 1, f)|

}
≤

n−1∑
i=0

xi+1∨
xi

(f) hi ≤

≤
n−1∑
i=0

‖f ′‖(i)
∞h2

i ≤ ‖f ′‖∞
n−1∑
i=0

h2
i .

Proof: Taking in account that max
t∈[0,1]

max{2t, |1− 2t|} = 2, then of The-

orem 2.2. and of Corollary 2.4.
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