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Semilinear operator equations in real
Hilbert spaces with Lipschitz nonlinearity

DINU TEODORESCU

Abstract. In this paper we establish an existence and uniqueness result for the semi-
linear equation Au + F (u) = f , making only the supposition that the nonlinearity F is
a Lipschitz operator. We use in this study a contractive method based on the Picard-
Banach fixed point theorem( the method is frequently used in the study of the variational
inequalities-see the proof of the Lions-Stampacchia theorem in [4], minimization methods
for convex functionals in [3], a.s.o.).

1. Introduction

In [1] and [2] H. Amann studies semilinear equations of the form Au −
F (u) = 0 in a real Hilbert space H, where the nonlinearity F : H −→ H is
a Gateaux differentiable gradient operator which interacts suitably with the
spectrum of the linear operator A. In [6] C. Mortici obtains an existence
and uniqueness result for the semilinear equation Au + F (u) = 0, where
the nonlinearity F is a strongly monotone Lipschitz operator.

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and
the norm ‖·‖.The absolute value of the real number α will be denote by |α|.

In [1] and [2] it is studied semilinear equations of the form Au−F (u) = 0,
where A : D(A) ⊆ H −→ H is a self-adjoint linear operator with the
resolvent set R(A) and F : H −→ H is a Gateaux differentiable gradient
operator. If there exist real numbers a < b such that [a, b] ⊂ R(A) and

a ≤ 〈F (u)− F (v), u− v〉
‖u− v‖2 ≤ b

for all u, v ∈ H with u 6= v( i.e. F interacts with the spectrum of A), then
it proves in [2] that the equation Au− F (u) = 0 has exactly one solution.

In [6] is considered the equation Au+F (u) = 0, where A : D(A) ⊆ H −→
H is a linear maximal monotone operator and the nonlinearity F : H −→ H
is a strongly monotone Lipschitz operator. It shows that, under these
assumptions, the equation Au + F (u) = 0 has an unique solution.
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148 Semilinear operators ...

Let F : H −→ H be a Lipschitz nonlinear operator with constant M > 0,
i.e.

‖F (x)− F (y)‖ ≤ M ‖x− y‖
for all x, y ∈ H and A : D(A) ⊆ H −→ H be a linear operator such that
D(A) is a linear subspace of H.

For f ∈ H we consider the semilinear equation

(1.1) Au + F (u) = f.

We will prove in this note that the supposition ”F is a Lipschitz operator”
is sufficiently for obtaining existence and uniqueness results for the equation
(1.1).

In section 3 some applications are given.

2. The results

We suppose that A is a strongly positive operator i.e. there exists c > 0
such that

〈Ax, x〉 ≥ c ‖x‖2

for all x ∈ D(A) and c > M, Rg(F ) ⊆ Rg(A)

Rg(F ) = {F (x) | x ∈ H} , Rg(A) = {Ax | x ∈ D(A)} ,

f ∈ Rg(A), (Rg(A) is a linear subspace of H because A is linear).
Using the Cauchy-Schwarz inequality, we obtain

c ‖x‖2 ≤ 〈Ax, x〉 = |〈Ax, x〉| ≤ ‖Ax‖ · ‖x‖ ,

for all x ∈ D(A). It results that

‖Ax‖ ≥ c ‖x‖ ,

for all x ∈ D(A). Consequently there exists A−1 : Rg(A) = H1 −→ H
which is linear and continuous, A−1 ∈ L(H1,H), the normed space of all
linear and continuous operators from H1to H. Moreover∥∥A−1

∥∥
L(H1,H)

≤ 1
c
,

where ∥∥A−1
∥∥

L(H1,H)
= sup{

∥∥A−1v
∥∥ | v ∈ H1, ‖v‖ ≤ 1}.

Now the equation (1) can be equivalently written as

(2.1) (I + A−1F )u = A−1f,

where I is the identity of H.With the notations V = I + A−1F and g =
A−1f the equation (2.1) becomes

(2.2) V u = g.
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Proposition 1. V : H −→ H is a strongly monotone Lipschitz operator,
i.e.there exist α, β > 0 such that

(2.3) ‖V x− V y‖ ≤ α ‖x− y‖

(2.4) 〈V x− V y, x− y〉 ≥ β ‖x− y‖2 for all x, y ∈ H.

Proof. Using the properties of A and F , the Cauchy-Schwarz inequality
and the fact that H is a real Hilbert space, we obtain

‖V x− V y‖ =
∥∥x + A−1Fx− y −A−1Fy

∥∥ ≤ ‖x− y‖+
∥∥A−1(F (x)− F (y))

∥∥
≤ ‖x− y‖+

∥∥A−1
∥∥

L(H1,H)
· ‖F (x)− F (y)‖ ≤

(
1 +

M

c

)
‖x− y‖

for all x, y ∈ H. Therefore (2.3) is true with α = 1 +
M

c
. Also we have

−
〈
A−1Fx−A−1Fy, x− y

〉
= −

〈
A−1(F (x)− F (y)), x− y

〉
≤

≤
∣∣〈A−1(F (x)− F (y)), x− y

〉∣∣ ≤
≤

∥∥A−1(F (x)− F (y))
∥∥ · ‖x− y‖ ≤ M

c
‖x− y‖2

and then

〈V x− V y, x− y〉 =
〈
x + A−1Fx− y −A−1Fy, x− y

〉
=

= ‖x− y‖2 +
〈
A−1Fx−A−1Fy, x− y

〉
≥ ‖x− y‖2 − M

c
‖x− y‖2 =

(
1− M

c

)
‖x− y‖2 ,

for all x, y ∈ H. It follows that (2.4) is true with β = 1− M

c
> 0. �

For γ > 0 we consider the operator Sγ : H −→ H defined by

Sγu = u− γ(V u− g) = (I − γV )u + γg.

Next we will use the following

Proposition 2. There exist γ > 0 and λ ∈ (0, 1) such that

‖Sγx− Sγy‖ ≤ λ ‖x− y‖ , for all x, y ∈ H.

For proof and more details see [6], [8]. Indeed, with (2.3)-(2.4),

‖Sγx− Sγy‖2 = 〈x− γV x− y + γV y, x− γV x− y + γV y〉 =

= 〈x− y − γ(V x− V y), x− y − γ(V x− V y)〉 =

= ‖x− y‖2 − 2γ 〈V x− V y, x− y〉+ γ2 ‖V x− V y‖2

≤ (1− 2γβ + α2γ2) ‖x− y‖2 ,
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for all x, y ∈ H. Now, 1− 2γβ + α2γ2 < 1, if γ ∈
(

0,
2β

α2

)
. Consequently,

for arbitrary γ ∈
(

0,
2β

α2

)
, we have

‖Sγx− Sγy‖ ≤ λ ‖x− y‖ ,

for all x, y ∈ H, with λ ∈ (0, 1) given by λ =
√

1− 2γβ + α2γ2. �
We proved that there exists γ > 0 such that Sγ is contraction from H to

H. According to the Picard-Banach fixed point theorem, Sγ has an unique
fixed point. Consequently, from the definition of Sγ , it results that the
equation (2.2) and so the equation (1.1) has an unique solution. Now we
are in position to give the following

Theorem 1. Let A : D(A) ⊆ H −→ H be linear, F : H −→ H nonlinear
with Rg(F ) ⊆ Rg(A) and assume that for some positive reals c > M, we
have:

(i) F is a Lipschitz operator with constant M > 0,

‖F (x)− F (y)‖ ≤ M ‖x− y‖ , for all x, y ∈ H;

(ii) A is a strongly positive operator with constant c > 0,

〈Ax, x〉 ≥ c ‖x‖2 , for all x ∈ D(A);

Then for each f ∈ Rg(A), the equation Au+F (u) = f is uniquely solvable.

An estimation of the solution is given by the following

Proposition 3. For the unique solution u∗ of the equation Au+F (u) = f,
holds

(2.5) ‖u?‖ ≤ 1
c−M

(‖f‖+ ‖F (0)‖).

Proof. We have seen that u∗ also satisfies u∗ + A−1Fu∗ = A−1f, so

‖u?‖ =
∥∥A−1f −A−1Fu?

∥∥ =
∥∥A−1(f − F (u?))

∥∥ ≤
≤ 1

c
‖f − F (u?)‖ ≤ 1

c
(‖f‖+ ‖F (u?)‖).

On the other side,

‖F (u?)‖ ≤ ‖F (u?)− F (0)‖+ ‖F (0)‖ ≤ M ‖u?‖+ ‖F (0)‖ .

Hence

‖u?‖ ≤ 1
c
‖f‖+

M

c
‖u?‖+

1
c
‖F (0)‖ ,

and consequently

(c−M) ‖u?‖ ≤ ‖f‖+ ‖F (0)‖ . �

Now, let us consider the dependence of the solution of (1) on the data f .
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Proposition 4. Let i ∈ {1, 2} and ui be the unique solution of the equation

Au + F (u) = fi , i = 1, 2,

where f1, f2 ∈ Rg(A). Then

(2.6) ‖u1 − u2‖ ≤
1

c−M
‖f1 − f2‖ .

Proof. We have∣∣∥∥A−1(f1 − f2)
∥∥− ‖u1 − u2‖

∣∣ ≤ ∥∥A−1f1 −A−1f2 − u1 + u2

∥∥ =∥∥(A−1f1 − u1)− (A−1f2 − u2)
∥∥ =

∥∥A−1Fu1 −A−1Fu2

∥∥ ≤ M

c
‖u1 − u2‖ .

It results ∥∥A−1(f1 − f2)
∥∥− ‖u1 − u2‖ ≥ −M

c
‖u1 − u2‖ ,

then (
1− M

c

)
‖u1 − u2‖ ≤

∥∥A−1(f1 − f2)
∥∥ ≤ 1

c
‖f1 − f2‖ . �

Further, we will give the sufficient conditions under the operator A for
which the equation (1.1) is uniquely solvable, for all f ∈ H.

Theorem 2. Let A : D(A) ⊆ H −→ H be linear, maximal monotone,
F : H −→ H nonlinear satisfying the following assumptions, for some
positive reals c > M :

(i) F is a Lipschitz operator with constant M > 0,

‖F (x)− F (y)‖ ≤ M ‖x− y‖ ,

for all x, y ∈ H;
(ii) A is a strongly positive operator with constant c > 0,

〈Ax, x〉 ≥ c ‖x‖2 ,

for all x ∈ D(A).
Then for all f ∈ H, the equation Au+F (u) = f has an unique solution.
Proof. Let ω > 0. The equation Au + F (u) = f can be equivalently

written as

(2.7) Aωu + Fω(u) = ωf

where Aω = I + ωA and Fω = −I + ωF . We have Rg(Aω) = H because A
is maximal monotone. Also we obtain

‖Fω(x)− Fω(y)‖ ≤ (1 + ωM) ‖x− y‖ ,

for all x, y ∈ H and

〈Aωx, x〉 = ‖x‖2 + ω 〈Ax, x〉 ≥ (1 + ωc) ‖x‖2 ,

for all x ∈ D(A) = D(Aω). Now, 1 + ωc > 1 + ωM because c > M and
from theorem 1, the equation (2.7) has an unique solution . �
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Theorem 2. Let A : H −→ H be linear, symmetric, F : H −→ H nonlin-
ear, satisfying the following conditions, for some reals c > M :

(i) F is a Lipschitz operator with constant M > 0,

‖F (x)− F (y)‖ ≤ M ‖x− y‖ , for all x, y ∈ H;

(ii) A is a strongly positive operator with constant c > 0,

〈Ax, x〉 ≥ c ‖x‖2 for all x ∈ H.

Then for all f ∈ H, the equation Au + F (u) = f has an unique solution.

Proof. By the Hellinger-Toeplitz theorem we obtain that A is bounded,
and consequently A is selfadjoint. Let us choose s in the spectrum of A.
We have

s ≥ inf{〈Ax, x〉 | x ∈ H, ‖x‖ = 1}
We obtain now that every ω < 0 is in the resolvent set of the operator A,
and consequently we have

Rg(A− ωI) = H,

for all ω < 0.
Let δ < 0. We write the equation Au + F (u) = f in the form

(2.8) Aδu + Fδ(u) = f,

where Aδ = A− δI and Fδ = F + δI. We have Rg(Aδ) = H and

‖Fδ(x)− Fδ(y)‖ ≤ (M + |δ|) ‖x− y‖ ,

for all x, y ∈ H. Also

〈Aδx, x〉 = 〈Ax, x〉 − δ ‖x‖2 ≥ (c− δ) ‖x‖2 = (c + |δ|) ‖x‖2 ,

for all x ∈ H. Now, c + |δ| > M + |δ| and from Theorem 1, the equation
(2.8) has an unique solution. �

3. Applications

(C1) Let A : D(A) ⊆ H −→ H be a linear strongly positive operator,
with the constant of strongly positivity c > 1. We assume moreover that
A has a closed range.

Let M ⊆ Rg(A) be a non empty set and let

Pcl(conv(M)) : H −→ H

the projection operator on cl(conv(M)), the closure of the convex covering
of M . It’s well known that Pcl(conv(M)) is Lipschitz operator with constant
equal to 1. Also we have:

Rg(Pcl(conv(M))) = cl(conv(M)) ⊆ Rg(A),

because Rg(A) is a closed linear subspace of H. From theorem 1 we obtain:
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Proposition 5. The equation

Au + Pcl(conv(M))u = f

has an unique solution for all f ∈ Rg(A).

(C2) Let F : H −→ H be a Lipschitz operator (nonlinear) with constant
M > 0 and c ∈ R, c > M. From theorem 1, for A = cI, we obtain:

Proposition 6. The equation

(3.1) F (u) + cu = f

has an unique solution for all f ∈ H.

Proposition 7. For the unique solution u(c, f) of the equation (3.1), holds

(3.2)
∥∥∥∥u(c, f)− 1

c
f

∥∥∥∥ ≤ 1
c−M

‖F (0)‖+
M

c2 − cM
‖f‖ .

Proof. From (2.5) it results that

‖u(c, f)‖ ≤ 1
c−M

(‖f‖+ ‖F (0)‖).

We have

c

∥∥∥∥u(c, f)− 1
c
f

∥∥∥∥ = ‖cu(c, f)− f‖ = ‖F (u(c, f))‖ ≤

≤ ‖F (u(c, f))− F (0)‖+ ‖F (0)‖ ≤ M ‖u(c, f)‖+ ‖F (0)‖ ≤

≤ M

c−M
(‖f‖+ ‖F (0)‖) + ‖F (0)‖ =

M

c−M
‖f‖+

c

c−M
‖F (0)‖ �

From (3.2) we obtain that∥∥∥∥u(c, f)− 1
c
f

∥∥∥∥ −→ 0,

when c −→∞. Therefore, for large values of c,
1
c
f approximates the unique

solution of the equation (3.1).
(C3) Let f ∈ L2(0, T ). We consider the Dirichlet problem

(3.3) −u”(t) + au(t)− b · sinu(t) = f(t); t ∈ (0, T )
u(0) = u(T ) = 0 ,

where b ∈ R, b > 0 and a ∈ R, a > b. We will study the problem (3.3) in
the next functional background:

- H = L2 (0, T );
-A : D(A) ⊆ H −→ H,

Au = −u” + au,

with the domain
D(A) = H2(0, T ) ∩H1

0 (0, T );
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where F : H −→ H,
F (u) = −b · sinu.

Let Bu = −u′′ from H to H, defined on

D(B) = H2(0, T ) ∩H1
0 (0, T )

It is well known the fact that B is a maximal monotone operator. It results
that the operator A = B + aI is strongly positive with constant a and
surjective. Also F is a Lipschitz operator with constant b.

From theorem 1 we obtain that the problem (3.3) has an unique solution
in H2(0, T ) ∩H1

0 (0, T ).
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