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Abstract. Class fragmentation is an important task in the design of Distributed Object
Oriented Databases (DOOD). However, fragmentation in DOOD is still at its beginnings and
mostly adapted from the relational approaches. In this paper we propose an alternative approach

for horizontal fragmentation of DOOD. Our method uses two different AI clustering techniques
for partitioning class instances into fragments: the agglomerative hierarchical method and the
k-means centroid based method. Class objects are modelled in a vector space; similarity be-

tween objects is computed using different measures. Finally, we provide quality and performance
evaluations using a partition evaluator function .

1. Introduction

Advanced design of distributed Object Oriented Databases (OODB) involves
entity fragmentation and fragment allocation to the sites of a distributed system.
Recently these issues have been considered in [10, 6, 7], either for the complex
object oriented data model, or just for flat data models.

For fragmenting a class it is possible to use two basic techniques: vertical frag-
mentation and horizontal fragmentation. In an Object Oriented (OO) environ-
ment, horizontal fragmentation distributes class instances into fragments. Each
object has the same structure and a different state or content. Thus, a horizon-
tal fragment of a class contains a subset of the whole class extension. Horizontal
fragmentation is usually subdivided in primary and derived fragmentation.

Different approaches have been identified in solving issues regarding fragmenta-
tion, which, to a large extent, aim to extend and develop the relational fragmen-
tation and allocation techniques to OODBs [8]. However, object data models are
inherently more complex than the relational model. Features like encapsulation,
inheritance, aggregation and association relations complicate the definition of the
horizontal class fragmentation. There are research papers in the OO area, which
claim that starting from relational fragmentation techniques brings a handicap,
difficult to cover.

Algorithms for horizontal class fragmentation are proposed in [6, 3, 11]. Vertical
fragmentation is addressed in [7]. Mixed fragmentation is considered in [2].

Contributions: We focus in this paper on horizontal object oriented frag-
mentation by using alternative methods to cluster objects into fragments. We
propose new techniques for horizontal fragmentation in object-oriented databases
with simple attributes and methods. They rely on AI non-supervised clustering
techniques for partitioning classes into sets of similar instance objects, rather than
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following the traditional minimal predicate set method. We consider two clus-
tering methods: the agglomerative hierarchical method and the k-means centroid
based method [9]. Although these are well known clustering techniques, they have
not been used yet in object-database fragmentation, to our knowledge.

The algorithms group objects together by their similarity with respect to a set
of user queries with conditions imposed on data. Similarity (dissimilarity) between
objects is defined in a vector space model and is computed using different metrics.
As a result, we cluster objects that are highly used together by queries.In order
to improve fragmentation quality, in the k-means algorithm we propose several
methods for choosing initial cluster centroids, according to queries semantic.

The paper is organized as follows. The next section of this work presents the
object data model and the constructs used in defining the object database and
expressing queries. It also introduces the vector space model we use to compare
objects, methods for constructing the object characteristic vectors and similarity
metrics over this vector space. Section 3 presents our fragmentation algorithms.
In section 4 we present a complete fragmentation example over a class hierarchy
and we evaluate the quality of our fragmentation schemes by using an evaluator
function.

2. Data Model

We use an object-oriented model with the basic features described in the litera-
ture [4, 1]. OO databases represent data entities as objects supporting features like
inheritance, encapsulation, polymorphism, etc. Objects with common attributes
and methods are grouped into classes. A class is an ordered tuple C = (K,A,M, I),
where A is the set of object attributes, M is the set of methods, K is the class
identifier and I is the set of instances of class C. We deal in this paper only with
simple attributes and methods. Simple attributes have primitive data types as
their domain. Simple methods access only attributes of their class. Every object
in the database is uniquely identified by an OID. Each class can be seen as a class
object. Class objects are grouped in meta-classes [4].

Classes are organized in an inheritance hierarchy, in which a subclass is a spe-
cialization of its superclass. Although we deal here for simplicity only with simple
inheritance i.e. a class can have at most one superclass, moving to multiple inher-
itance would not affect the fragmentation algorithms in any way, as long as the
inheritance conflicts are dealt with into the data model. Association between an
object and a class is materialized by the instantiation operation. An object O is
an instance of a class C if C is the most specialized class associated with O in
the inheritance hierarchy. An object O is member of a class C if O is instance of
C or of one of subclasses of C. An OODB is a set of classes from an inheritance
hierarchy, with all their instances. There is a special class Root that is the ancestor
of all classes in the database. Thus, in our model, the inheritance graph is a tree.

An entry point into a database is a metaclass instance bound to a known variable
in the system. An entry point allows navigation from it to all classes and class
instances of its subtree (including itself). For our model, we suppose that each
class is the data-base is an entry point, which means that its members are known.
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In general, in our model, a query is a tuple with the following structure:
q = (TargetClass,Qualificationclause), where Target class - specifies the root
of the class hierarchy over which the query returns its object instances and it is an
entry point; Qualification clause - is a logical expression over the class attributes
in conjunctive normal form. The logical expression is constructed using simple
predicates: attributeθvalue where θ ∈ {<,>,≤,≥,=, 6=}.

Let Q = {q1, . . . , qt} be the set of all queries in respect to which we want
to perform the fragmentation. Let Pred = {p1, . . . , pq} be the set of all simple
predicates Q is defined on. Let Pred(C) = {p ∈ Pred|p imposes a condition to an
attribute of class C}.

Given two classes C and C ′, where C ′ is subclass of C, Pred(C ′) ⊂ Pred(C).
Thus the set of predicates for class C ′ comprises all the predicates directly imposed
on at-tributes of C ′ and the predicates defined on attributes of its parent class C

and inherited from it. We model class predicates this way in order to capture
on subclasses the semantic of queries defined on superclasses. For example, given
the hierarchy in FIGURE 4 , a condition ”student.grade>5” imposed on Student
should normally be reflected on all instances of Grad students as well (graduates
are also students).

We construct the object-condition matrix for class C,OCM(C) = {aij , 1 ≤
i ≤ |Inst(C)|, 1 ≤ j ≤ |Pred(C)|}, where Inst(C) = {O1, . . . , Om} is the set of
all instances of class C, Pred(C) = {p1, . . . , pn}. Each line i in OCM(C) is the
object-condition vector of Oi, where Oi ∈ Inst(C). We obtain from OCM(C) the
characteristic vectors for all instances of C. The characteristic vector for object
Oi is wi = (wi1, wi2, . . . , win), where

(2.1) aij =

{

0, if pj(Oi) = false

1, if pj(Oi) = true
,

wij =

∑

l=1..m,alj=aij

[(alj |alj =1)+(1−alj |alj =0)]

|m|

Each wij is the ratio between the number of objects in C respecting the predicate
pj ∈ Pred(C) in the same way as Oi and the number of objects in C. We denote the
characteristic vector matrix as CV M(C). Over the set of characteristic vectors
associated to all C’s instances we define two similarity measures between two
objects Oi and Oj :

(2.2) simcos(Oi, Oj) = cos(wi, wj) =

n
∑

k=1

wik× wjk

√

n
∑

k=1

(wik)
2
×

√

n
∑

k=1

(wjk)
2

(2.3) simM (Oi, Oj) = 1 −
dM (wi, wj)

m
, dM (wi, wj) =

n
∑

k=1

|wik − wjk|
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dM is the Manhattan distance as defined in [9]. The second equation uses
the vectorial cosine as similarity measure. We should note that all characteristic
vectors have positive coordinates by definition.

3. The partitioning algorithms

In the following paragraphs we present the two fragmentation algorithms: hier-
archical agglomerative fragmentation and k-means non-hierarchical fragmentation.

3.1. The Hierarchical Agglomerative Fragmentation. The hierarchical clus-
tering method creates a hierarchical decomposition of the given set of data objects.
We use in our paper an agglomerative variant of the hierarchical clustering algo-
rithm [9].

Algorithm HierachicalAggFrag is

Input : Class C, Inst(C) to be fragmented, the similarity function

sim : Inst(C) × Inst(C) −→ [0, 1], m = |Inst(C)|, 1 < k ≤ m desired number of

fragments, OCM(C), CVM(C).

Output : The set of hierarchical clusters F = {F1, . . . , Fk}
Begin

For i=1 To Inst(C) do Fi = {wi};
F = {F1, . . . , Fm};
While |F | > k do

(Fu∗, Fv∗) := argmax(Fu, Fv)[sim(Fu, Fv)];
Fnew = Fu∗ ∪ Fv∗;

F = F − {Fu∗, Fv∗} ∪ {Fnew};
End While;

End.

An input vector wi quantifies the way object Oi satisfies predicates in Pred(C)
with respect to the way all other objects satisfy those predicates. When grouping
objects (clusters), the algorithm gives priority to those two respecting most of the
predicates in the same way. At each iteration the algorithm chooses the two most
similar clusters and merges them into a single cluster (argmax(Fu, Fv)[sim(Fu, Fv)])
using the following intercluster similarity :

(3.4) sim(Fu, Fv) =

∑

ai∈Fu

∑

bj∈Fv

sim(ai, bj)

|Fu| × |Fv|

At the end of the algorithm we always have k clusters representing the class
fragments.

3.2. The k-means non-hierarchical fragmentation. The classical k-means
algorithm takes the input parameter k and partitions a set of m objects into k

clusters so that the resulting intracluster similarity is high but the intercluster
similarity is low. Cluster similarity is measured in regard to the mean value of
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the objects in a cluster, and can be viewed as the cluster’s center of gravity (cen-
troid). First, the k-means algorithm randomly selects k of the objects, each of
which initially represent a cluster mean or center. For each of the remaining
objects, an object is assigned to the cluster to which is the most similar, based
on the distance between the object and the cluster centroid. It then computes
the new centroid for each cluster and redistributes all objects according to the
new centroids. This process iterates until the criterion function converges. The
criterion tries to make the resulting k clusters as compact and separate as possible.

Our version of the algorithm improves several aspects of the original algorithm
with regard to the semantic of object fragmentation. First of all we choose as
centroids the most representative objects in respect with fragmentation predicates,
rather than choosing them arbitrarily. At each iteration, if an object should be
placed in any of several clusters (same similarity with the centroid), we choose
the cluster to which the object has maximum similarity with. We also choose as
criterion function the degree of compactness/homogeneity H of all clusters. This
value is the difference be-tween the maximum and minimum similarity of all pairs
of objects in the cluster.

(3.5)
H(F )=max{sim(a, b)|(a, b) ∈ F×F, a 6= b}−min{sim(a, b)|(a, b) ∈ F×F, a 6= b}

Algorithm k-MeansFrag is

Input as in HierarchicalAggFrag

Output : The set of clusters F = {F1, . . . , Ff}, where f ≤ k
Begin

Centr={c1, . . . , ck} = InitCentr(Inst(C), OCM(C), CV M(C), k);
F={Fi|Fi = {ci}, ci ∈ Centr, i = 1..k}; F ′ = ∅;
While F’<>F and H(F)<threshold value do

F’=F;

For all objects Oi do

Fcandidates={argmaxcentr(sim(Oi, cl), l = 1..k)}; (1)

Fu∗ = {argmaxsim(sim(Oi, Fr), Fr ∈ Fcandidates)}; (2)

F ′

v = F ′

v − {Oj} where Oj ∈ F ′

v; F ′

u∗ = F ′

u∗ ∪ {Oi};
F ′ = F ′ − {F ′

l |F
′

l = ∅};
End For;

For all Fi ∈ F recalculate centroid ci; End For;

End While;

End.

Function InitCentr(Inst(C), OCM(C), CVM(C), k) is

Begin

Centr=∅; n=|Pred(C)|;
For i=1 to k do

ci = argmin[dM (aj , ui)], Oj /∈ Centr, i ≤ n; (3)

ci = argmin[sim(Oj , Centr)], Oj /∈ Centr, i > n; (4)

Centr = Centr ∪ {ci};
End For;

Return Centr;

End Function;
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Function InitCentr chooses the initial centroids as described above. In line (3)
ui is identity vector of degree i, which has 1 only on ith position and 0 on the other
positions. Each ui represents the corresponding predicate from Pred(C). Line (3)
chooses as centroid the closest object to ui, i.e. the most representative object for
that predicate. We should note that we can choose this way as many centroids as
the number of predicates in Pred(C). If we need more clusters than |Pred(C)|,
we choose their initial centroids the objects most dissimilar to the already chosen
centroids (line (4)). We try this way to minimize the impact of ”losing” clusters
in the following iterations. This occurs when all objects in a cluster relocate to
other clusters because the initial centroid is not semantically representative to our
set of predicates. We use in lines (1) and (2) the similarity of an object Oi with a
cluster Fc:

(3.6) sim(Oi, Fc) =

∑

a∈Fc

sim(Oi, a)

|Fc|

4. Results and Evaluation

In this section we illustrate the experimental results obtained by applying our
fragmentation schemes on a test object database. Given a set of queries, we first
obtain the horizontal fragments for the classes in the database; than we evaluate
the quality and performance of the fragmentation results. For evaluation we use
a variant of the Partition Evaluator proposed by Chakravarthy in [5] for vertical
relational fragmentation. The sample object database represents a reduced uni-
versity database. The inheritance hierarchy is given in FIGURE 4 . The queries
running on the classes of the database are given bellow.

Figure 1. The database class hierarchy

q1: This application retrieves all lecturers and teaching assistants.
q1 =(Prof, Prof, Prof.position in (“lecturer”, “teaching assistant”) )
q2: This application retrieves all professors and assistant professors.
q2 =(Prof, Prof, Prof.position=”prof.” or Prof.position=”assist. prof.”)
q3: This application retrieves all researchers older than 30 years.
q3 =(Researcher, Researcher, Researcher.age≥30)
q4: This application retrieves all researchers having published at least two papers.
q4 =(Researcher, Researcher, Researcher.count(Reasercher.doc)≥2)
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q5: This application retrieves all graduates with grades less than 4 enrolled at the
Computer Science departments.
q5 =(Grad, Grad, Grad.grade≤4 and Grad.dept like “CS*”)
q6: This application retrieves all graduates older than 30.
q6 =(Grad, Grad, Grad.age≥30)

The fragments obtained for Grad using algorithm k-meansFrag and cosine
as similarity measure are: F1 = {G5}, F2 = {G9, G7, G12, G11, G10}, F3 =
{G6, G3, G1, G8}, F4 = {G4, G13, G2}. The fragments obtained for Grad using
algorithm HierachicalAggFrag and cosine as similarity measure are: F1 = {G5},
F2 = {G9, G7, G12, G11, G10}, F3 = {G6, G3, G1, G8}, F4 = {G4, G13, G2}. The
fragments obtained for Researchers using the algorithm HierachicalAggFrag and
Manhattan on characteristic vectors as similarity measure are: F1 = {R1, R3, R4},
F2 = {R2}, F3 = {R5}, F4 = {R6}. The fragments obtained for Researchers us-
ing algorithm k-meansFrag and cosine as similarity measure are: F1 = {R6, R2},
F2 = {R1, R3, R5, R4}.

Using the given query access frequency and other input data, the fragments
above are allocated to four distributed sites. We use a simple allocation scheme
that assigns fragments to sites where they are most needed. Query frequency is
given bellow.

freq(q,s) S1 S2 S3 S4 Class
q1 10 20 5 20 Prof
q2 0 10 5 25 Prof
q3 20 10 15 10 Researcher
q4 15 10 25 20 Researcher
q5 25 20 0 20 Grad
q6 30 25 20 10 Grad

First we qualitatively compare the cosine k-means fragmentation with a fully
replicated database and a centralized database allocated on one of the sites.

The Partition Evaluator proposed in [5] is formed by two terms: the local
irrelevant access cost (EM) and the remote relevant access cost (ER). For a
class C, the EM term computes the number of non-accessed local objects in all
fragments; the ER term computes the number of remote objects accessed by all
queries running at each site.

(4.7) PE(C) = EM2 + ER2 with

(4.8) EM2(C) =
M
∑

i=1

T
∑

t=1

freq2
ts∗ |Accit| ∗

(

1 −
|Accit|

|Fi|

)

(4.9) ER2(C) =

T
∑

t=1

min

{

S
∑

s=1

M
∑

i=1

freq2
ts ∗ |Accit| ∗

|Accit|

|Fi|

}
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where s in EM is the site where Fi is located, while s in ER is any site not
containing Fi, M is the number of clusters for class C, T is the number of queries
and S is the number of sites. Accit represents the set of objects accessed by the
query qt from the fragment Fi. The smaller PE is, better fragmentation quality
we have.

Figure 2. Comparative PE for k-means, full replication and cen-
tralized case.

The test results show that, generally, k-means methods perform better than
hierarchical methods. This is due to the fact that with hierarchical methods,
once a step is done it can never be undone. This rigidity is useful in that it
leads to smaller computation costs by not worrying about combinatorial number
of different choices. However, a major problem of such techniques is that they
cannot correct erroneous decisions. When it comes to similarity measures, both
cosine and Manhattan distinguish objects that do not respect predicates in the
same way, but the differentiation refinement has different granularity for each
method.

Figure 3. Comparison quality measures for each of our fragmen-
tation methods.
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M1 k-means cosine
M2 k-means Manhattan on object-conditions
M3 k-means Manhattan on characteristic vectors
M4 Hierarchical cosine
M5 Hierarchical Manhattan on object-conditions
M6 Hierarchical Manhattan on characteristic vectors

Table 1. Fragmentation methods legend

As a consequence, resulting fragments are not always similar for the same input
data. Also, the experiments show that no measure behaves optimally in all cases.
For example, there are particular data distributions, with perfectly separable clus-
ters, where cosine measure is not capable of distinguishing any clusters. We have
identified these particular cases and we are investigating solutions for handling
them.

5. Conclusions and Future Work

In this work we prove that AI clustering methods can be effectively used in
object-oriented fragmentation and we aim to extend the proposed approach to class
models with complex aggregation (association) hierarchies and complex methods.
Currently, we are investigating new similarity measures with improved discrimina-
tive power. We are also working on alternative evaluation techniques for fragmen-
tation quality. We also think that we can use our clustering methods to help solv-
ing dynamic fragmentation - by capturing the semantic of potential future query
changes into the initial fragmentation, so that the fragments can be adapted to
those changes with smaller costs.
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