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The orthogonality principle and conditional
densities

CRISTINA IOANA FĂTU

Abstract. Let X, Y ∈ L2(Ω, K, P ) be a pair of random variables, where L2(Ω, K, P ) is the
space of random variables with finite second moments. If we suppose that X is an observable
random variable but Y is not, than we wish to estimate the unobservable component Y from
the knowledge of observations of X. In this paper, using some definitions and properties of the

estimators we shall present some results relative to the mean-square estimation.

1. Convergence in the mean-square

Let (Ω,K, P ) be a probability space and X,X1,X2, ... a sequence of random
variables defined on this space. There are a number of ways in which the sequence
might converge as n → ∞. In the next we will recall some from them [5],[6].

Definition 1.1. The sequence X1,X2, ... of random variables converges in prob-
ability to the random variables X if for every ε > 0, we have

lim
n→∞

P{ω : |Xn(ω) − X(ω)| > ε} = 0 or(1.1)

P{ω : |Xn(ω) − X(ω)|} → 0, n → ∞.

Symbolically written as Xn
P
→ X or p lim

n→∞
Xn = X.

Let (Ω,K, P ) be a probability space and F(Ω,K, P ) the family of all random
variables defined on (Ω,K, P ). Let

(1.2) Lp = Lp(Ω,K, P ) = {X ∈ F(Ω,K, P ) | E(|X|
p
) < ∞} , p ∈ N

∗

be the set of random variables with finite moments of order p, that is,

(1.2a) βp = E(|X|
p
) =

∫

R

|x|
p
dF (x) < ∞, p ∈ N

∗,

where

(1.3) F (x) = P (X < x), x ∈ R

is the distribution function of the random variable X.

Remark 1.1. The set Lp(Ω,K, P ) represents a linear space.
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Indeed, if X1, X2 ∈ Lp(Ω,K, P ) and c1, c2 ∈ R, then and the random variable
X, defined by the relation

(1.4) X = c1X1 + c2X2, ∀c1, c2 ∈ R,

is also from the set Lp(Ω,K, P ), if we have in view the Minkowski’s inequality

(1.5) [E(|X1 + X2|
p
)]

1

p ≤ [E(|X1|
p
)]

1

p + [E(|X2|
p
)]

1

p , p ≥ 1.

Among the spaces Lp = Lp(Ω,K, P ), p ≥ 1, an important role is played by
the space L2 = L2(Ω,K, P )− the space of random variables with finite second
moments.

Definition 1.2. [5] If X,Y ∈ L2(Ω,K, P ), then the distance in mean square
between X and Y , denoted by d2(X,Y ), is defined by the equality

(1.6) d2(X,Y ) = ‖X − Y ‖ = [E(|X − Y |
2
)]1/2.

Remark 1.2. It is easy to verify that d2(X,Y ) satisfies the following conditions:

(1.7)






10 d2(X,Y )=‖X − Y ‖ ≥ 0,∀X,Y ∈ L2(Ω,K, P );
20 d2(X,X)=‖X − X‖ = 0,∀X ∈ L2(Ω,K, P );
30 d2(X,Y )=‖X−Y ‖=‖Y −X‖=d2(Y,X),∀X,Y ∈ L2(Ω,K, P );
40 d2(X,Z)≤d2(X,Y ) + d2(Y,Z),∀X,Y,Z ∈ L2(Ω,K, P ),

that is, d2(X,Y ) represents a semi-metric on the linear space L2.

Definition 1.3. [1], [5] If (X,Xn, n ≥ 1) ⊂ L2(Ω,K, P ), then about the sequence
(Xn)n∈N∗ is said to converge to X in mean square (converge in L 2) if

lim
n→∞

d2(Xn,X) = lim
n→∞

E(|Xn − X|
2
)1/2 =(1.8)

= lim
n→∞

E(|Xn − X|
2
) = 0.(1.8a)

We write

(1.9) l.i.m.Xn = X or Xn
m.p.
−→ X,n → ∞,

and call X the limit in the mean (or mean square limit) of Xn.

Remark 1.3. [1] If X ∈ L2(Ω,K, P ), then

(1.9a) V ar(X) = E[(X − m)2] = E[|X − m|
2
] = ‖X − m‖

2
= d2

2(X,m),

where m = E(X).

2. Mean-square estimation

Consider two random variables X and Y. Suppose that only X can be observed.
If X and Y are correlated, we may expect that knowing the value of X allows us
to make some inference about the value of the unobserved variable Y. In this case
arises an interesting problem, namely that of estimating one random variable with
another or one random vector with another.

If we consider any function X̂ = g(X) on X, then that is called an estimator

for Y. A desirable property of any estimator X̂ of Y would be that

(2.1) E(X̂) = Y,
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i.e., in other words, the average of estimator is the true value. When any estimator
satisfies (2.1), it is said to be unbiased. The error is defined as the difference
between the estimator and the true value, that is,

(2.2) e = X̂ − Y.

If X̂ is an unbiased estimator then this error (in the estimate) can be written
as

(2.3) e = X̂ − E(X̂).

This error is a random variable, since, in general, both X̂ and Y are random in
nature. Also, the error may be positive or negative. We cannot minimize the error
directly but must choose some arbitrary function of e to minimize. An intuitive
and physically pleasing choice is the average mean-square error of the components
of e. In other words, we choose to minimize the diagonal terms of the following
matrix

(2.4) Ke = E[(X̂ − Y )(X̂ − Y )T ].

In this case X̂ is called the minimum mean- square error estimator.

If X̂ is an unbiased estimator then the matrix Ke has the form

(2.5) Ke = E[(X̂ − E(X̂))(X̂ − E(X̂))T ],

and Ke is just the covariance matrix of the estimator X̂.

In this last case X̂ is called the minimum variance unbiased estimator. This
type of estimator will be our choice for the optimum or best estimator.

Definition 2.1. We say that a function X∗ = g∗(X) on X is best estimator in
the mean-square sense if

(2.6) E{[Y − X∗]2} = E{[Y − g∗(X)]2} = inf
g

E{[Y − g(X)]2}.

Theorem 2.1. [1], [3] Let X,Y be two random variables such that E(X) = 0,

E(Y ) = 0 and X̂ a new random variable, X̂ ∈ L2(Ω,K, P ), defined as

(2.7) X̂ = g(X) = a0X, a0 ∈ R.

The real constant a0 that minimize the mean-square error

(2.8) E[(Y − X̂)2] = E[(Y − a0X)2]

is such that the random variable Y − a0X is orthogonal to X, that is,

(2.9) E[(Y − a0X)X] = 0

and the minimum mean-square error is given by

(2.10) emin(Y, X̂) = emin = E[(Y − a0X)Y ],

where

(2.11) a0 =
E(XY )

E(X2)
=

cov(X,Y )

σ2
1

.

Remark 2.1. This theorem represents the orthogonality principle in the case

of the linear mean-square estimation, that is, then when X̂ = g(X) is a linear
function of X of the form (2.7).
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In the next we consider (n + 1) random variables

(2.12) Y,X1,X2, ...,Xn ∈ L2(Ω,K, P )

and we want to estimate Y by a nonlinear function on random vector
X = (X1,X2, ...,Xn)T of the form

(2.13) X̂0 = g0(X) = g0(X1,X2, ...,Xn)

so as to minimize the mean-square error

(2.14) e = e(Y, X̂0) = E[(Y − X̂0)
2],

that is, to have

emin(Y, X̂0) = E[(Y − X̂0)
2] =

= E
{
[Y − g0(X1,X2, ...,Xn)]2]

}
.(2.15)

Theorem 2.2. The random variable

X̂0 = g0(X1,X2, ...,Xn) = g0(X) =(2.16)

= E[Y | (X1,X2, ...,Xn)T ] =2.16a

= E(Y | X),2.16b

defined by the conditional expectation of Y with respect to random vector X and
with the real values of the form

(2.17) M [Y | X = x] =

∞∫

−∞

yf(y | x)dy,

for any n− dimensional real point x of the form

(2.17a) x =(x1, x2, .., xn)T ∈ Dx = {x ∈ R
n|f(x1, .., xn) = f(x) > 0},

represents an optimal estimator (the best estimator in the mean-square sense) for
the random variable Y , that is,

emin(Y, X̂0) = min
X

E[(Y − X̂)2] =(2.18)

= E
{
[Y − g0(X)]2]

}
=2.18a

= E
{
[Y − E(Y | X)]2

}
.2.18b

Proof. First, we will recall the definition and some very important properties of
the conditional mean. �

Definition 2.2. [3] The conditional mean of the random variable Y given the
random variable X = x, denoted by E(Y | X = x), is defined by

E(Y | X = x) = E(Y | x) =(2.19)

=

∞∫

−∞

yf(Y | X = x)dy =2.19a

=

∞∫

−∞

yf(y | x)dy,2.19b



The orthogonality principle and conditional densities 35

for any x ∈ Dx = {x ∈ R | f(x) > 0}.

Theorem 2.3. [5] Let X̂ be a random variable defined as a nonlinear function of
X, namely

(2.20) X̂ = g(X)

where g(x) represents the value of this random variable g(X) in the point x,
x ∈ Dx. Then, the minimum value of the mean-square error, namely,

(2.20a) emin = emin(Y, X̂) = E
{
[(Y − E(Y | X)]2

}

is obtained if

(2.21) g(X) = E(Y | X),

where E(Y | X) is the random variable defined by the conditional expectation of
Y with respect to X.

Lemma 2.1. [5] Because the quantity E(Y | X) is a random variable with the real
values of the form (2.19b) it follows that the expected value of this random variable
is equal with the expected value of Y, that is,

(2.22) E[E(Y | X)] = E(Y ).

The Theorem 2.1 is a generalization of the Theorem 2.2.
In the next we will present a new proof which use this last lemma. For this we

write the function g(X) as

(2.23) X̂ = g(X) =g0(X) + b(g),

where the difference

(2.23a) b(g) = |g(X)−g0(X)|

represents the error of the any estimator g(X) relative to the optimal estimator
g0(X).

Then, the mean-square error can be expressed as

e = e(Y, X̂) = E[(Y − X̂)2] =

= E{[Y − g0(X) − b(g)]2} =

= E{[Y − E(Y | X)]2 − 2[Y − E(Y | X)]b(g)} + [b(g)]2} =

= E{[Y − E(Y | X)]2} + E{[b(g)]2 − 2E{[Y − E(Y | X)]b(g)} =

= E{[Y − E(Y | X)]2} + E{[b(g)]2},(2.24)

if we have in view that

E{[Y − E(Y | X)]b(g)} = E[Y b(g)] − E{E[(Y b(g)) | X)]}︸ ︷︷ ︸
(see, Lemma 2.1)

=

= E[Y δ(g)] − E[Y b(g)] = 0.2.24a

The relation

(2.25) E{[Y − E(Y | X)]b(g)} = 0,

express the fact that the error vector ε = Y −M(Y | X) is orthogonal to the bias
b(g).
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Then, from (2.24), we obtain

e = e(Y, X̂) = E{[Y − E(Y | X)]2} + E{[b(g)]2}︸ ︷︷ ︸
≥0

≥(2.26)

= E{[Y − E(Y | X)]2} = emin(Y, X̂0).2.26a

Also, we observe that, if b(g) = 0, then from (2.23) we can obtain the following
equality

(2.27) X̂ = g(X) = g0(X) = X̂0,

which implies that the minimum mean-square error estimator is

(2.27a) X̂0 = g0(X) = E(Y | X).

Theorem 2.4. Let X and Y be two random vectors, dimX = dim Y = n ×
1. We suppose that only X can be observed and Y is an unobservable random
vector. Let f(x1, x2, ..., xn, y1, y2, ..., yn) be the joint probability density function
of 2n− dimensional random vector (X,Y ). If X and Y are dependent random
vectors then, the optimal estimator of the unknown random vector Y , then when
the random vector X was observed, is a (possibly nonlinear) function of X, of the
form

X̂0 = g0(X) =E(Y | X) =(2.28)

= [E(Y1| X),E(Y2| X), ...,E(Yn| X)] =2.28a

= [g
(1)
0 (X),g

(2)
0 (X), ...,g

(n)
0 (X)]2.28b

and the total minimum mean-square error can be expressed as

emin(Y,X̂0) =
n∑

i=1

emin(Yi, X̂0) =(2.29)

=

n∑

i=1

E{[Yi − g
(i)
0 (X)]

2
},2.29a

where

(2.29b) g
(i)
0 (X) = E(Yi | X), i = 1, n.

Proof. Because the random vector Y = (Y1, Y2, ..., Yn) has n elements, which are
the unidimensional random variables Y1, Y2, ..., Yn, it follows that, in the next, we
must to find, using the observed values of the n−dimensional random vector X,
an optimal estimator for each of them.

Thus, in accordance with the Theorem 2.2, for each random variable Yi, i = 1, n,

the optimal estimator X̂
(i)
0 has the form

(2.30) X̂
(i)
0 = g

(i)
0 (X) =E(Yi | X), i = 1, n,

and the individual minimum mean-square error can be expressed as

e
(i)
min(Yi, X̂

(i)
0 ) = E{[Yi − E(Yi | X)]2} =(2.31)

= E{[Yi − g
(i)
0 (X)]2}, i = 1, n.2.31a
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Now, if we have in view the Definition 1.2, the Remark 1.3, respectively the
relation (1.9a), then we obtain the relation

(2.32) d2(Y, X̂0) =
∥∥∥Y − X̂0

∥∥∥ =

√
(Y − X̂0,Y − X̂0) = [E(

∣∣∣Y − X̂0

∣∣∣
2

)]1/2,

for the random vectors Y and X̂0 = g0(X),as well as, the successive relations

d2
2(Y, X̂0) = E(

∣∣∣Y − X̂0

∣∣∣
2

) = E[(Y − X̂0)
2] =2.32a

=
∥∥∥Y − X̂0

∥∥∥
2

= (Y − X̂0,Y − X̂0) =

=

n∑

i=1

∥∥∥Yi − X̂
(i)
0

∥∥∥
2

=

=
n∑

i=1

E

[(
Yi − X̂

(i)
0

)2
]

=

=

n∑

i=1

E{[Yi − g
(i)
0 (X)]

2
) =2.32b

=
n∑

i=1

E{[Yi − E[Yi | X)]2} =

=

n∑

i=1

e
(i)
min(Yi, X̂

(i)
0 ) =2.32c

= emin(Y, X̂0),2.32d

which put in evidence just the equalities(2.29) and (2.29a).
In conclusion, the optimal estimator (2.28) is a nonlinear function that repre-

sents the conditional mean of the random vector Y, then when the random vector

X is given. Evidently, this optimal estimator X̂0 is a random variable and its
values are of the form

M(Yi | Xj = xj , j = 1, n) =

∞∫

−∞

yif(yi | x1, x2, ..., xn)dyj =(2.33)

=
1

f(x1, x2, ..., xn)

∞∫

−∞

yif(yi, x1, x2, ..., xn)dyi, i = 1, n,2.33a

for each point

(2.33b) x =(x1, x2, .., xn)T ∈ Dx = {x ∈ R
n|f(x1, .., xn) = f(x > 0},

if we had in view the following relations

(2.34) f(yi | x1, x2, ..., xn) =
f(yi, x1, x2, ..., xn)

f(x1, x2, ..., xn)
, i = 1, n.

Therefore, for to solve a such problem of the nonlinear estimation in the mean-
square we must to known the conditional densities of the forms (2.34). �
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