Another General Fixed Point Principles

ANDREI HORVAT - MARC and MĂDĂLINA BERINDE

ABSTRACT. In the terms of fixed point structures two general fixed point principle was given by I. A. Rus ([3], [4]). In this paper we establish another fixed point principles in terms of fixed point structures.

1. INTRODUCTION AND NOTATIONS

Let X be a nonempty set. We denote by P(X) the set of all nonempty subset of X. If $Y \in P(X)$, than (Y) is the set of all mappings $f: Y \to Y$. Let be I(f) the set of all inward subset of f, i.e.

 $I(f) = \{ Z \in P(Y) : f(Z) \subset Z \}.$

For $f: Y \to Y$ consider $F_f = \{x \in Y : f(x) = x\}$, the set of all fixed point for f, and $K_f = \{x \in Y : f(x) = 0\}$. We say that a set X has the fixed point property with respect to $M(X) \subset (X)$ if for every $f \in M(X)$ we have $F_f \neq \emptyset$.

Definition 1.1. (Rus [3], [4]) A triple (X, S(X), M) is a fixed point structure on the set X if:

 (S_1) $S(X) \subset P(X), S(X) \neq \emptyset;$

 $\begin{array}{l} (S_1) & \sim (X) \subseteq I \quad (Y) \quad X \in (Y) \quad Y \in (Y) \\ (S_2) & M : P(X) \rightarrow \bigcup_{Y \in P(X)} \quad (Y) \text{ is a multivalued mapping such that, if } Z \in (Y) \cap I(Y) \text{ and } f \in M(Y) \text{ than} \end{array}$

$$f|_{Z} \in M\left(Z\right);$$

 (S_3) every $Y \in S(X)$ has the fixed point property with respect to M(Y).

Example 1.1. [Mönch] Let X be a Banach space, $S = P_{cl,cv}(X)$ and $M(Y) = \{f: Y \to Y; f \text{ is continuous and for some } x_0 \in Y \text{ and for all } C \subset Y \text{ countable, the inclusion } C \subset \overline{cv} \{\{x_0\} \cup f(C)\} \text{ implies } \overline{C} \text{ compact } \}.$ The triple (X, S(X), M) is a fixed point structure.

Another examples of fixed point structures it can find in [3], [4], [8] and [2]. In fact, for any fixed point theorem it might to formulate a fixed point structure. The importance of this notion is the unitary point of view to fixed point theorem. In the following we remainder some definition (for details see [3] - [8]).

Definition 1.2. Let X be a set and (X, S(X), M) a fixed point structure. Consider the set $Z \subset P(X)$ such that $S(X) \subset Z$ and the operators $\theta : Z \to [0, \infty)$, $\eta : P(X) \to P(X)$. We said that the pair (θ, η) is compatible with fixed point structure (X, S(X), M) if:

Received: 26.09.2004; In revised form: 17.01.2005

²⁰⁰⁰ Mathematics Subject Classification. 47H09, 47H99.

Key words and phrases. *metric space, contraction, measure of noncompactness, fixed point structures.*

Andrei Horvat - Marc and Mădălina Berinde

- (C_1) $A \subset \eta(A)$ for every $A \in P(X)$;
- (C_2) if $A \subset B$ then $\eta(A) \subset \eta(B)$ for any $A, B \in P(X)$;
- $(C_3) \ \eta^2 = \eta;$
- (C₄) $S(X) \subset \eta(Z) \subset Z$ and $\theta(\eta(A)) = \theta(A)$ for all $A \in Z$;
- (C_5) $F_{\eta} \cap K_{\theta} \subset S(X).$

Remark that a mapping $\eta : P(X) \to P(X)$ which verify $(C_1) - (C_3)$ is a closure operator. Example of pair compatible with a fixed point structure it can find in [3] and [4].

Definition 1.3. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function if: $(\varphi_1) \ \varphi$ is monotone increasing, i.e. $t_1 \leq t_2$ implies $\varphi(t_1) \leq \varphi(t_2)$; $(\varphi_2) \ (\varphi^n(t))_{n \in \mathbb{N}}$ converges to 0 for all $t \leq 0$.

For a comparison function we have the next result:

Lemma 1.1. (Rus [7]) If φ is a comparison function then

$$\varphi(t) < t$$
 for all $t > 0$.

In the sequel we make the next notations":

- $P_b(X)$ is the set of all nonempty and bounded subsets of X;
- $P_{cp}(X)$ is the set of all nonempty and compact subsets of X;
- $P_{b,cl}(X)$ is the set of all nonempty, close and compact subsets of X;

Definition 1.4. (Rus [7]) Let (X, d) be a complete metric space. A mapping $\alpha : P_b(X) \to \mathbb{R}_+$ is called a measure of noncompactness on X if and only if

- $(\alpha_1) \ \alpha(A) = 0 \text{ implies } \bar{A} \in P_{cp}(X),$ $(\alpha_2) \ \alpha(A) = \alpha(\bar{A}) \text{ for all } A \in P_b(X),$
- $(\alpha_2) \quad \alpha \in \mathcal{A} \quad \text{if } (\alpha_2) \quad \alpha \in \mathcal{A}$
- (α_4) if $A_n \in P_{b,cl}(X)$, $A_{n+1} \subset A_n$, $n \in \mathbb{N}$ and $\lim_{n \to \infty} \alpha(A_n) = 0$, imply that $\bigcap A_n \neq \emptyset$ and $\alpha \left(\bigcap A_n\right) = 0$

$$\bigcap_{n\geq 1} A_n \neq \emptyset, \text{ and } \alpha \left(\bigcap_{n\geq 1} A_n\right) = 0$$

Definition 1.5. Let (X, d) be a complete metric space. A mapping $\alpha_P : P_b(X) \to \mathbb{R}_+$ is called a *Pasicki's measure of noncompactness* if satisfies the conditions $(\alpha_1) - (\alpha_3)$ and

 $(\alpha_5) \ \alpha_P (A \cup \{x\}) = \alpha_P (A) \text{ for all } A \in P_b (X), \text{ and } x \in X.$

Axioms from Definition 1.4 admit to consider measures of noncompactness which is not permitted by Definition 1.5, see [7] for examples.

Definition 1.6. (Rus [7]) Let (X, d) be a metric space, α a measure of noncompactness and φ a comparison function. A mapping $f : X \to X$ is a (α, φ) contraction if and only if

$$\alpha\left(f\left(A\right)\right) \leq \varphi\left(\alpha\left(A\right)\right) \text{ for all } A \in I_{b}\left(f\right).$$

The next result is The First General Fixed Point Principle.

Theorem 1.1. (Rus [4]) Let (X, S(X), M) be a fixed point structure and (θ, η) a compatible pair with (X, S(X), M). Let $Y \in \eta(Z)$ and $f \in M(Y)$. Assume that:

46

(H₁) the map $\theta: Z \to [0, \infty)$ is such that for every sequence $\{A_n\}_{n \ge 1} \subset Z$ with $A_{n+1} \subset A_n, n \in \mathbb{N}$ and $\lim \theta(A_n) = 0$, imply that

$$A_{\infty} = \bigcap_{n \ge 1} A_n \neq \emptyset, \ A_{\infty} \in \mathbb{Z} \ and \ \theta(A_{\infty}) = 0;$$

(H₂) f is a (θ, φ) -contraction.

Then

a) $F_f \neq \emptyset;$

b) if $F_f \in Z$ then $\theta(F_f) = 0$.

We remainder that a functional $\theta: Z \to [0, \infty)$ which verify (H_1) is called a functional with intersection property.

The next result is known as The Second General Fixed Point Principle.

Theorem 1.2. (Rus [4]) Let (X, S(X), M) be a fixed point structure and (θ, η) a compatible pair with (X, S(X), M). Let $Y \in \eta(Z)$ and $f \in M(Y)$. Assume that (K_1) for any $A \in Z$ and $x \in X$ we have $A \cup \{x\} \in Z$ and $\theta(A \cup \{x\}) = \theta(A)$; (K_2) inequality $\theta(f(A)) < \theta(A)$ holds for any $A \in I(f) \cap Z$ with $\theta(A) \neq 0$. Then

a) $F_f \neq \emptyset$;

b) if $F_f \in Z$ then $\theta(F_f) = 0$.

In both this theorems, we can replace the hypothesis $Y \subset \eta(Z)$ and $f \in M(Y)$ with

 $Y \in F_n$ and $f \in M(Y)$ such that $f(Y) \in Z$

2. Another general fixed point principle

For convenience, we introduce a new notion:

Definition 2.7. Let X be a nonempty set $Y, Z \in P(X)$, $\theta : Z \to [0, \infty)$ and $\eta : P(X) \to P(X)$ a map which verifies $(C_1) - (C_3)$. The map $f \in M(Y)$ is (θ, η) -*Mönch operator* if for some $x_0 \in Y$ and for any $A \in P(Y) \cap Z$, A countable, the equality

 $A = \eta \left(\{x_0\} \cup f(A) \right) \text{ implies } \theta(A) = 0.$

Example 2.2. Let (X, d) be a metric space, $Y, Z \in P(X)$. Consider the mappings $f \in M(Y), \theta : Z \to [0, \infty)$ and $\eta : P(X) \to P(X)$ where the last one verifies $(C_1) - (C_3)$. Suppose that (K_1) and (K_2) are true, then f is an (θ, η) -Mönch operator. Indeed, for $A \in P(Y) \cap Z$ with $\theta(A) \neq 0$ we have

 $\theta\left(A\right) = \theta\left(\eta\left(\{x_0\} \cup f\left(A\right)\right)\right) = \theta\left(\{x_0\} \cup f\left(A\right)\right) = \theta\left(f\left(A\right)\right) < \theta\left(A\right)$ This is impossible, so $\theta\left(A\right) = 0$.

Example 2.3. Let (X, d) be a metric space, $Y, Z \in P(X)$. Consider the mappings $f \in M(Y), \theta : Z \to [0, \infty)$ and $\eta : P(X) \to P(X)$ where the last one verifies $(C_1) - (C_3)$. Suppose that (K_1) and (H_2) are true, then f is an (θ, η) -Mönch operator. Indeed, for $A \in I(f) \cap Z$ with we have

$$\theta(A) = \theta(\eta(\{x_0\} \cup f(A))) = \theta(\{x_0\} \cup f(A)) = \theta(f(A)) \le \varphi(\theta(A))$$

This is a contradiction with $\varphi(\theta(A)) < \theta(A)$. So, $\theta(A) = 0$.

47

In general, if $\theta = \alpha_P$ is a Pasicki's measure of noncompactness then a (α_P, φ) contraction or α_P -condensing is a (θ, η) -Mönch operator.

Example 2.4. Let (X, d) be a metric space, $x_0 \in X$ and the functional δ : $P(X) \to [0, \infty)$, given by

$$\delta(A) = \sup \left\{ d\left(a, b\right); a, b \in A \right\}.$$

Obviously, $\delta(A) = 0$ if and only if A has a single one element, i.e. $A = \{x_0\}$. Hence, $f \in M(X)$ is (δ, η) -Mönch operator implies $f(x) = x_0$ for all $x \in X$. So, f is (δ, η) -Mönch operator if and only if f is constant.

The main theorem of this paper is the next result:

Theorem 2.3. Let (X, S(X), M) be a fixed point structure and (θ, η) a compatible pair with (X, S(X), M). Let $Y \subset \eta(Z)$ and $f \in M(Y)$. Assume that f is an (θ, η) -Mönch operator. Then

a)
$$I(f) \cap S(X) \neq \emptyset;$$

b) $F_f \neq \emptyset.$

Proof. Let $x_0 \in Y$. We use the following lemma

Lemma 2.2. Let X be a nonempty set and $\eta : P(X) \to P(X)$ a map which satisfies $(C_1) - (C_3)$. Let $Y \in F_{\eta}$, $A \in P(Y)$ and $f : Y \to Y$. Then, there is a set $A_0 \subset Y$ for which the next affirmation are true:

 $\begin{array}{ll} (L_1) & A \subset A_0; \\ (L_2) & A_0 \in F_{\eta}; \\ (L_3) & A_0 \in I(f); \\ (L_4) & \eta \left(f \left(A_0 \right) \cup A \right) = A_0, \end{array}$

and deduce there exists $A_0 \subset Y$ such that $A_0 \in F_\eta \cap I(f)$ and $A_0 = \eta(\{x_0\} \cup f(A_0))$. Since f is an (θ, η) -Mönch operator, results $\theta(A_0) = 0$. Hence $A_0 \in F_\eta \cap K_\theta$. But the pair (θ, η) is compatible with fixed point structure, therefore $A_0 \in S(X)$. So $A_0 \in S(X) \cap I(f)$, i.e. $I(f) \cap S(X) \neq \emptyset$.

From $f|_{A_0} \in M(A_0)$ and $A_0 \in S(X)$ results $F_f \neq \emptyset$.

As a consequence, we have

Theorem 2.4. Let (X, S(X), M) be a fixed point structure and (θ, η) a compatible pair with (X, S(X), M). Let $Y \subset \eta(Z)$ and $f \in M(Y)$. Assume that (H_2) and (K_1) hold. Then

a) $I(f) \cap S(X) \neq \emptyset;$ b) $F_f \neq \emptyset;$ c) if $F_f \in Z$ then $\theta(F_f) = 0.$

Proof. If the statements (H_2) and (K_1) hold, then f is (θ, η) -Mönch operator, so the conclusions result by Theorem 2.3.

Example 2.4 shows that Theorem 2.3 do not generalize Theorem 1.1.

48

References

- [1] D. Guo, V. Lakshmikantham and X. Liu, *Nonlinear Integral Equation in Abstract Spaces*, Kluwer Academic Publishers, Dordrecht-Boston-London, 1996
- [2] A. Horvat-Marc, Retraction Methods in Fixed Point Theory, Seminar on Fixed Point Theory Cluj Napoca, 1 (2000), 39-54
- [3] I.A. Rus, Fixed point structures, Mathematica, 28 (1986), 59-64
- [4] I.A. Rus, Further remarks on the fixed point structures, Studia Univ. Babeş Bolyai, ${\bf 31}$ (1986), 41-43
- [5] I.A. Rus, Retraction Method in the Fixed Point Theory in Ordered Structures, Seminar of Fixed Point Theory, (1988), 1-8
- [6] I.A. Rus, Some Open Problems of Fixed Point Theory, Seminar of Fixed Point Theory, (1999), 19-39
- [7] I.A. Rus, Generalized Contraction and Application, Cluj University Press, Cluj-Napoca, Romania, 2001
- [8] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory 1950-2000 Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002

North University of Baia Mare Department of Mathematics and Computer Science Victoriei 76, 430122 Baia Mare, Romania *E-mail address*: hmandrei@rdslink.ro

Babeş Bolyai University of Cluj-Napoca Faculty of Economics Department of Statistics - Analysis - Forecast - Mathematics *E-mail address*: madalina_berinde@yahoo.com