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On an information divergence measure and
information inequalities

PRANESH KUMAR and LAURA HUNTER

Abstract. Information divergence measures are often useful for comparing two probabil-

ity distributions. An information divergence measure is suggested. This measure is symmet-
ric in respect of the probability distributions and belongs to the well known class of Csiszár’s
f -divergences. Its properties are studied and bounds in terms of often used information diver-

gences are obtained. A numerical illustration based on symmetric and asymmetric probability
distributions compares some of these divergence measures.

1. Introduction

One problem in Probability Theory which interested researchers has been find-
ing an appropriate measure of divergence (or distance or difference or discrim-
ination or information) between two probability distributions. Non-parametric
measures give the amount of information supplied by the data for discriminating
in favor of a probability distribution against another, or for measuring the distance
or affinity between two probability distributions.

The Kullback-Leibler (1951) is the best known information divergence in this
class. There are a number of divergence measures being proposed in literature
which compare two probability distributions and have been applied in a variety
of disciplines like, anthropology, genetics, finance, economics and political sci-
ence, biology, analysis of contingency tables, approximations of probability dis-
tributions, signal processing, pattern recognition [Shannon (1958), Rényi (1961),
Csiszár (1967,1974), Ali & Silvey (1966), Vajda (1972), Ferentimos & Papaiopan-
nou (1981), Burbea & Rao (1982a,b), Taneja (1995)].

Several of these measures belong to the class of Csiszár’s f -divergence which is
defined in what follows now.

Let Ω = {x1, x2, ...} be a set with at least two elements, β(Ω) the set of all
subsets of Ω and P the set of all probability distributions P = (p(x) : x ∈ Ω) on
Ω. A pair (P,Q) ∈ P 2 of probability distributions is called a simple versus simple
testing problem. Two probability distributions P and Q are called orthogonal
(P ⊥ Q) if there exists an element A ∈ P (Ω) such that P (A) = Q(Ac) = 0, where
Ac = Ω/A. A testing problem (P,Q) ∈ P 2 is called least informative if P = Q
and most informative if P ⊥ Q.

Further, let F be a set of convex functions f : [0,∞) → (−∞,∞)] continuous
at 0, that is, f(0) = lim

u↓0
f(u), F0 = {f ∈ F : f(1) = 0} and let D−f and D+f

Received: 26.09.2004; In revised form: 12.01.2005

2000 Mathematics Subject Classification. 94A17, 26D15.
Key words and phrases. Symmetric, Parametric measure, Non-parametric measure, Infor-

mation divergence, Csiszar’s f-divergence.

51



52 Pranesh Kumar and Laura Hunter

denote the left-hand side and right-hand side derivatives of f , respectively. Define

f∗ ∈ F , the ∗-conjugate (convex) function of f , by f∗(u) = uf

(

1

u

)

, u ∈ (0,∞)

and f̃ = f + f∗.
For a convex function f : (0,∞) → R, the Csiszár’s f -divergence between two

probability distributions P and Q is defined [Csiszár (1967, 1974), Ali & Silvey
(1966)]:

(1.1) Cf (P,Q) =
∑

x∈Ω

q(x)f

(

p(x)

q(x)

)

.

It is well known that Cf (P,Q) results in a number of popular divergence mea-

sures [Taneja (1995), Dragomir (2001), Österreicher (2002)]. Some choices of f
satisfy f(1) = 0, so that Cf (P, P ) = 0. Convexity ensures that divergence mea-
sure Cf (P,Q) is non-negative. Some examples of the well known information
divergences who belong to this class are: f(u) = u lnu provides the Kullback-
Leibler measure [Kullback-Leibler (1951)], f(u) = |u− 1| results in the variational
distance [Kolgomorov (1957, 1958)], f(u) = (u − 1)2 yields the χ2-divergence
[Pearson (1900)].

The basic general properties of f -divergences including their axiomatic proper-
ties and some important classes are given in [Österreicher (2002)].

For f , f∗, f1 ∈ F , ∀ (P,Q) ∈ P 2, u ∈ (0,∞):
i) Cf (P,Q) = Cf∗(Q,P ).
ii) Uniqueness Theorem [Leise & Vajda (1987)]:

If1
(P,Q) = If (P,Q), iff ∃c ∈ R : f1(u) − f(u) = c(u − 1).

iii) Let c ∈ [D−f(1),D+f(1)]. Then f1(u) = f(u) − c(u − 1) satisfies f1(u) ≥
f(1), ∀ u ∈ [0,∞) while not changing the f -divergence. Hence, without loss of
generality f1(u) ≥ f(1), ∀ u ∈ [0,∞).

iv) Symmetry Theorem [Leise & Vajda (1987)]:

If∗(P,Q) = If (P,Q), iff, ∃c ∈ R : f∗(u) − f(u) = c(u − 1).

v) Range of Values Theorem [Vajda (1972)]:

f(1) ≤ If (P,Q) ≤ f(0) + f∗(0).

In the first inequality, equality holds iff P = Q. The latter provides f is strictly
convex at 1. The difference If (P,Q)− f(1) is a quantity that compares the given
testing problem (P,Q) ∈ P 2 with the least informative testing problem. Given
f ∈ F , by setting f(u) := f(u) − f(1), we can have f(1) = 0 and hence without
loss of generality, f ∈ F0. Thus, If (P,Q) serves as an appropriate measure of
similarity between two distributions.

In the second inequality, equality holds iff P ⊥ Q. The latter provides f̃(0) ≤
f(0) + f∗(0) < ∞. The difference Ig(P,Q) := f̃(0) − If (P,Q) is a quantity
that compares the given testing problem (P,Q) ∈ P 2 with the most informative
testing problem. Thus, Ig(P,Q) serves as an appropriate measure of orthogonality
for the two distributions where the concave function g : [0,∞) → R is given by
g(u) = f(0) + uf∗(0) − f(u).
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vi) Characterization Theorem [Csiszár (1974)]: Given a mapping I : P 2 →
(−∞,∞),

(a) I is an f -divergence, that is, there exists an f ∈ F such that

I(P,Q) = Cf (P,Q) ∀ (P,Q) ∈ P 2.

(b) Cf (P,Q) is invariant under permutation of Ω.
(c) Let A = (Ai, i ≥ 1) be a partition of Ω, and PA = (P (Ai), i ≥ 1) and

QA = (Q(Ai), i ≥ 1) be the restrictions of the probability distributions P and Q
to A.

Then I(P,Q) ≥ I(PA, QA) with equality if P (Ai) × p(x) = Q(Ai) × p(x),
∀ x ∈ Ai, i ≥ 1.

(d) Let P1, P2 and Q1, Q2 be probability distributions on Ω. Then

I(αP1 + (1 − α)P2, αQ1 + (1 − α)Q2) ≤ αI(P1, Q1) + (1 − α)I(P2, Q2).

By characterization theorem, the *-conjugate of a convex function f is f∗(u) ≡

uf

(

1

u

)

.

For brevity, in what follows now, we will denote Cf (P,Q), p(x), q(x) and
∑

x∈Ω

by C(P,Q), p, q and
∑

, respectively.
Some commonly applied information divergences which belong to the class of

Cf (P,Q) are:
Variational Distance [Kolmogorov (1957, 1958)]:

(1.2) V (P,Q) =
∑

|p − q|.

χ2-divergence [Pearson (1900)]:

(1.3) χ2(P,Q) =
∑ (p − q)2

q
=
∑ p2

q
− 1.

Symmetric χ2-divergence:

(1.4) Ψ(P,Q) = χ2(P,Q) + χ2(Q,P ) =
∑ (p + q)(p − q)2

pq
.

Kullback & Leibler (1951):

(1.5) K(P,Q) =
∑

p ln

(

p

q

)

.

Kullback-Leibler Symmetric Divergence:

(1.6) J(P,Q) = K(P,Q) + K(Q,P ) =
∑

(p − q) ln

(

p

q

)

.

Triangular Discrimination [Le Cam (1986), Topsφe (1999)]:

(1.7) ∆(P,Q) =
∑ |p − q|2

p + q
.
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Sibson Information Radius [Sibson (1969), Burbea & Rao (1982a,b)]:

(1.8) Ir(P,Q) =



























(r − 1)−1





∑

(

pr + qr

2

)(

p + q

2

)1−r

− 1



 , r 6= 1, r > 0

∑ p ln p + q ln q

2
−
(

p + q

2

)

ln

(

p + q

2

)

, r = 1

.

Taneja Divergence Measure [Taneja (1995)]:

(1.9) Tr(P,Q)=























(r−1)−1

[

∑

(

p1−r+q1−r

2

)(

p+q

2

)r

− 1

]

, r 6= 1, r > 0

∑

(

p + q

2

)

ln

(

p + q

2
√

pq

)

, r = 1

.

The following divergences are famous divergence measures. It may be noted that
they are not members of the family of Csiszár’s f -divergences (since the functions
gα(u) = uα, α ∈ (0, 1) are concave).

Bhattacharyya Distance [Bhattacharyya (1946)]:

(1.10) B(P,Q) =
∑√

pq.

Hellinger Discrimination [Hellinger (1909)]:

(1.11) h(P,Q) =
∑

(√
p −√

q
)2

2
.

Rényi Measure [Rényi (1961)]:

(1.12) Rr(P,Q) =











(r − 1)−1 ln
(
∑

prq1−r
)

, r ∈ (0,∞)\{1}
∑

p ln
p

q
, r = 1

.

The following inequalities provide relationships among V (P,Q), ∆(P,Q), K(P,Q)
and h(P,Q).

Csiszár (1967):

(1.13) K(P,Q) ≥ V 2(P,Q)

2
.

Csiszár (1967, 1974):

(1.14) K(P,Q) ≥ V 2(P,Q)

2
+

V 4(P,Q)

36
.

Topsφe (1999):

(1.15) K(P,Q) ≥ V 2(P,Q)

2
+

V 4(P,Q)

36
+

V 6(P,Q)

270
+

V 8(P,Q)

340200
.

Vajda (1972) and Toussaint (1978):

(1.16) K(P,Q) ≥ max {L1(V ), L2(V )} ,
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where from Vajda (1972)

L1(V ) = ln

(

2 + V

2 − V

)

− 2V

2 + V
, 0 ≤ V ≤ 2,

and from Toussaint (1978)

L2(V ) =
V 2

2
+

V 4

36
+

V 8

288
, 0 ≤ V ≤ 2.

Topsφe (1999):

(1.17)
1

2
V 2(P,Q) ≤ ∆(P,Q) ≤ V (P,Q).

LeCam (1986) and Dacunha-Castelle (1978):

(1.18) 2h(P,Q) ≤ ∆(P,Q) ≤ 4h(P,Q).

Kraft (1955):

(1.19)
1

8
V 2(P,Q) ≤ h(P,Q)

(

1 − 1

2
h(P,Q)

)

.

Topsφe (1999):

(1.20)
1

8
V 2(P,Q) ≤ h(P,Q) ≤ 1

2
V (P,Q).

and

(1.21) K(P,Q) ≤ (log 2)V (P,Q) + log c,

where c = max(pi/ qi), ∀i = 1, ..., n.
Now in the next section 2, we discuss information inequalities for the Csiszár’s

f -divergences.
Section 3 presents a new information divergence measure which belongs to the

class of Csiszár’s f -divergences and discuss its bounds in terms of some well known
information divergences.

In section 4, we discuss parametric information divergence which is applicable
to the parametric family of distributions.

A numerical study to compare new information divergence with some known
divergence measures and to evaluate its bounds is done in section 5.

Section 6 concludes the paper.

2. Information inequalities

Various inequalities providing bounds on the distance, information and diver-
gence measures have been obtained recently [Dragomir (2001 a,b,c,d,e), Dragomir,
Glus̆c̆ević & Pearce (2001), Taneja & Kumar (2004)]. Taneja & Kumar (2004) uni-
fied and generalized information bounds for C(P,Q) [Dragomir (2001a,b,c,d,e)]
given in the following theorem:

Theorem 2.1. Let f : I ⊂ R+ → R be a mapping which is normalized, i.e.,
f(1) = 0 and suppose that (i) f is twice differentiable on (r,R), 0 6 r 6 1 6 R <
∞, (f ′ and f ′′ denote the first and second derivatives of f), (ii) there exists real
constants m,M such that m < M and m 6 x2−sf ′′(x) 6 M , ∀x ∈ (r,R), s ∈ R.
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If P,Q ∈ P 2 are discrete probability distributions with 0 < r 6
p
q 6 R < ∞,

then

(2.22) mΦs(P,Q) 6 C(P,Q) 6 MΦs(P,Q),

and

(2.23) m (ηs(P,Q)−Φs(P,Q)) 6 Cρ(P,Q) − C(P,Q) 6 M (ηs(P,Q)−Φs(P,Q)) ,

where

(2.24) Φs(P,Q) =







2Ks(P,Q), s 6= 0, 1
K(Q,P ), s = 0
K(P,Q), s = 1

,

(2.25) 2Ks(P,Q) = [s(s − 1)]
−1
[

∑

psq1−s − 1
]

, s 6= 0, 1,

K(P,Q) =
∑

p ln(
p

q
),

Cρ(P,Q) = Cf ′

(

P 2

Q
,P

)

− Cf ′(P,Q) =
∑

(p − q)f ′

(

p

q

)

,(2.26)

ηs(P,Q) = Cφ′

s

(

P 2

Q
,

)

− Cφ′

s

(P,Q) =(2.27)

=















(s − 1)−1
∑

(p − q)

(

p

q

)s−1

, s 6= 1

∑

(p − q) ln

(

p

q

)

, s = 1

As a consequence of this theorem, following information inequalities which
are interesting from the information-theoretic point of view, are also obtained
in [Taneja & Kumar (2004)]:

(i) The case s = 2 provides the information bounds in terms of the χ2-divergence,
χ2(P,Q):

(2.28)
m

2
χ2(P,Q) 6 C(P,Q) 6

M

2
χ2(P,Q),

and

(2.29)
m

2
χ2(P,Q) 6 Cρ(P,Q) − C(P,Q) 6

M

2
χ2(P,Q).

(ii) For s = 1, the information bounds in terms of the Kullback-Leibler diver-
gence, K(P,Q):

(2.30) mK(P,Q) 6 C(P,Q) 6 MK(P,Q),

and

(2.31) mK(Q,P ) 6 Cρ(P,Q) − C(P,Q) 6 MK(Q,P ).

(iii) The case s =
1

2
yields the information bounds in terms of the Hellinger’s

discrimination, h(P,Q):

(2.32) 4mh(P,Q) 6 C(P,Q) 6 4Mh(P,Q),
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and

4m

(

1

4
η1/2(P,Q) − h(P,Q)

)

6(2.33)

6 Cρ(P,Q) − C(P,Q) 6 4M

(

1

4
η1/2(P,Q) − h(P,Q)

)

.

(iv) For s = 0, the information bounds in terms of the Kullback-Leibler and
χ2-divergences:

(2.34) mK(P,Q) 6 C(P,Q) 6 MK(P,Q),

and

m
(

χ2(Q,P )−K(Q,P )
)

6(2.35)

6 Cρ(P,Q) − C(P,Q) 6 M
(

χ2(Q,P )−K(Q,P )
)

.

In what follows now, we present a new information divergence measure which
belongs to the class of Csiszár’s f -divergences and discuss its bounds in terms of
some well known information divergences.

3. New information divergence

We consider a convex function f : (0,∞) → R be

(3.36) f(u) =
(u − 1)

2

u + 1
ln

u + 1

2
√

u
.

Then, a new divergence measure belonging to the Csiszar’s f -divergence family is
defined as:

(3.37) L(P,Q) =
∑ (p − q)

2

(p + q)
ln

p + q

2
√

pq
.

Since we can express S(P,Q) as

S(P,Q) =
1

2

∑

[

(p + q)(p − q)
2

pq

]

[

2

p + q

]

[
√

pq]
2
ln

[

p + q

2
· 1√

pq

]

,

this measure is based on the well known Symmetric Chi-Square, Arithmetic and
Geometric Mean divergence measures.

It may be noted that f(u) in (3.36) satisfies f(1) = 0, so that S(P, P ) = 0.
Convexity of f(u) ensures that divergence measure S(P,Q) is non-negative. Thus,
we have

(a) S(P,Q) ≥ 0 and S(P,Q) = 0, iff P = Q.

(b) S(P,Q) is symmetric with respect to probability distribution.

(c) Since f∗(u) ≡ uf

(

1

u

)

= f(u), function f(u) is the *-self conjugate. There-

fore, all the properties (i) to (vi) of section 2 hold good for f(u).
We now derive information divergence inequalities providing bounds for S(P,Q)

in terms of the well known divergence measures in the following propositions:
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Proposition 3.1. Let L(P,Q) and ∆(P,Q) be defined as (3.37) and (1.7), respec-
tively. Then inequality

(3.38) L(P,Q) ≤ 4
∑ (p − q)2

√
pq

(p + q)2
− 1.5∆(P,Q).

Proof. Consider the Arithmetic (AM), Geometric(GM) and Harmonic mean(HM)
inequality, i.e., HM ≤ GM ≤ AM . Then

HM ≤ AM

or,
2pq

p + q
≤ p + q

2

or, ln
p + q

2
√

pq
≥ ln

2
√

pq

p + q
.(3.39)

Multiplying both sides of (3.39) by
(p − q)2

(p + q)
, we have

(3.40)
(p − q)2

(p + q)
ln

p + q

2
√

pq
≥ (p − q)2

(p + q)
ln

2
√

pq

p + q
.

From HM ≤ GM , we have
2
√

pq

p + q
≤ 1, and thus,

(3.41) ln
2
√

pq

p + q
= ln

(

1 +

(

2
√

pq

p + q
− 1

))

≈ 4
√

pq

p + q
− 2pq

(p + q)2
− 3

2
.

Now from (3.40), (3.41) and summing over all x ∈ Ω, we get

∑ (p − q)2

(p + q)
ln

p + q

2
√

pq
≤ 4

∑ (p − q)2
√

pq − 1.5
∑ (p − q)2

p + q
,

L(P,Q) ≤ 4
∑ (p − q)2

√
pq

(p + q)2
− 1.5∆(P,Q),

and hence the proof. �

Next, we derive the information bounds in terms of the χ2-divergence, that is,
χ2(P,Q).

Proposition 3.2. Let χ2(P,Q) and L(P,Q) be defined as (2.24). For P,Q ∈ P 2

and 0 < r 6
p
q 6 R < ∞, we have

0 ≤ L(P,Q)(3.42)

6
1

4r2(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

χ2(P,Q),

and

0 ≤ Lρ(P,Q) − L(P,Q)(3.43)

6
1

4r2(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

χ2(P,Q),
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where

(3.44) Lρ(P,Q) =
∑ (p − q)2

2p(p + q)2

[

(p − q)2 + 2p(p + 3q) ln
p + q

2
√

pq

]

.

Proof. From the expression of f(u) in (3.36), we have

(3.45) f ′(u) =
(u − 1)

2u(u + 1)2

[

(u − 1)2 + 2u(3 + u) ln
u + 1

2
√

u

]

,

and, thus

Lρ(P,Q) =
∑

(p − q)f ′

(

p

q

)

=
∑ (p − q)2

2p(p + q)2

[

(p − q)2 + 2p(p + 3q) ln
p + q

2
√

pq

]

.

Further,

(3.46) f ′′(u) =
1

2u2(u + 1)3

[

1 + 6u − 14u2 + 6u3 + u4 + 16u2 ln
u + 1

2
√

u

]

.

Now if u ∈ [r,R] ⊂ (0,∞), then

(3.47) 0 ≤ f ′′(u) ≤ 1

2r2(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

.

where r and R are defined above. In view of (2.28), (2.29) and (3.47), we get
inequalities (3.42) and (3.43), respectively. �

Now the information bounds in terms of the Kullback-Leibler divergence, K(P,Q)
follows:

Proposition 3.3. Let K(P,Q), L(P,Q) and Lρ(P,Q) be defined as (1.6), (3.37)
and (3.44), respectively. If P,Q ∈ P 2 and 0 < r 6

p
q 6 R < ∞, then

0 ≤ L(P,Q)(3.48)

6
1

2r(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

K(P,Q),

and

0 ≤ Lρ(P,Q) − L(P,Q)(3.49)

6
1

2r(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

K(P,Q),

Proof. Consider f ′′(u) as given in (3.46) and let the function g : [r,R] → R be
such that

g(u) = uf ′′(u) = f ′′(u)(3.50)

=
1

2u(u + 1)3

[

1 + 6u − 14u2 + 6u3 + u4 + 16u2 ln
u + 1

2
√

u

]

.

Then

(3.51) 0 ≤ g(u) ≤ 1

2r(r + 1)3

[

1 + 6r − 14r2 + 6r3 + r4 + 16r2 ln
r + 1

2
√

r

]

,

The inequalities (3.48) and (3.49) follow from (2.30), (2.31), and (3.51). �
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The following proposition provides the information bounds in terms of the
Hellinger’s discrimination, h(P,Q) and η1/2(P,Q).

Proposition 3.4. Let h(P,Q), η1/2(P,Q), L(P,Q) and Lρ(P,Q) be defined as

(2.27), (3.37) and (3.46), respectively. For P,Q ∈ P
2 and 0 < r 6

p
q 6 R < ∞,

0 ≤ L(P,Q)(3.52)

6
2√

R(R + 1)3

[

1 + 6R − 14R2 + 6R3 + R4 + 16R2 ln
R + 1

2
√

R

]

h(P,Q),

and

0 ≤ Lρ(P,Q) − L(P,Q) 6
2√

R(R + 1)3
(3.53)

×
[

1+6R−14R2+6R3+R4+16R2 ln
R+1

2
√

R

](

1

4
η1/2(P,Q)−h(P,Q)

)

.

Proof. For f(u) in (3.36), we have f ′′(u) given by (3.46). Let the function g :
[r,R] → R be such that

g(u) = u3/2f ′′(u)(3.54)

=
1

2
√

u(u + 1)3

[

1 + 6u − 14u2 + 6u3 + u4 + 16u2 ln
u + 1

2
√

u

]

.

Then

0 ≤ g(u)(3.55)

≤ 1

2
√

R(R + 1)3

[

1 + 6R − 14R2 + 6R3 + R4 + 16R2 ln
R + 1

2
√

R

]

.

Thus, inequalities (3.52) and (3.53) are established using (2.32), (2.33) and (3.55).
�

Next follows the information bounds in terms of the Kullback-Leibler and χ2-
divergences.

Proposition 3.5. Let χ2(P,Q), K(P,Q), L(P,Q) and Lρ(P,Q) be defined as
(1.3), (1.6), (3.37) and (3.46), respectively. If P,Q ∈ P 2 and 0 < r 6

p
q 6 R < ∞,

then

0 ≤ L(P,Q)(3.56)

6
1

2(R + 1)3

[

1 + 6R − 14R2 + 6R3 + R4 + 16R2 ln
R + 1

2
√

R

]

K(P,Q),

and

0 ≤ Lρ(P,Q) − L(P,Q) 6
1

2(R + 1)3
(3.57)

×
[

1 + 6R − 14R2 + 6R3 + R4 + 16R2 ln
R + 1

2
√

R

]

(
(

χ2(Q,P )−K(Q,P )
)

.
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Proof. From the expression (3.36), we have f ′′(u) as given in (3.46). Let the
function g : [r,R] → R be such that

(3.58) g(u) = u2f
′′

(u) =
1

2(u + 1)3

[

1 + 6u − 14u2 + 6u3 + u4 + 16u2 ln
u + 1

2
√

u

]

.

Then

(3.59) 0 ≤ g(u) ≤ 1

2(R + 1)3

[

1 + 6R − 14R2 + 6R3 + R4 + 16R2 ln
R + 1

2
√

R

]

,

Thus, (3.56) and (3.57) follow from (2.34), (2.35) and (3.59). �

In section 4, we discuss parametric information divergence measure which is
applicable to the parametric family of distributions.

4. Parametric information divergence

Parametric measures of information measure the amount of information about
an unknown parameter θ supplied by the data and are functions of θ. The best
known measure of this type is Fisher’s measure of information. These measures
are applicable to the regular families of probability distributions, that is, to the
families for which the following regularity conditions are assumed to be satisfied.
Let for θ = (θ1, ...θk), the Fisher information matrix [Fisher (1925)] be

(4.60) Ix(θ) =























Eθ

[

∂

∂θ
log f(X, θ)

]2

, if θ is univariate

∥

∥

∥

∥

Eθ

[

∂

∂θi
log f(X, θ)

∂

∂θj
log f(X, θ)

]

∥

∥

∥

∥

k×k

if θ is k-variate

where ‖ ‖k×k denotes a k × k matrix.
The regularity conditions are:
R1) f(x, θ) > 0 for all x ∈ Ω and θ ∈ Θ;

R2)
∂

∂θi
f(X, θ) exists for all x ∈ Ω and θ ∈ Θ and all i = 1, ..., k;

R3)
d

dθi

∫

A
f(x, θ)dµ =

∫

A

d

dθi
f(x, θ)dµ for any A ∈ A (measurable space (X,A)

in respect of a finite or σ- finite measure µ), all θ ∈ Θ and all i.
Ferentimos & Papaiopannou (1981) suggested the following method to construct

the parametric measure from the non-parametric measure:

Let k(θ) be a one-to-one transformation of the parameter space Θ onto itself
with k(θ) 6= θ. The quantity

(4.61) Ix[θ, k(θ)] = Ix[f(x, θ), f(x, k(θ))],

can be considered as a parametric measure of information based on k(θ).
This method is employed to construct the modified Csiszár’s measure of infor-

mation about univariate θ contained in X and based on k(θ) as

(4.62) IC
x [θ, k(θ)] =

∫

f(x, θ)φ

(

f(x, k(θ))

f(x, θ)

)

dµ.

Now we have the following proposition for the parametric measure of informa-
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tion from L(P,Q):

Proposition 4.1. Let the convex function φ : (0,∞) → R be

(4.63) φ(u) =
(u − 1)

2

u + 1
ln

u + 1

2
√

u
,

and the corresponding non-parametric divergence measure

L(P,Q) =
∑ (p − q)2

p + q
ln

p + q

2
√

pq
.

Then the parametric measure LC(P,Q) is also the non-parametric measure L(P,Q).

Proof. For discrete random variables X, the expression (4.62) can be written as

(4.64) IC
x [θ, k(θ)] =

∑

x∈Ω

p(x)φ

(

q(x)

p(x)

)

.

From (4.63), we have

(4.65) φ

(

q(x)

p(x)

)

=
(p − q)

2

p(p + q)
ln

p + q

2
√

pq
,

where we denote p(x), and q(x) by p and q, respectively.
Then LC(P,Q) follows from (4.64) and (4.65) as

(4.66) LC(P,Q) := IC
x [θ, k(θ)] =

∑

x∈Ω

(p − q)
2

p + q
ln

p + q

2
√

pq
= L(P,Q),

and hence the proposition. �

In what follows next, we carry out a numerical study to compare this measure
with some known divergence measures and to evaluate its bounds.

5. Numerical illustration

We consider two examples of symmetrical and asymmetrical probability distri-
butions. We calculate measures L(P,Q), Ψ(P,Q), χ2(P,Q), J(P,Q) and verify
bounds derived above for L(P,Q).

Example 5.1. (Symmetrical). Let P be the binomial probability distribution for
the random variable X with parameters (n = 8, p = 0.5) and Q its approximated
normal probability distribution. Then

Table 1. Binomial probability Distribution (n = 8, p = 0.5).

x 0 1 2 3 4 5 6 7 8
p(x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004
q(x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005
p(x)/q(x) 0.774 1.042 1.0503 0.997 0.968 0.997 1.0503 1.042 0.774



On an information divergence measure and information inequalities 63

The measures L(P,Q), Ψ(P,Q), χ2(P,Q) and J(P,Q) are:

L(P,Q) = 0.00000253, Ψ(P,Q) = 0.00305063, χ2(P,Q) = 0.00145837,

J(P,Q) = 0.00151848.

It is noted that

r(= 0.774179933) 6
p

q
6 R(= 1.050330018).

The upper bound for L(P,Q) based on χ2(P,Q) divergence from (3.7):

Upper Bound =

(

1

4r3(r + 1)

)[

4
(

r4 + r3 + r + 1
)

ln
r + 1

2
√

r

+ 3r4 − 2r3 − 2r2 − 2r + 3

]

χ2(P,Q) = 0.000051817,

and, thus, 0 < L(P,Q) = 0.00000253 < 0.000051817. The length of the interval is
0.000051817.

The upper bound for L(P,Q) based on K(P,Q) from (3.48):

Upper Bound =
1

2r(r + 1)3

[

1+6r−14r2+6r3+r4+16r2 ln
r+1

2
√

r

]

K(P,Q)

= 0.000083538,

and therefore, 0 < L(P,Q) = 0.00000253 < 0.000083538. The length of the
interval is 0.000083538.

Example 5.2. (Asymmetrical). Let P be the binomial probability distribution for
the random variable X with parameters (n = 8, p = 0.4) and Q its approximated
normal probability distribution. Then

Table 2. Binomial probability Distribution (n = 8, p = 0.4).

x 0 1 2 3 4 5 6 7 8
p(x) 0.017 0.090 0.209 0.279 0.232 0.124 0.041 0.008 0.001
q(x) 0.020 0.082 0.198 0.285 0.244 0.124 0.037 0.007 0.0007
p(x)/q(x) 0.850 1.102 1.056 0.979 0.952 1.001 1.097 1.194 1.401

The measures L(P,Q), Ψ(P,Q), χ2(P,Q) and J(P,Q) are:

L(P,Q) = 0.000002804, Ψ(P,Q) = 0.006570635, χ2(P,Q) = 0.003338836,

J(P,Q) = 0.003277784.

It is noted that

r(= 0.849782156) 6
p

q
6 R(= 1.401219652).

The upper bound for L(P,Q) based on χ2(P,Q) divergence from (3.42):

Upper Bound =

(

1

4r3(r + 1)

)[

4
(

r4 + r3 + r + 1
)

ln
r + 1

2
√

r
+ 3r4

− 2r3 − 2r2 − 2r + 3

]

χ2(P,Q) = 0.0000420931,

and, thus, 0 < L(P,Q) = 0.000002804 < 0.0000420931. The length of the interval
is 0.0000420931.
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The upper bound for L(P,Q) based on K(P,Q) from (3.48):

Upper Bound =
1

2r(r+1)3

[

1+6r−14r2+6r3+r4+16r2 ln
r+1

2
√

r

]

K(P,Q)

= 0.0000702319,

and 0 < L(P,Q) = 0.000002804 < 0.0000702319. The length of the interval is
0.0000702319.

Figure 1 shows the behavior of L(P,Q) - [New], Ψ(P,Q)−[Sym-Chi-square] and
J(P,Q)−[Sym-Kull-Leib]. We have considered p = (a, 1 − a) and q = (1 − a, a),
a ∈ [0, 1]. It is clear from Figure 1 that measures Ψ(P,Q) and J(P,Q) have a
steeper slope than L(P,Q).

Figure 1. Measures L(P,Q)- New, Ψ(P,Q)- Sym Chi Square and J(P,Q)- Sym
Kullback Leibler.

6. Concluding remarks

The Csiszár’s f -divergence is a general class of divergence measures which in-
cludes several divergences used in measuring the distance or affinity between two
probability distributions. This class is introduced by using a convex function f
defined on (0,∞). An important property of this divergence is that many known
divergences can be obtained from this measure by appropriately defining the con-
vex function f . Non-parametric measures for the Csiszár’s f -divergences are also
available. For this class of divergences, its properties, bounds and relations among
well known divergences have been of interest to the researchers. We have intro-
duced a new symmetric divergence measure by considering a convex function and
have investigated its properties. Further, we have established its bounds in terms
of known divergence measures. Work on one parametric generalization of this
measure is in progress and will be reported elsewhere.
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