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Numerical experiment with the embedded
Runge-Kuta formulae of the 6th order to the 5th
order

MARCELA LASCSAKOVA and VLADIMIR PENJAK

ABSTRACT. In this paper we devote oneself to the numerical experiment with the embedded
Runge-Kutta formulae of the 6th order to the 5th order. We deal with an influence of changing
maximum allowable local errors and inserting either y, or y, to the embedded formulae on the
accuracy of the approximate solution. We try to verify an advantage of using empirically deriving
constant. The numerical solutions of two particular examples by using programming language
Pascal are shown.

1. INTRODUCTION

Researching some phenomena and processes and trying to gain their mathe-
matical descriptions it is sometimes not possible to find a direct dependent among
variables that describe these processes. But we can determine a relation among
researching variables and speeds of their change using another independent vari-
ables. Therefore we can obtain differential equations.

A large number of the processes especially in economy, medicine, biology, chem-
istry and also a lot of technical processes have an exponential character. That is
a reason why we started to deal with possibilities of determination as accurate as
possible the approximate solution of the Cauchy initial problem for the ordinary
differential equation ' = f(z,y), which has the exponential character.

Let us consider the ordinary differential equation

(11) ¥ = f(=z,y)

with the initial condition

(1.2)  y(zo) = yo-

We assume, that there exist just one solution y (z) of the problem (1.1) , (1.2) in
the interval [a, b], which has an exponential character.

By inserting Runge-Kutta formulae of the 5-th order to the Runge-Kutta formu-
lae of the 6-th order [1] we obtain following expresion of the approximate solution
of the Cauchy initial problem (1.1), (1.2)

1
Yt = Yo + 77 9k 4+ 40K + 20K + 30K + 35 K10 + 10K
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and from the 6-th order the embedded formula of the approximate solution of the
problem (1.1) , (1.2) can be written in the form

Yn+1 =
1
= o+ 555 KM + 75K + 50K 4 50K + 75 K18 — 9K 4 28K [8
where
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h., is step size (for n > 0), hg is initial step size.

We denote E,+1 = |Ynt+1 — Yn+1|, determining size of the interval containing
the solution at the point x,1.

There are a lot of estimates for control step size during computation in litera-
ture. We used formula in the form [2]:

)
|En+1|

where 0 is maximum allowable local error.
We applied the numerical experiment with the embedded formulae to solving
these particular Cauchy initial problems:

1
6

hn+1 =0,9 hn

1. ¢y = =30y, y(0) = 1 This initial problem has the exact solution ¢ (z) =
% 6_30$. 3

We chose initial step size hg = 0,05 and determined solution in the interval
(0; 0,2).

2.y =x+vy, y(0) =1 The exact solution is function g (z) = 2e®* —x — 1,
the initial step size hg = 0, 05, solution was determined in the interval [0; 1].
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In the example 1 we followed the influence of inserting y,, and y, to the embed-
ded formulae on the accuracy of finding approximate solution. In both examples we
dealt with advantages of choice empirical constant in the form 0,9, 0,8, 0,5 and we
gradually chose these maximum allowable local errors 6:1073, 10~4, 10=°, 1076.

2. REsuLTS

2.1. Influence of inserting y, and y, to the embedded formulae. (used
only example 1):

a) If we insert y, to the embedded formulae, the approximate solution in the
form y,, gets more accurate in the following steps of computation. The exact so-
lution at the points z1, 2, 3, x4 doesn’t lie in the interval [y,, yn] (it’s placed
under this interval), but then it belons to this interval (Table No 1a).

Table No la: Influence of inserting y, and y,, to embedded formulae
Ex.1: ¥y = =30y, y(0) = 1/3 in the interval (0;0,2), inserting y,,, empirical con-
stant 0,9, § = 1073

n| ZTn gn —Yn gn —Yn En hn

00 0,05
110,05 -0,00037997 | -0,00148945 | 0,00110948 | 0,04422751
2 | 0,09422751 | -0,00007434 | -0,00131089 | 0,00123655 | 0,03842081
3 10,13264832 | -0,00001060 | -0,00126278 | 0,00125218 | 0,03336650
4 | 0,16595497 | -0,00000066 | -0,00125512 | 0,00125446 | 0,02886451
5 | 0,19481948 | 0,00000050 | -0,00125435 | 0,00125484 | 0,02501354
6 | 0,22025448 | 0,00000043 | -0,00125449 | 0,00125492 | 0,02167613

b) If we insert y, to the embedded formulae, the approximate solution in the
form y,, gets more accurate. The exact solution lies in the interval [y, y,] (Table
No 1b).

Table No 1b: Influence of inserting ¥, and y, to the embedded formulae
Ex. 1: y = =30y, y(0) = 1/3 in the interval (0;0,2), inserting y,,, empirical
constant 0,9, § = 1073

n | ZTn Un — Yn Un — Yn b, Iy

01]0 0,05
110,05 -0,00037997 | -0,00148945 | 0,00110948 | 0,04422751
2 | 0,09422751 | 0,00074117 | -0,00049727 | 0,00123843 | 0,03841105
3 | 0,13263856 | 0,00109450 | -0,00015988 | 0,00125438 | 0,03328846
4 | 0,16592703 | 0,00119880 | -0,00005790 | 0,00125670 | 0,02884015
5 10,19476717 | 0,00123312 | -0,00002398 | 0,00125710 | 0,02498495
6 | 0,21976717 | 0,00124596 | -0,00001121 | 0,00125717 | 0,02164488

We can say that number and size of steps are independent on inserting values
Yn O Y. Also the interval of the solution FE,, stays the same in every step (the
differences are visible at the 4-th decimal place, if the desired degree of accuracy
is 1073).

Above mentioned results also hold if we desire higher degree of accuracy 10~°
(the differences among the values of E,, are visible at the 7-th decimal place).
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2.2. Influence of the value of empirical constant to control the next step
size.

a) Let consider example 1, interval [0;0,2], where values of the approximate
solution are changing very slowly.

Computing by larger steps is more advantageous (too small step costs negligible
change, so that moving practically does’t exist and that is disadvantageous in
practice). Therefore the most advantageous is empirical constant 0, 9. If we
desired lower degree of accuracy (6 = 1073), also empirical constant 0, 8 could be
acceptable. It needs more steps, but it gives higher accuracy of finding approximate
solution (Table No 2a).

Table No 2a: Influence of the value of empirical constant
Ex.1: y = —30y, y(0) = 1/3 in the interval (0;0,2), hy = 0,05, inserting yy,

§=10"3

0,9 0,8 0,5
71 — y1 | -0,00148945 -0,00148945 -0,00148945
hy 0,04422751 0,03931335 0,02457084
J2 — y2 | -0,00049727 -0,00047663 -0,00070393
ha 0,03841105 0,03060650 0,01206477
U3 —y3 | -0,00015988 -0,00018613 -0,00048993
hs 0,03328846 0,02380986 0,00592399
s —ya | -0,0000579 -0,00009015 -0,00041015
hy 0,02884015 0,01852106 0,00290877
75 — y5 | -0,00002398 -0,00005153 -0,00037588
hs 0,02498495 0,01440690 0,00142825
U6 — Y6 -0,00003341 -0,00036011
he 0,01120661 0,00070129
U7 — Y7 -0,00002386 -0,00035261
hr 0,00871722 0,00034435
s — Ys -0,00001837 -0,00034899
hg 0,00678081 0,00016908
Yo — Yo -0,00034722
hg 0,00008302
procedure was stopped at the point x15 = 0,09827217 | h15 = 0,00000116

If desired degree of accuracy is higher (6§ = 107°), only empirical constant 0, 9
is suitable for meaningful computing.

b) Let consider example 2, where values of the approzimate solution are chang-
ing slowly:

The number of steps for constant 0, 9 and 0, 8 is almost the same, but using
constant 0, 8 we achieve higher accuracy of the approximate solution. Constant
0, 5 makes steps two times smaller. These results we achieve in each degree of
accuracy. Bigger differences are visible at higher accuracy 10~ (Table No 2b).
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Table No 2b: Influence of the value of empirical constant
Ex. 2: y = 2+, y(0) = 1 in the interval [0; 1], ho = 0,05, inserting y,,, § = 1076

0,9 0,8 0,5
J1 — 0 0 0
hy 0,20015407 0,17791473 0,11119671
72 — y2 | -0,00000118 -0,00000065 0,00000006
ho 0,25517555 0,22168509 0,12661081
s — y3 | -0,00000657 -0,00000319 0,00000019
hs 0,24948429 0,21537872 0,11955067
Y4 — ya | -0,00001422 -0,00000653 0,00000033
hy 0,21873058 0,18899217 0,10461958
s — s | -0,00002147 -0,00000952 0,00000043
hs 0,18291429 0,15870679 0,08863646
Us — Yo -0,00001196 0,00000049
hg 0,13078187 0,07406207
1 — Y1 0,00000055
hy 0,07406207
procedure was stopped at the point x15 = 0,95319308 | hi5 = 0,01352552

3. CONCLUSION

71

In this numerical experiment with the embedded Runge-Kutta formulae of the
6-th order to the 5-th order we followed influence of changing initial values on
the accuracy of the approximate solution of the Cauchy problem for the ordinary
differential equation. We devoted oneself to solutions with exponential character.
Inserting values of y,, or y,, has no influence to number and size of computing steps.
Also the interval F,, we can consider the same in every step. Empiric constant
0, 5 makes step too small and it cased negligible mooving what is disadvantageous
in practice. Empiric constant 0,8 needs more steps than the empiric constant 0, 9
(it cased smaller step), but it is more advantageous than empiric constant 0, 9 if
the desired degree of accuracy is lower (§ = 10~3). Empirically denoted constant
0, 9 is in general the most advantageous taking into account the number of steps
and protecting desired accuracy of the solution.
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