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Very well-covered graphs with log-concave
independence polynomials

VADIM E. LEVIT and EUGEN MANDRESCU

ABSTRACT. If s, equals the number of stable sets of cardinality k in the graph G, then
a(@)

I(G;x) = Y spa® is the independence polynomial of G (Gutman and Harary, 1983). Alavi,
k=0

Malde, Schwenk and Erdds (1987) conjectured that I(G;x) is unimodal whenever G is a forest,

while Brown, Dilcher and Nowakowski (2000) conjectured that I(G;z) is unimodal for any well-

covered graph G. Michael and Traves (2002) showed that the assertion is false for well-covered

graphs with «(G) > 4, while for very well-covered graphs the conjecture is still open.

In this paper we give support to both conjectures by demonstrating that if a(G) < 3, or
G € {Ki,n, Pn : n > 1}, then I(G*;z) is log-concave, and, hence, unimodal (where G* is the
very well-covered graph obtained from G by appending a single pendant edge to each vertex).

1. INTRODUCTION

Throughout this paper G = (V| E) is a finite, undirected, loopless and without
multiple edges graph with vertex set V = V(G) and edge set E = E(G). The set
N(w)={u:u € V,uv € E} is the neighborhood of v € V, and N[v] = N(v)U {v}.
As usual, a tree is an acyclic connected graph, while a spider is a tree having
at most one vertex of degree > 3. Kn>PnaKnl,n2,...,np denote, respectively, the
complete graph on n > 1 vertices, the chordless path on n > 1 vertices, and
the complete p-partite graph on n; + ng + ... + n, vertices, ni,ng,...,np, > 1. A
graph is called claw-free if it has no induced subgraph isomorphic to K 3. The
disjoint union of the graphs Gi,G2 is the graph G = G; U Gy having V(G) =
V(G1) UV (G2) and E(G) = E(G1) U E(G2). If G1, G4 are disjoint graphs, then
their Zykov sum, ([20]), is the graph G1WG2 with V(G1WG2) = V(G1)UV (G2) and
E(Gl ] GQ) = E(Gl) U E(GQ) U {1}1’02 U € V(Gl),vg S V(GQ)} In particular,
UnG and WnG denote the disjoint union and Zykov sum, respectively, of n > 1
copies of the graph G.

A stable set in G is a set of pairwise non-adjacent vertices. The stability number
a(@G) of G is the maximum size of a stable set in G. A graph G is called well-covered
if all its maximal stable sets are of the same cardinality, [18]. If, in addition, G
has no isolated vertices and its order equals 2a(G), then G is very well-covered,
[4]. By G* we mean the graph obtained from G by appending a single pendant
edge to each vertex of G. Let us remark that G* is well-covered (see, for instance,
[9]), and a(G*) = n. In fact, G* is very well-covered.
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Let sy be the number of stable sets in G of cardinality k € {0,1,...,a(G)}. The
a(G)
polynomial I(G;x) = spzf = 1+s12+ 52202+ ... +5,2% a = a(G) is called the
k=0
independence polynomial of G, [6]). In [6] was also proved the following equalities.

Proposition 1.1. Ifv € V(G), then I(G;z) = I(G —v;z) +2I(G — N[v];z), and
I(G1 UGy 2) =1(Gy;x) - I(Ga; ), I(Gh1WGez) =I1(Gryx) +1(Gesx) — 1.

A finite sequence of real numbers (ag, a1, as,...,a,) is said to be unimodal if
there is some k, called the mode of the sequence, such that ag < ... < ax_1 <
A > Agg1 > ... > ap, and log-concave if a? > a;_1 - a;4q for 1 <i <n—1. It
is known that any log-concave sequence of positive numbers is also unimodal. A
polynomial is called unimodal (log-concave) if the sequence of its coefficients is
unimodal (log-concave, respectively). For instance, I(K, W (U3K;);z) =1+ (n+
21)x + 14722 + 34323, n > 1, is (a) log-concave, if 1472 — (n+21)-343 > 0, i.e., for
1 <n <42 (eg., [(KspW (U3K7);z) = 1 + 63z + 1472% + 34323), (b) unimodal,
but non-log-concave, whenever 1472 — (n + 21) - 343 < 0 and n < 126, that is,
43 < n < 126 (for instance, I(Ky3 W (U3K7);x) = 1 + 64z + 14722 4 34323), (c)
non-unimodal for n > 127 (e.g., I(K127 W (U3K7);x) = 1+ 148z + 14722 + 34323).
The graph H = (U3K70) W K37 3,..,3 is connected and well-covered, but not very

T
well-covered, and its independence polynomial is unimodal, but not log-concave:
I(H;z) = 1+ 390z + 66022 + 112023. The product of two polynomials, one
log-concave and the other unimodal, is not always log-concave, for instance, if
G=KyHW (|_|3K7) JH= K109 (|_|3.K'7)7 then

I(Gyz) - I(H;z) = (14 61z 4 14722 + 34323) (1 4 131z + 14722 + 34323)
=1+ 192z + 828522 + 289102 + 874652 + 1008422° + 11764925,

However, the following result, due to Keilson and Gerber, states that:

Theorem 1.1. [8] If P(x) is log-concave and Q(z) is unimodal, then P(z) - Q(x)
is unimodal, while the product of two log-concave polynomials is log-concave.

Alavi et al. [1] showed that for any permutation o of {1,2, ..., a} there is a graph
G with a(G) = a such that s,(1) < S5(2) < ... < 84(a). Nevertheless, in [1] it is
stated the following (still open) conjecture: I(F;x) of any forest F is unimodal.

In [2] it was conjectured that I(G;z) is unimodal for each well-covered graph
G. Michael and Traves [17] proved that this assertion is true for a(G) < 3, but
it is false for 4 < a(G) < 7. In [15] we showed that for any o > 8, there exists a
connected well-covered graph G with «(G) = «, whose I(G;x) is not unimodal.
However, the conjecture of Brown et al. is still open for very well-covered graphs.
In [14] an infinite family of very well-covered graphs with unimodal independence
polynomials is described. We also showed that I(G*;x) is unimodal for any G*
whose skeleton G has a(G) < 4 (see [14]).

Michael and Traves [17] formulated (and verified for well-covered graphs with
stability numbers < 7) the following so-called ” roller-coaster” conjecture: for any
permutation 7 of the set {[a/2],[c/2] 4+ 1,...,a}, there exists a well-covered
graph G, with «(G) = a, whose sequence (so, $1, ..., So) satisfies the inequalities
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Sr(Ta/2]) < Sx([a/2]41) < - < Sx(a)- Recently, Matchett [16] showed that this
conjecture is true for well-covered graphs with stability numbers < 11.
Recall also the following statement, due to Hamidoune.

Theorem 1.2. [7] The independence polynomial of a claw-free graph is log-concave.

As a consequence, we deduce that for any a > 1, there exists a tree T, with
a(T) = o and whose I(T; x) is log-concave, e.g., the chordless path Ps,,.

In this paper we show that the independence polynomial of G* is log-concave,
whenever: a(G) < 3, or G* is a well-covered spider (i.e., G = Ky ,,n > 1), or G*
is a centipede (that is, G = P,,n > 1).

2. RESULTS
Lemma 2.1. If G is a graph of order n > 1 and a(G) = «, then a- 8o < M- Sq—1.

Proof. Let H = (A, B, W) be the bipartite graph defined as follows: X € 4 & X
is a stable set in G of size a — 1, then Y € B <& Y is a stable set in G of size
a(G), and XY e W& X CY in G. Since any Y € B has exactly a(G) subsets
of size o — 1, it follows that [W| = a - so. On the other hand, if X € A, then
HX U{y}: XU{y} e B} <n—|X|=n—a+1. Hence, any X € A has at most
n — a + 1 neighbors. Consequently, [W| = a-s4 < (n —a+1) - s4-1, and this
leads to av- 8o <N+ Sy_1- O

In [13] it was established the following result:

a(G)
Theorem 2.3. [13] If G is a graph of order n > 1 and I(G;z) = Y. spa¥, then
k=0

a(G”) k .
I(G52) = ) tia, tk:Zsj-C;”_i), 0<k<a(G")=n
k=0 j=0

In [14] it was shown that I(G*;z) is unimodal for any graph G with a(G) < 4.
Now we partially strengthen this assertion to the following result.

Theorem 2.4. If G is a graph with o(G) < 3, then I(G*;x) is log-concave.

Proof. Suppose that «(G) = 3. Then n = |V(G)| > 3 and I(G;z) = 1+
nx + spx? + s3r3. According to Theorem 2.3, for 2 < k < n — 1, we obtain:
te = () +n(321) +s2(323) + s3 (5 73)- Therefore,

7 —tp_1tpr = Ag+n?A; s34y + 5543+
nAor + s2Ao2 + 53403 + nsa A1 + ns3 Az + s253A03,

and all A; > 0,0 <i < 3, where
2 2
n n n n—1 n—1\/n-—1
Ay = — A = —
0 (k‘) (k—1)<k‘+1>7 ! (k—1> (k—2)< k )7
2 2
Ay = n—2 _ n—2 71727 A = n—3 B n—3 71737
k—2 k—3)\k—-1 k—3 k—4)\k—-2
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because the sequence {(Z)} is log-concave. Based on notation b = (2)2, we get

o 2%k (n+1)b A 2kb{(k =2+ 2k — 1)

T =k +D)(k+1) % k+Dn—k+D(n—1)n’

A 2Wb(E = D{(k —5)n + 4k — 2} o 2%kb(k — 1)

% T k+D)—k+)(n-2)n—Dn" P nn-Dm—k+1)
2kb (k — 1) {(k — 3)n + k} 2k2b (k — 1) (k — 2)

Az = 23 =

mn—2)(n—1)n?2(n—k+1)’ n—2)(n—1)n?2(n—k+1)’
and all A;; > 0 for £ > 5. Hence, we must check that t2 — tp_1tgs1 > 0 for
k €{1,2,3,4}. By Theorem 2.3, we obtain:
2n(n —1)(n — 2)

tozl,tl:Qn,t2:3n(n71)/2+52,t3: 3

+ (n—2)sy + s3,

5

ty = —
1Ty

(n—3)n(n—1)(n72)+%sz(n—2)(n73)+53n—333,

ts=(n—4)(n—3) 2—1071(71—1)(n—2)+%52(n—2)+%‘93

Consequently, it follows t7 — tot; = (n2 +2 (2n2 — 32)) /2 > 0. We also deduce

1
t2 —tity = 12 (11n +5) (n — 1)n? + s3 + nsa +n (nsy — 2s3) > 0,

since 3s3 < mss is true according to Lemma 2.1.
Now, simple calculations lead us to

144 (3 — tots) = 190+ 7)n? (n — 1)% (n — 2) + (54n + 30) n (n — 1) (n — 2) 52
—24(n—11)n(n—1)s3+ 72n(n — 3) s3 + 144(s% + (n — 1)sas3 + s3).

Let us notice that n(n — 1) ((54n + 30) (n — 2) so — 24 (n — 11) s3) > 0, because
Lemma 2.1 implies the inequality 54nsy > 24s3. Hence, we infer that t3 —taty > 0,
whenever n > 3.

Further, we have

2880 (t2 — t3t5) = (2908 — 252n7 — 108n? + 818n° + 12n3 — 1200n° + 701n?) +
+ (672n + 2680n* — 252003 + 64n? + 136n° — 1032n°) so+
+ (—3840n° + 8400n? — 4896n + 96n° + 240n*) s3+
+ (240n* — 192003 + 5520n* — 6720n + 2880) s3+
(10560n — 5760n + 960n* — 5760) s3s2 + (8640 + 1440n? — 7200n) 53
(297 + 9)n2 (n —1)* (n — 2)* (n — 3) +
(1361 +56)n (n — 1) (n — 2)* (n — 3) so+
+(96n 4 816) n (n — 1) (n — 2) (n — 3) 53 + 240 (n — 1) (n — 2)* (n — 3) $2+
+960 (n — 1) (n — 2) (n — 3) 5283 + 1440 (n — 2) (n — 3) % > 0.

_|_
_|_

Consequently, t2 — ty_1tp41 > 0, for 1 <k <n—1, ie., I(G*;x) is log-concave.
The log-concavity for the cases a(G) € {1,2} can be validated in a similar way,
by observing that either s; = s3 = 0 or only s3 = 0. (|

Since a(Ki ) = n,a(P,) = [n/2], Theorem 2.4 is not useful in proving that
I(K7 ,;x), I(Py;x) are log-concave, as soon as n is sufficiently large. In [11],
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[12] we proved that I(K7 ,,;x), [(Wy;x) are unimodal. Here we are strengthening
these results.

The well-covered spider S,,n > 2, has n vertices of degree 2, one vertex of
degree n + 1, and n + 1 vertices of degree 1 (see Figure 1). In fact, it is easy to
see that S, = K7 ,,,n > 2.

as
a1 Qg al ag as Qp
K, I I I
P4 SG I b 5 I Wn I
0K, by bo be by by by by

FIGURE 1. Well-covered spiders: Ki, K5, Py, Sg, and the cen-
tipede W,.

Proposition 2.2. [12] The independence polynomial of any well-covered spider is
n

unimodal, moreover, I(Syp;x) = (1+x)- kzo [(:) 22k 4 (Z:})} ok n > 2, and its

mode is unique and equals 1+ (n — 1) mod 3+ 2([n/3] —1).

In [2] it was shown that I(G;z) of any graph G with a(G) = 2 has real roots,
and, hence, it is log-concave, according to Newton’s theorem (stating that if a
polynomial with positive coefficients has only real roots, then its coefficients form
a log-concave sequence). However, Newton’s theorem is not useful in solving the

conjecture of Alavi et al., even for the particular case of very well-covered trees,
since, for instance, I(Ss;x) = 1+ 8x + 2122 + 2323 + 92* has non-real roots.

Theorem 2.5. The independence polynomial of any well-covered spider is log-
concave.

Proof. Since I(G;x) is log-concave for any graph G with a(G) < 2, we consider
only well-covered spiders S, with n > 2. According to Proposition 2.2,

I(Sp;z) = (1+x)~zn: [(Z) ok (Z_iﬂ aF = (1+2)- Pa).

k=0
It is sufficient to prove that P(z) is log-concave, because, further, Theorem 1.1
implies that I(S,,;z) is log-concave, as well. Let us denote ¢, = (Z) 2k 4 (Z:}),O <
k <n.
Firstly, we notice that ¢?—cp-c2 = (2n+1)(n+2) > 0. Further, for 2 < k < n—1,
we obtain that:

9 n—1 2 n—1 n—1
kTGt = ) T \k—2)\ &

n\2n2n +2)2% — k% (n+3) + k(k2 4+ Tn + 4)
(k) nk+1)(n—k+1)-21-F '

_|_

C1\2 _ _ . . . . .
Clearly, (Z_i) — (z_;) ("kl) > 0, since the sequence of binomial coefficients is

log-concave, and n(2n + 2)2%¥ — k2 (n + 3) > 0, because n - 2¥ > k2 holds for any
ke{2,...,n—1}. Thus, ¢ — cx_1 - cxt1 > 0, for any k € {1,2,...,n — 1}. O
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The edge-join of two disjoint graphs G1, Go, is the graph G1 © G4 obtained by
adding an edge joining a vertex from G; to a vertex from Gs. If both vertices are
of degree at least two, then G; © G4 is an internal edge-join of G1,Gs. By A\, we
mean the graph OnKs = (0(n — 1)K3) © K3,n > 1 (see Figure 2).

U3 Ve Vg U3n
Uy V4 Us U7 Ug U3n—2
VMG —@—@—0—0@—@:-cc-ccccceee V3n—1

FIGURE 2. The graph A, = (0(n — 1)K3) © Kj.

In [5] it is shown that apart from K; and C7, any connected well-covered graph
of girth > 6 equals G* for some graph G; e.g., every well-covered tree equals T™ for
some tree T (see also [19]). Thus, a tree T' # K; could be only very well-covered.

Theorem 2.6. [10] A tree T is well-covered if and only if T is a well-covered
spider, or T is the internal edge-join of a number of well-covered spiders.

A centipede is a well-covered tree defined by W,, = P*,n > 1 (see Figure 1).
For example, Wy = Ko, Wy = Py, W3 = 5.

Theorem 2.7. The independence polynomial of any centipede is log-concave.
Proof. We show, by induction on n > 1, that
IWop;2) =14+ 2)" - I(Ap;x), I(Wapir;2) = (142)" - I(A, © Ka;2),

(for another proof of these equalities, see [12]).
For n = 1, the assertion is true, because

I(Wasz) = 144z+32% = (1+2)(1432) = (1+z) - I(Ay; ),
I(Ws;z) = 1+46z+1022 +52° = (1+2) - I[(A; © Ko ).
Assume that the formulae are true for k¥ < 2n 4+ 1. By Proposition 1.1, we get:
I(Wapiosx) = I(Wany2 — bany1;2) + 2 - I(Wanto — Nlbopial];z)

= (1+2)1+22) - I(Wap;z) + 2 (14 2)° - I(Wap_1; )
= (1+2)"™ {I(Ky2) - I(Ap;x) + - I(Ap_1 O Ko; )}

On the other hand, if v is the vertex of degree 3 in the last triangle of A, 11 (see
Figure 3(a)), then I(Apy1;2) = (Ko 2)[(Ap;x) +21(Dp—1 © Ko ), according
to Proposition 1.1. In other words, I(Wapy2;2) = (1+2)" T - I(Apgq; @)

a1 a2n4-2
( ) a2n+1
a
v bont1
by bonto
aq a2n 43
a2n+2
U bon+2
..... by bonts

FIGURE 3. The graphs: (a) Apy1 and Wapia; () Apt1 © Ko and Way, 3.

(b)




Very well-covered graphs with log-concave independence polynomials 79
Similarly, again by Proposition 1.1, we obtain:
I(Wapys;x) = I(Wapgs —banto;x) + @ - I(Wapis — Nlbana]; )
= (A+2)1+2z) - I(Wapyr;2) +2 (1 +2)° - I(Wap; 2)
= (I42)"" {I(Kyz) - I(A, O Ko;z) + 2 (142) - I(Ap; )}
On the other hand, if v is the vertex of degree 3 belonging to the last triangle
of Apt1 0 Ky (see Figure 3(b)) and adjacent to one of the vertices of K5, we have
I(Api1 0 Kosz) = I(Apt1 © Ky —vy2) +2I(Apg1 © Ko — Nv]; )
= I(Kni2) I8 © Koja) 2 (1+2) - I(An ).
In other words,
I(Wangs;o) = (1+2)" I(Ang © Ko 7).
While Theorem 1.2 assures that I(A,,; ), I(A, © Ks; x) are log-concave, finally

Theorem 1.1 implies that I(W,,;x) is log-concave, as claimed. O

Corollary 2.1. (i) If the graph H has as connected components well-covered
spiders/centipedes and/or graphs with stability number < 2, and/or
claw-free graphs, and/or graphs that may be represented as G* whose
G has a(G) < 3, then its independence polynomial I(H;x) is log-concave.
(i) If H, € {S,, Wy}, then the independence polynomial of WmH,, is
log-concave, for any m > 2,n > 1.

Proof. (i) Let G;,1 < i < m, be the connected components of G. According to
Theorems 2.5, 2.7, 2.4 and 1.2, any I(G;;x) is log-concave. Further, Theorem 1.1
implies that I(G;z) is also log-concave, as I(G;z) = I(G1;z) - ... - (G ).

(i) Since I(Hy;x) is log-concave, and I(WmH,;z) = m-I(Hy;z) — (m—1), it
follows that I(WmHy;x) is log-concave, as well. O

3. CONCLUSIONS

In this paper we showed that for any «, there is a very well-covered tree T with
a(T) = a, whose independence polynomial I(T;x) is log-concave. We conjecture
that the independence polynomial of any (well-covered) forest is log-concave.

T1 . T2

FIGURE 4. Two (very) well-covered trees.

In 1990, Hamidoune [7] conjectured that the independence polynomial of any
claw-free graph has only real roots. Recently, Chudnovsky and Seymour [3] vali-
dated this conjecture. Consequently, I(P,;z) has all the roots real. Moreover, the
roots of I(Wy;x) are real (see the proof of Theorem 2.7).
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For general (very well-covered) spiders/trees the structure of the roots of the
independence polynomial is more complicated. For instance, the independence
polynomial of the claw graph I(K; 3;x) = 1 + 4z + 32% + 2 has non-real roots.
Figure 4 provides us with some more examples:

I(Ty;z) = (14 2)*(1+2x)(1 + 6z + 722),
I(Ty;z) = (142z)(1+ 7z + 1422 + 92%),

where only I(T}; z) has all the roots real. It seems to be interesting to characterize
(well-covered) trees whose independence polynomials have only real roots.
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