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Reliability of a system with renewable
components and fast repair

BOGDAN MUNTEANU

Abstract. We present several results concerning on the ergodicity property of the birth
and death processes with application in reliability theory, in other words we investigate the
convergence in distribution of lifetime and repair time to a standard exponential random variable.

1. Introductory remarks and general results

In this paper we investigate the time to failure of a reparable system which has
components with exponentially distributed lifetimes and exponentially distributed
repair times. This make it possible to carry out the analysis in the framework of
birth and death processes.
An important feature of almost all renewable systems considered in reliability
theory is that the mean repair time of a component is many times smaller than
the mean component lifetime. This ”fast repair” property makes it possible to use
powerful asymptotic methods in order to investigate the probabilistic behavior of
system lifetime, when system behavior is described by a birth and death process.
The presence of fast repair provides that the cumulative distribution function of
system lifetime τ/E[T ] is rather close to 1 − e−x. This fact is very important for
practical use because it allows us to evaluate system reliability only on the basis
of the knowledge of E[τ ].
Let v(0) = 0. Let τ0,n be the passage time from state 0 to state n, n ≥ 1. An
important formula is:

(1.1) E[τ0,n] =

n−1∑

k=0

∑k
i=0 Θi

Θkλk

Proposition 1.1. If Fn(t), t ≥ 0 is cumulative distribution function a r.v. τ0,n,

then

(1.2) Fn(t) = P (τ0,n ≤ t) =
1

2πi

a+i∞∫

a−i∞

ezt

z∆n(z)
dz

where ∆n(z) is a polynomial

(1.3) ∆n(z) = 1 + ∆n,1z + ∆n,2z
2 + ... + ∆n,nzn
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Remark 1.1. The roots of ∆n(z) have following properties:
(i) they are simple and negative;
(ii) between any two adjacent roots of ∆n(z) there lies a root of ∆n−1(z)

Remark 1.2. The Laplace transform of the r.v. τ0,n is:

(1.4) E[e−zτ0,n ] =
1

∆n(z)

Remark 1.3. It follows from (1.4) that:

(1.5) E[τ0,n] = ∆n,1

Proposition 1.2. The Laplace transform of the r.v. τ0,n/E[τ0,n] is:

(1.6) E

[

e
−

zτ0,n

E[τ0,n

]

=
1

1 + z + a2z2 + ... + anzn

where the coefficient

a2 =
∆n,2

∆2
n,1

and

∆n,2 =

n−1∑

k=1

∑k
s=1 E[τ0,s]Θs

λkΘk

2. Exponentially distributed lifetimes and

repair times : fast repair

Let a system be with renewable standby components. The system has tow units
in operation, one in a ”warm” standby and two in a ”cold” standby. Failed units
are repaired in a repair shop which has two channels able to repair two failed units
simultaneously. Any failed unit goes to repair, the place of a failed operating unit
is taken by the unit from warm standby,the latter being replaced by a unit from
cold standby. Repaired units return to the cold standby. System operation is
illustrated by fig.1.

Figure 1. System with renewable standby
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The system fails if the total number of failed units exceeds three; only one unit
is available for operation. Failure rates are λ(1) = 1, λ(2) = 0.6 for the operating
units, λ(3) = 0.4 for the unit in warm standby and zero for cold standby. In other
words, the lifetime of operating units are τ1 ∼ Exp(1), τ2 ∼ Exp(0.6) and the
lifetime in warm standby is τ3 ∼ Exp(0.4). The repair rate in a channel is µ = 10
with the repair time µ ∼ Exp(10). The BD process are the ”upward” transition
rates λ0 = λ(1) + λ(2) + λ(3) = 2, λ(1) = λ(2) = 2, λ(3) = 1.6 and the ”downward”
transition rates µ1 = 10, µ2 = µ3 = 20. The fast repair is reflected in the fact that
the downward transition rates are much greater than the upward transition rates.
Let us compute the mean transition time E[τ0,4], which is the mean time to sys-
tem failure in our example. The mean transition times are computed according
to [4]. In our example, Θ0 = 1, Θ1 = λ0/µ1 = 0.2, Θ2 = λ0λ1/µ1µ2 = 0.02,
Θ3 = λ0λ1λ2/µ1µ2µ3 = 0.002. It follows that:

E[τ0,4] =
Θ0

Θ0λ0
+

Θ0 + Θ1

Θ1λ1
+ ... = 415.88

Because of the fast repair, v(t) will have many returns to state zero before it hits
for the first time the failure state v(t) = 4. The system starting with v(0) = 0
terminates with failure state with some probability p. This situation resembles
the model of geometric distribution approximated by the exponential distribu-
tion (see [1], section 2.1). If the hypothesis about exponentiality is true, then
P (τ > t) ≈ e−t/E[τ0,4].
For example, for t = 50, P (τ > 50) ≈ e−50/415.88 = 0.8867.
It will be shown later that this estimate is surprisingly accurate.
Now let us return to the birth and death process and assume that the system fails
if v(t) enters state n:

(2.7) τ0,n = inf {t : v(t) = n | v(0) = 0}

Theorem 2.1. Let ξ = τ0,n/E[τ0,n]. If E[e−zξ] =
(
1 + z + a2z

2 + ... + anzn
)−1

,

a2 <
1

4
then

(2.8) sup
x≥0

| P (ξ > x) − e−x |< 1 −
√

1 − 4a2

1 +
√

1 − 4a2

Proof. We consider the following representation of the polynomial:

(2.9) 1 + z + a2z
2 + ... + anzn =

n∏

k=1

(1 + αkz)

By remark 1.1, all roots of the polynomial (2.9) are simple and nenegative; αk

are positive and distinct. In (2.9), if n = 2, then by the method of coefficients
identification we have: {

α1 + α2 = 1
α1α2 = a2

For n = 3: {
α1 + α2 + α3 = 1

α1α2 + α1α3 + α2α3 = a2



84 B. Munteanu

Generalisation:






α1 + α2 + ... + αn = 1

a2 =
∑

i<j

αiαj =

n

i=1

αi

2

−
n

i=1

α2
i

2 =
1−

n

i=1

α2
i

2

We obtain the relation:

(2.10) α2
1 + α2

2 + ... + α2
n = 1 − 2a2

Let α1 > α2 > ... > αn andα = 1 − α1. How a2 < 1
4 ⇒ 1 − 2a2 > 1

2 . Further,
1 − 2a2 < α1α1 + α1α2 + ... + α1αn = α1(α1 + α2 + ... + αn = α1 = 1 − α.
We have the following inequality: 1

2 < 1 − α ⇒ α < 1
2 .

Further, we obtain another inequality:

1 − 2a2 = α2
1 + α2

2 + ... + α2
n < α2

1 + (α1 + α2 + ... + αn)2 = (1 − α)2 + α2

thus

(2.11) α2 − α + a2 > 0

The equation α2−α+a2 = 0 has two positive roots and ∆ = 1−4a2 > 0. Together
with α < 1

2 and the graph by fig. 2, the inequality (2.11) is true if:

(2.12) α <
1 −

√
1 − 4a2

2

Figure 2. The graph of the function f(x) = x2 − x + a2

Let us establish the following inequality: if 0 < α < 1 and eαx ≥ α ,
∀x > 0:

(2.13) Ψ(x) = e−
x

α1 − e−x ≥ − 1

α1
+ 1 = −1 − α1

α1
= − α

1 − α

We have that Ψ(0) = 0 and Ψ(∞) = 0 and also Ψ(x) < 0, ∀x > 0. The equation

Ψ‘(x) = 0 has a unique root x∗ such that x∗
(

1 − 1
α1

)

= lnα1.

Then:

Ψ∗(x) = e−
x∗

α1 − e−x∗

= −e−x∗

(

1 − e−
x∗

α1
+x∗

)

= −e−x∗

[

1 − e
x∗ 1− 1

α1

]

= −e−x∗

(1 − α1) > − 1−α1

α1
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Therefore,

Ψ(x) ≥ Ψ∗(x) > −1 − α1

α1
= − α

1 − α

The relationship

E
[
e−zξ

]
=

n∏

k=1

(1 + αkz)
−1

suggests that

ξ = η1 + η2 + ... + ηn

where ηi are independent r.v., E[ηi] = αi, where ηi ∼ Exp(α−1
i ).

We have that:

E
[

e−z n
i=1 ηi

]

= E

[
n∏

i=1

e−zηi

]

=
n∏

i=1

E
[
e−zηi

]

How E
[
e−zξ

]
=

∏n
k=1(1 + αkz)−1, we then have E [e−zηi ] = (1 + αiz)

−1
.

Further,

E
[
e−zηi

]
=

∞∫

0

e−ztdF (t)dt =

∞∫

0

e−ztd
(

1 − e
− t

αi

)

=
1

αi

∞∫

0

e
− z+ 1

αi
t
dt

=
1

αi

1

z + 1
αi

=
1

zαi + 1

(4)
=

1

∆i(z)

results ∆i(z) = 1 + αiz and in accordance with the relationship (1.3) and (1.5)
E(ηi) = αi.
The event {ξ > x} can occur in two ways: either η1 > x or η1 = y, y ∈ (0, x) and
η2 + η3 + ... + ηn > x − y.
Then:

δ(x) = P (ξ > x)−e−x =P (η1 >x)+P (η1 =y)P (η2+η3+ ... +ηn >x−y)−e−x

= e−
x

α1 − e−x +

x∫

0

P (η2 + η3 + ... + ηn > x − y)d
(

1 − e−
y

α1

)

= e−
x

α1 − e−x +
1

α1

x∫

0

e−
y

α1 P (η2 + η3 + ... + ηn > x − y)dy

x−y=t
= e−

x
α1 − e−x

︸ ︷︷ ︸

−

+
1

α1

x∫

0

e−
x−t
α1 P (η2 + η3 + ... + ηn > t)dt

≤ 1

α1

x∫

0

P (η2+η3+ ... +ηn > t)dt ≤ 1

α1

∞∫

0

P (η2 + η3 + ... + ηn > t)dt

=
1

α1
E[η2 + η3 + ... + ηn] =

1

α1
[E(η2) + E(η3) + ... + E(ηn)]

=
α2 + α3 + ... + αn

α1
=

1 − α1

α1
=

α

1 − α
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Thus:

(2.14) δ(x) ≤ α

1 − α

After (2.13) and (2.14) results the following inequality:

(2.15) δ(x) ≥ e−
x

α1 − e−x ≥ − α

1 − α

In view of (2.14), (2.15) and (2.12), we obtain:

| δ(x) |≤ α

1 − α
<

1 −
√

1 − 4a2

2

1 − 1 −
√

1 − 4a2

2

=
1 −

√
1 − 4a2

1 +
√

1 − 4a2
∼ a2 if a2 → 0.

This proves (2.8).

Remark 2.4. The Theorem 2.1 establishes a remarkable fact: if a2 → 0, then

P (ξ > x)
n→∞→ e−x, that is r.v. ξ =

τ0,n

E[τ0,n]

d→ Exp(1)

Remark 2.5. It is interesting to clarify the probabilistic meaning of the
quantity a2 which played the central role in proof of theorem 2.1. To show that

a2 = 1− E[τ2
0,n]

2(E[τ0,n])2 . Theorem 2.1. is very useful for applications because it presents

an upper bound on the deviation of P (ξ > x) from e−x. The formula for a2 is
presented in paragraph 1.

To apply the theorem 2.1 for the previous example. Let us estimate the differ-

ence between P (τ0,4 > 50) = P
(

ξ > 50
E[τ0,4]

)

and its exponential approximation

e
− 50

E[τ0,4] . One obtains, by using the values of Θi and E[τ0,i] computed earlier,
that ∆n,2 = 78.88. Then a2 = 78.88

(E[τ0,4])2
= 78.88

415.882 = 0.00046 and |P (τ0,4 > 50) −
e
− 50

E[τ0,4] |≤ 0.00046 which means that the exponential approximation is indeed
very accurate.
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