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On some relations on n-monoids

MARIA S. POP and ADINA POP

Abstract. In this paper we introduce the notion of n-monoid, n > 2, and we generalize
for n-monoids two relations defined by F. Wehrung on the binary case. These relations can be

interpreted as a ”distance” between a n-monoid and the set of n-groups.

1. Preliminary notions about n-monoids

Wehrung [8] have studied the injective positively ordered monoids and defined
two relations on the elements of a monoid, one preordering relation and other
transitive and antisymmetric only. Later, Golan [4] have studied this relations for
semirings with applications in computer science.

In this paper we define the notions of n-monoid, n > 2, positively ordered
n-monoid and we generalize for n-monoids the relations defined by Wehrung [8].
The connections between the monoids and n-monoids, n > 2 and between the
generalized relations we defined and Wehrung’s are investigated, too.

Here we will often write aj
i instead of ai, ai+1, ..., aj , if i ≤ j and

(k)
a for a, a, ..., a

(k times). By aj
i with i > j we mean the empty sequence.

A set A together with an n−ary operation ()+ : An → A is called n−semigroup
if for any k ∈ {1, 2, ..., n} and for all a2n−1

1 ∈ A we have:

((an
1 )+, a2n−1

n+1 )+ = (ak
1 , (ak+n

k+1 )+, a2n−1
k+n+1)+.

The sequence un−1
1 is called the right (left) unit as system of elements if for all

x ∈ A holds
(

x, un−1
1

)

+
= x (respectively

(

un−1
1 , x

)

+
= x).

An n − group [2] is an n−semigroup in which for all an
1 ∈ A, the equations

(ai−1
1 , x, an

i+1)+ = ai; i ∈ {1, 2, ..., n} have an unique solution in A.
An n−semigroup ( n-group) is called semicommutative if for all an

1 ∈ A we have

(a1, a
n−1
2 , an)+ = (an, an−1

2 , a1)+ and commutative if ∀σ ∈ Sn, (an
1 )+ = (a

σ(n)
σ(1) )+.

An n-semigroup is called medial if for all ain
i1 ∈ A; i = 1, n the following relation

holds

((a1n
11 )+, (a2n

21 )+, . . . , (ann
n1 )+)+ = ((an1

11 )+, (an2
12 )+, . . . , (ann

1n )+)+ .

Any n-semigroup commutative is semicommutative and any n-semigroup semi-
commutative is medial [2].
An n−semigroup is called cancellative if for all

a, b, cn
1 ∈ A; (ci−1

1 , a, cn
i+1)+ = (ci−1

1 , b, cn
i+1)+ ⇒ a = b, i ∈ {1, 2, ..., n}
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Definition 1.1. An n−semigroup is called an n−monoid if there is at least one
sequence un−1

1 ∈ A so called the unit of the n-monoid, such that

∀x ∈ A, (x, un−1
1 )+ = x = (un−1, u

n−2
1 , x)+

Therefore the sequence un−1
1 is the right unit and un−1u

n−2
1 is left unit as

system of elements. Because this unit is not necessary unique, let U(A) be the set
of units of the n-monoid (A, ()+). If in the sequel it is necessarily to specify the
unit un−1

1 , we denote the monoid by
(

A, ()+, un−1
1

)

.

Remark 1.1. A semicommutative n-semigroup with a right unit is an n-monoid.
Any n-group is an n-monoid.

Proposition 1.1. If un−1
1 ∈ A is an unit of the n-monoid (A, ()+), then un−1

1 is
left unit and un−1u

n−2
1 is right unit too.

Proof. Indeed, if un−1
1 is an unit, i.e. un−1

1 is right unit and un−1u
n−2
1 is a left

unit of the n-monoid (A, ()+), then for all x ∈ A we have

(un−1
1 , x)+ =

(

un−1u
n−2
1 (un−1

1 , x)+
)

+
=

(

un−1u
n−3
1 (un−2u

n−1
1 )+, x

)

+
=

= (un−1u
n−3
1 un−2, x)+ = (un−1u

n−2
1 , x)+ = x,

i.e. un−1
1 is a left unit.

Also

(x, un−1u
n−2
1 )+ =((x, un−1u

n−2
1 )+un−1

1 )+ =(x, (un−1u
n−2
1 u1)+, un−1

2 )+ =

= (x, u1, u
n−1
2 )+ = (x, un−1

1 )+ = x,

i.e. un−1u
n−2
1 is a right unit. �

Example

1. The set N respectively Z with the (2n + 1)-ary operation, n ∈ N
ast

(k1, k2, . . . , k2n+1)+ = k1 − k2 + k3 − · · · + k2n+1

is a semicommutative (2n + 1)-monoid with the units
(2n)
a , ∀a ∈ N, respectively

(2n + 1)-group.
2. The set A = N × N with ternary operation ( )+ : A3 → A,

((x1, y1), (x2, y2), (x3, y3))+ = (x1y2x3, y1x2y3)

is a semicommutative 3-monoid with unit (1, 1)(1, 1), while the set
B = Z × Z together the above operation is a semicommutative 3-monoid with
two units (1, 1)(1, 1) and (−1,−1)(−1,−1).

In [5] we have studied the connections between some n-ary algebraic structure
and their corresponding binary structures.

If (A, ()+) is a n-semigroup and un−2
1 are fixed elements in A and the binary

operation + : A2 → A is defined by

x + y = (x, un−2
1 , y)+,

then (A,+) is a semigroup [5]. This semigroup is called the binary reduced to
respect to un−2

1 of the n-semigroup (A, ()+). It is denoted by redu
n−2

1

A.
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As a consequence of this result, in the special case of n-monoids the following
result holds.

Proposition 1.2. If (A, ()+, un−1
1 ) is a n-monoid then its binary reduced to respect

to un−2
1 , (A,+) is a monoid with ”zero”, un−1.

This monoid is denoted by (redu
n−2

1

A,+, un−1).

Proposition 1.3. If the n-monoid (A, ()+) has more than one unit, let un−1
1 and

vn−1
1 be two units, then the binary reduces (redu

n−2

1

A,+, un−1) and (redv
n−2

1

A, ∗, vn−1)

are isomorphic.

Proof. Indeed, if un−1
1 , vn−1

1 , un−1u
n−2
1 , vn−1v

n−2
1 are left and right unit, then the

map f : A → A defined by f(x) = (vn−1, x, un−2
1 )+ is an unitary homomorphism

of the monoids (redu
n−2

1

A,+, un−1) and (redv
n−2

1

A, ∗, vn−1). To see this we notice

that

f(un−1) = (vn−1, un−1, u
n−2
1 )+ = vn−1

and for all x, y ∈ A we have

f(x + y) = (vn−1, x + y, un−2
1 )+ = (vn−1, (x, un−2

1 , y)+, un−2
1 )+ =

= (((vn−1, x, un−2
1 )+, vn−1

1 )+, y, un−2
1 )+ =

= ((vn−1, x, un−2
1 )+, vn−2

1 , (vn−1, y, un−2
1 )+)+ =

= (f(x), vn−2
1 , f(y))+ = f(x) ∗ f(y).

Moreover f is one-to-one, because f(x) = f(y) implies

(vn−1, x, un−2
1 )+ = (vn−1, y, un−2

1 )+

from where by Proposition 1.1 we have

(vn−2
1 , (vn−1, x, un−2

1 )+, un−1)+ = (vn−2
1 , (vn−1, y, un−2

1 )+, un−1)+ , or

((vn−1
1 , x)+, un−1

1 )+ = ((vn−1
1 , y)+, un−1

1 )+ ,

that is x = y.
The map f is surjective, for any y ∈ A there is x = (vn−2

1 , y, un−1)+ ∈ A such
that f(x) = y.

Therefore f is a monoids isomorphism. �

An other approache for reducing an n-semigroup to a semigroup is the following
construction [5]:

Let (A, ( )+) be an n-semigroup with right unit un−1
1 . If on G =

n−1
⋃

i=1

Ai is

defined the relation

ai
1ρa′i

1 ⇔
(

un−1
i ai

1

)

+
=

(

un−1
i a′i

1

)

+
⇔

(

xn−i
1 ai

1

)

+
=

(

xn−i
1 a′i

1

)

+
,

for all xi
1 ∈ A, then ρ is a equivalence relation.

Let
[

ai
1

]

= ρ
(

ai
1

)

. Obviously that
[

un−1
1

]

=
{

vn−1
1 ,

(

x, vn−1
1 )+ = x, ∀x ∈ A

}

,
is the class of all right unit as system of elements. Moreover, if on G/ρ we define
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the binary operation:

[

ai
1

]

·
[

bj
1

]

=











[

ai
1b

j
1

]

, if i + j < n
[

ai+j−n
1

(

ai
i+j−n+1b

j
1

)

+

]

, if i + j ≥ n,

then G/ρ is a monoid with unit
[

un−1
1

]

.
For all an

1 ∈ A we have [(a1 . . . an)+] = [a1] · [a2] · . . . · [an].
The set A0 = An−1/ρ is a submonoid of G/ρ.
Moreover, if (A, ( )+) is a semicommutative n-group, then A0 is a invariant

commutative submonoid. To see this we notice that for all
[

xi
1

]

∈ G/ρ and
[

an−1
1

]

∈ A0, we have
[

xi
1

]

·
[

an−1
1

]

=
[

xi−1
1

(

xia
n−1
1

)

+

]

=
[

xi−1
1

(

an−1a
n−2
1 xi

)

+

]

=

=
[

xi−2
1 an−2

(

an−1a
n−3
1 xi

i−1

)

+

]

= · · · =
[

an−2
n−i ,

(

an−1a
n−i−1
1 xi

1

)

+

]

=
[

an−1
n−i a

n−i−1
1

]

·
[

xi
1

]

.

The two methods of reducing the n-monoids to monoids are not independent:

Proposition 1.4. If (A, ( )+) is a n-semigroup with right unit un−1
1 , then the

reduced to respect to un−2
1 of (A, ( )+), (redu

n−2

1

A,+, un−1) is isomorphic to sub-

monoid A0 of G/ρ if and only if un−1u
n−2
1 is left unit in (A, ( )+), that is (A, ( )+)

is a n-monoid.

The proof for n-semigroup is given in [5].
This result justifies our definition for an n-monoid, as an n-semigroup for which
there is at least one system of (n− 1) elements un−1

1 such that it is right unit and
un−1u

n−2
1 is a left unit.

2. Positively ordered n-monoids and some relations on the

n−monoids

We generalize for n-monoid the notion of positively ordered monoid defined in
[8]:

Definition 2.1. Positively ordered n−monoid (from now on P.O. n − M) is a
structure

A =
(

A, ()+, U(A),≤
)

such that:
O1. (A, ()+, U(A)) is a semicommutative n−monoid;
O2. (A,≤) is a partially preordered set under a relation ”≤ ” and for every

unit un−1
1 ∈ U(A) holds

un−1 ≤ a, for all a ∈ A.

O3. If a, b are elements of A, then a ≤ b implies

(*)
(

ci−1
1 , a, cn

i+1

)

+
≤

(

ci−1
1 , b, cn

i+1

)

+
, for all cn

1 ∈ A, i = 1, 2, ..., n.

Proposition 2.1. The condition O3 is fulfilled if the relations (*) hold only for
i = 1 and i = 2.
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Proof. Indeed, if a ≤ b implies (a, cn
2 )+ ≤ (b, cn

2 )+ and (c1, a, cn
3 )+ ≤ (c1, b, c

n
3 )+

for all cn
1 ∈ A, then (c2, a, un−2

1 ) ≤ (c2, b, u
n−2
1 )+ and

(c1, c2, a, cn
4 )+ = (c1, c2, (a, un−1

1 )+, cn
4 )+ = (c1, (c2, a, un−2

1 )+, un−1, c
n
4 )+ ≤

≤ (c1, (c2, b, u
n−2
1 )+, un−1, c

n
4 )+ = (c1, c2, (b, u

n−1
1 )+, cn

4 )+ = (c1, c2, b, c
n
4 )+ .

By induction if the relation (*) hold for i = 1, 2, . . . , k − 1, then it holds for k too,
k = 3, . . . , n. �

Remark 2.1. Using the transitivity of the relation ≤, from O3 it follows straight

forward that if ai ≤ bi for all i = 1, n we have
(

a
σ(n)
σ(1)

)

+
≤

(

b
σ(n)
σ(1)

)

+
for arbitrary

permutation σ of the set {1, 2, ..., n}.

Remark 2.2. If in the n−monoid
(

A, ()+, un−1
1

)

the cancellation laws hold, we
immediately obtain a partial converse of O3.

If
(

ci−1
1 , a, cn

i+1

)

+
≤

(

ci−1
1 , b, cn

i+1

)

+
and a 6= b, then a < b, or a and b are

incomparable.
Note that in the case n = 2, A is a positively ordered monoid in the sense of

Wehrung.

Remark 2.3. If (A, ()+, U(A), ≤) is a P.O. n-M. and un−1
1 ∈ U(A), then

(redu
n−2

1

A,+, un−1,≤) is a positively ordered monoid.

If in Definition 2.1 we replace O2 by
O′

2. (A,≤) is an ordered set under relation ≤,
then A is called a partially ordered n-monoid.

The notion of partially ordered n-groups is defined and studied by Crombez [1]
and studied by Ušan [6], [7], too.

In what it follows we generalize in the case of the n−monoids some relations,
defined by Wehrung [8] on the binary case.

Definition 2.2. Let ( A, ()+, un−1
1 ) be an n−monoid and a, b ∈ A. We define the

following relations:

(1) a 4 b ⇔ (∃ xn−1
1 ∈ A)((a, xn−1

1 )+ = b);
(2) a ≪ b ⇔ (∃ xn−2

1 ∈ A)((a, xn−2
1 , b)+ = b);

(3) a 4u b ⇔ (∃ x ∈ A)((a, un−2
1 , x)+ = b);

(4) a ≪u b ⇔ (a, un−2
1 , b)+ = b.

Remark 2.4. The above relations is not independent. So

a ≪u b ⇒ a ≪ b ⇒ a 4 b ⇒ a 4u b ⇒ a 4 b,

i.e. the two relations (1) and (3) are the same.

The first two implications are obviously. If a 4 b, then there is xn−1
1 ∈ A such

that
(

a, xn−1
1

)

+
= b, hence

b =
(

(

a, un−1
1

)

+
, xn−1

1

)

+
=

(

a, un−2
1 ,

(

un−1, x
n−1
1

)

+

)

+
and a 4u b.

Conversely, if a 4u b there is x ∈ A such that
(

a, un−2
1 , x

)

+
= b, hence a 4 b.

Therefore a 4 b ⇐⇒ a 4u b.
As a consequence the following holds
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Remark 2.5. If vn−1
1 is other unit of the n-monoid

(

A, ()+, un−1
1

)

, then

a 4u b ⇔ a 4v b.

Proposition 2.2. 1◦. If
(

A, ()+, un−1
1

)

is a semicommutative n−monoid, then
(

A, ()+, un−1
1 ,4

)

is a P.O. n − M .
We will call the relation 4 the minimal or canonical preordering.
2◦. The relation (2) ” ≪ ” is not necessarily reflexive but it is transitive and

compatible with the n-ary operation.
If for all a ∈ A there are xn−2

1 ∈ A;
(

a, xn−2
1 , a

)

+
= a, then

(

A, ()+, un−1
1 ,≪

)

is P.O. n − M .
3◦. A necessary and sufficient condition for that the relation (4) ′′ ≪u ” to be

a partial ordered is

∀a ∈ A,
(

a, un−2
1 a

)

+
= a.

Proof. 1◦ O1. From
(

a un−1
1

)

+
= a, ∀a ∈ A, we have a 4 a, i.e., the relation

is reflexive. This relation is transitive too: a 4 b and b 4 c implies ∃xn−1
1 ∈ A;

(

a, xn−1
1

)

+
= b and ∃ yn−1

1 ∈ A;
(

b, yn−1
1

)

+
= c, hence

(

axn−2
1 (xn−1, y

n−1
1 )+

)

+
=

c, at where a 4 c. Moreover:
O2. For any a ∈ A,

(

un−1u
n−2
1 a

)

+
= a implies un−1 4 a;

O3. If a 4 b, then ∃xn−1
1 ∈ A such that

(

a, xn−1
1

)

+
= b.

Then for all cn
1 ∈ A and i = 1, n by semicommutativity and associativity of

n−ary operation we obtain:

(

ci−1
1 , b, cn

i+1

)

+
=

(

ci−1
1 , (a, xn−1

1 )+, cn
i+1

)

+
=

(

(

ci−1
1 , a, cn

i+1

)

+
, xn

n−i+1x
n−i
1

)

+
.

From this result
(

ci−1
1 , a, cn

i+1

)

+
4

(

ci−1
1 , b, cn

i+1

)

+
.

2◦. The transitivity is immediately. Let now ai ≪ bi be i = 1, n, i.e. there are
xi,n−2

i1 ∈ A, i = 1, n, such that (ai, x
i,n−2
i1 , bi)+ = bi. Because the n-ary operation

is semicommutative it is medial and

(bn
1 )+ = ((a1, x

1,n−2
11 , b1)+, . . . , ((an, xn,n−2

n1 , bn)+)+) =

((an
1 )+, (xn1

11 )+, . . . , (xn,n−2
1,n−2 )+, (bn

1 )+)+

whence (an
1 )+ ≪ (bn

1 )+.
The relation (2) is not necessarily reflexive. If for

∀ a ∈ A ∃xn−2
1 ∈ A;

(

a, xn−2
1 , a

)

+
= a,

then
(

A, ()+, un−1
1 ,≪

)

is a P.O.n − M .

3◦. If a ≪u b and b ≪u a, we have
(

a un−2
1 b

)

+
= b and

(

b un−2
1 a

)

+
= a.

By semicommutivity of n-ary operation we have a = b. From a ≪u b and b ≪u c
result

c =
(

b un−2
1 c

)

=
(

(

a un−2
1 b

)

+
un−2

1 c
)

+
=

(

a un−2
1

(

b un−2c
)

+

)

+
=

(

a un−2
1 c

)

+
,

hence a ≪u c. Then the relation (4) is an orderer relation if and only if for all
a ∈ A we have

(

a un−2
1 a

)

+
= a. �
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We remark that the relation 4 is a preorder but not necessarily a partial order on
A. A sufficient condition for it to be a partial order is that ((a un−2

1 , x)+un−2
1 , y)+ =a

imply (a un−2
1 , x)+ = a, for all a, x, y ∈ A. If the relation 4 is a partial order on A,

then analogous binary case we say that the n-monoid A is difference ordered. The
3-monoid, (A, ()+) from example 2, has this property, but the 3-monoid (B, ()+)
has not this property. Of course, if a 4 b, then the elements xn−1

1 ∈ A satisfying
(a xn−1

1 )+ = b need not be unique.
The following statements generalize the results of F. Wehrung [7] from the

binary in the n-ary, n ≥ 2, case.

Proposition 2.3. Let
(

A, ()+, un−1
1 ,≤

)

be a P.O.n − M . Then

(i) If A is minimal, then a ≪ b and b 4 c implies a ≪ c;
(ii) If the relation ”≤” is antisymmetric, then a ≤ b and b ≪u c implies

a ≪u c.

Proof. (i) The relation b 4 c implies that there are xn−1
1 ∈ A such that

(

b, xn−1
1

)

+
=

c. From a ≪ b that are yn−2
1 ∈ A such that (ayn−2

1 b)+ = b. Then

c =
(

bxn−1
1

)

+
=

(

(

ayn−2
1 b

)

+
xn−1

1

)

=
(

ayn−2
1

(

bxn−1
1

)

+

)

+
=

(

ayn−2
1 c

)

and a ≪ c.
(ii) Because

(

b, un−2
1 , c

)

+
= c and A is P.O. n − M , the relation a ≤ b implies

(

a, un−2
1 , c

)

+
≤

(

b, un−2
1 , c

)

+
, hence

(

a, un−2
1 , c

)

+
≤ c. But, by reflexivity of the

relation ≤, from un−1 ≤ a; c ≤ c; ui ≤ ui; i = 1, n − 2 we have

c =
(

un−1u
n−2
1 c

)

+
≤

(

a un−2
1 c

)

+
.

By antisymmetry of relation ”≤” results
(

a, un−2
1 , c

)

+
= c, therefore a ≪u c. �

Furthermore, if A is minimal P.O.n − M , then this last property (ii) characte-
rizes antisymmetry.

Proposition 2.4. The following condition on a semicommutative n−monoid with
unit un−1

1 are equivalent
(i) If a 4 b and b ≪u c in A, then a ≪u c;
(ii) If a 4 b and b 4 a in A, then a = b.

Proof. Assume (i) and let a 4u b and b 4u a. Then there exist elements x and y
in A satisfying

(

aun−2
1 x

)

+
= b and

(

bun−2
1 y

)

+
= a.

Thus

a = ((aun−2
1 x)+un−2

1 y)+ = ((xun−2
1 a)+un−2

1 y)+ =

= (xun−2
1 , (a, un−2

1 , y)+)+ = (xun−2
1 , (y, un−2

1 , a)+)+ =

= ((x, un−2
1 , y)+, un−2

1 , a)+

so (x, un−2
1 , y)+ ≪u a. But x 4u

(

xun−2
1 y

)

+
and by (i), this implies that x ≪u a.

Therefore a =
(

a un−2
1 x

)

+
= b.

Now, conversely, assume (ii) and let a 4u b and b ≪u c in A. Then there exists
an element x of A satisfying

(

aun−2
1 x

)

+
= b so,

((aun−2
1 c)+un−2

1 , x)+ = ((aun−2
1 x)+un−2

1 c)+ = (bun−2
1 c)+ = c,
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proving that
(

aun−2
1 c

)

4 c. But c 4
(

aun−2
1 c

)

+
and so, by (ii), we have

c =
(

aun−2
1 c

)

+
, proving that a ≪ c. �

Remark 2.6. If (A, ()+) is an n−group, then the relations (1) and (2) are the
coarse preordering A × A.

The connection between the above relations and Wehrung’s is given by

Proposition 2.5. If (A, ()+, un−1
1 ) is an semicommutative n-monoid, a, b ∈ A,

then in the (redu
n−2

1

A,+, un−1) we have:

a 4 b ⇔ (∃ c ∈ A); a + c = b
a ≪u b ⇔ a + b = b.

The following proposition describes so-called the right and left cone (cf. Fuchs

[3]), i.e. the set Kr(a)
def
= {x; a ≤ x}, respectively Kl(a)

def
= {x;x ≤ a}. For exam-

ple, if (A, ()+, un−1,≤) is an positively ordered n-monoid then Kr(un−1) = A and
{vn−1; v

n−1
1 ∈ U(A)} ⊆ Kl(un−1).

Proposition 2.6. Let
(

A, ()+,≤, un−1
1

)

be a positively ordered n-monoid. Then
(Kr(a), ()+) and (Kl(a), ()+) are sub-n-semigroups of the n-monoid (A, ()+) if and

only if a ≤ (
(n)
a )+ respectively (

(n)
a )+ ≤ a.

Proof. Let a ≤ (
(n)
a )+ be. For every sequence xn

1 ∈ Kr(a) we have a ≤ xi;

i = 1, n. Hence, by Remark 2.1 we conclude that a ≤ (
(n)
a )+ ≤ (xn

1 )+. Whence,
by transitivity of ≤, we have a ≤ (xn

1 )+, i.e. (xn
1 )+ ∈ Kr(a). So Kr(a) is a

sub-n-semigroup of the n-monoid (A, ()+).
Assume now that Kr(a) is a sub-n-semigroup pf (A, ()+). Because a ∈ Kr(a),

it follows that (
(n)
a )+ ∈ Kr(a), whence a ≤ (

(n)
a )+. �
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