CARPATHIAN J. MATH. **20** (2004), No. 1, 87 - 94

On some relations on *n*-monoids

MARIA S. POP and ADINA POP

ABSTRACT. In this paper we introduce the notion of *n*-monoid, n > 2, and we generalize for n-monoids two relations defined by F. Wehrung on the binary case. These relations can be interpreted as a "distance" between a n-monoid and the set of n-groups.

1. Preliminary notions about *n*-monoids

Wehrung [8] have studied the injective positively ordered monoids and defined two relations on the elements of a monoid, one preordering relation and other transitive and antisymmetric only. Later, Golan [4] have studied this relations for semirings with applications in computer science.

In this paper we define the notions of *n*-monoid, n > 2, positively ordered n-monoid and we generalize for n-monoids the relations defined by Wehrung [8]. The connections between the monoids and n-monoids, n > 2 and between the generalized relations we defined and Wehrung's are investigated, too.

Here we will often write a_i^j instead of $a_i, a_{i+1}, ..., a_j$, if $i \leq j$ and $a^{(k)}$ for $a, a, ..., a_j$ (k times). By a_i^j with i > j we mean the empty sequence.

A set A together with an *n*-ary operation $()_+ : A^n \to A$ is called *n*-semigroup if for any $k \in \{1, 2, ..., n\}$ and for all $a_1^{2n-1} \in A$ we have:

$$((a_1^n)_+, a_{n+1}^{2n-1})_+ = (a_1^k, (a_{k+1}^{k+n})_+, a_{k+n+1}^{2n-1})_+.$$

The sequence u_1^{n-1} is called the right (left) unit as system of elements if for all $x \in A$ holds $(x, u_1^{n-1})_+ = x$ (respectively $(u_1^{n-1}, x)_+ = x$).

An n - group [2] is an *n*-semigroup in which for all $a_1^n \in A$, the equations

 $(a_1^{i-1}, x, a_{i+1}^n)_+ = a_i; i \in \{1, 2, ..., n\}$ have an unique solution in A. An *n*-semigroup (*n*-group) is called *semicommutative* if for all $a_1^n \in A$ we have $(a_1, a_2^{n-1}, a_n)_+ = (a_n, a_2^{n-1}, a_1)_+$ and *commutative* if $\forall \sigma \in S_n, (a_1^n)_+ = (a_{\sigma(1)}^{\sigma(n)})_+$. An *n*-semigroup is called *medial* if for all $a_{i1}^{in} \in A$; $i = \overline{1, n}$ the following relation holds

$$((a_{11}^{1n})_+, (a_{21}^{2n})_+, \dots, (a_{n1}^{nn})_+)_+ = ((a_{11}^{n1})_+, (a_{12}^{n2})_+, \dots, (a_{1n}^{nn})_+)_+.$$

Any *n*-semigroup commutative is semicommutative and any *n*-semigroup semicommutative is medial [2].

An n-semigroup is called *cancellative* if for all

$$a, b, c_1^n \in A; (c_1^{i-1}, a, c_{i+1}^n)_+ = (c_1^{i-1}, b, c_{i+1}^n)_+ \Rightarrow a = b, \ i \in \{1, 2, ..., n\}$$

Received: 26.09.2004; In revised form: 12.01.2005

²⁰⁰⁰ Mathematics Subject Classification. 20N15, 06F99.

Key words and phrases. n-monoid, positively ordered n-monoid, reducing the n-monoid to monoid.

Maria S. Pop and Adina Pop

Definition 1.1. An n-semigroup is called an n-monoid if there is at least one sequence $u_1^{n-1} \in A$ so called the unit of the *n*-monoid, such that

$$\forall x \in A, (x, u_1^{n-1})_+ = x = (u_{n-1}, u_1^{n-2}, x)_+$$

Therefore the sequence u_1^{n-1} is the right unit and $u_{n-1}u_1^{n-2}$ is left unit as system of elements. Because this unit is not necessary unique, let U(A) be the set of units of the *n*-monoid $(A, ()_+)$. If in the sequel it is necessarily to specify the unit u_1^{n-1} , we denote the monoid by $(A, ()_+, u_1^{n-1})$.

Remark 1.1. A semicommutative *n*-semigroup with *a* right unit is an *n*-monoid. Any *n*-group is an *n*-monoid.

Proposition 1.1. If $u_1^{n-1} \in A$ is an unit of the n-monoid $(A, ()_+)$, then u_1^{n-1} is left unit and $u_{n-1}u_1^{n-2}$ is right unit too.

Proof. Indeed, if u_1^{n-1} is an unit, i.e. u_1^{n-1} is right unit and $u_{n-1}u_1^{n-2}$ is a left unit of the *n*-monoid $(A, ()_+)$, then for all $x \in A$ we have

$$(u_1^{n-1}, x)_+ = (u_{n-1}u_1^{n-2}(u_1^{n-1}, x)_+)_+ = (u_{n-1}u_1^{n-3}(u_{n-2}u_1^{n-1})_+, x)_+ = = (u_{n-1}u_1^{n-3}u_{n-2}, x)_+ = (u_{n-1}u_1^{n-2}, x)_+ = x,$$

i.e. u_1^{n-1} is a left unit. Also

$$(x, u_{n-1}u_1^{n-2})_+ = ((x, u_{n-1}u_1^{n-2})_+u_1^{n-1})_+ = (x, (u_{n-1}u_1^{n-2}u_1)_+, u_2^{n-1})_+ = (x, u_1, u_2^{n-1})_+ = (x, u_1^{n-1})_+ = x,$$

i.e. $u_{n-1}u_1^{n-2}$ is a right unit.

Example

1. The set $\mathbb N$ respectively $\mathbb Z$ with the $(2n+1)\text{-}\mathrm{ary}$ operation, $n\in\mathbb N^ast$

$$(k_1, k_2, \dots, k_{2n+1})_+ = k_1 - k_2 + k_3 - \dots + k_{2n+1}$$

is a semicommutative (2n+1)-monoid with the units $\overset{(2n)}{a}$, $\forall a \in \mathbb{N}$, respectively (2n+1)-group.

2. The set $A = \mathbb{N} \times \mathbb{N}$ with ternary operation $()_+ : A^3 \to A$,

$$((x_1, y_1), (x_2, y_2), (x_3, y_3))_+ = (x_1y_2x_3, y_1x_2y_3)$$

is a semicommutative 3-monoid with unit (1,1)(1,1), while the set $B = \mathbb{Z} \times \mathbb{Z}$ together the above operation is a semicommutative 3-monoid with two units (1,1)(1,1) and (-1,-1)(-1,-1).

In [5] we have studied the connections between some n-ary algebraic structure and their corresponding binary structures. If $(A, ()_+)$ is a *n*-semigroup and u_1^{n-2} are fixed elements in A and the binary

operation $+: A^2 \to A$ is defined by

$$x + y = (x, u_1^{n-2}, y)_+,$$

then (A, +) is a semigroup [5]. This semigroup is called the binary reduced to respect to u_1^{n-2} of the *n*-semigroup $(A, ()_+)$. It is denoted by $\operatorname{red}_{u_1^{n-2}} A$.

As a consequence of this result, in the special case of n-monoids the following result holds.

Proposition 1.2. If $(A, ()_+, u_1^{n-1})$ is a n-monoid then its binary reduced to respect to u_1^{n-2} , (A, +) is a monoid with "zero", u_{n-1} .

This monoid is denoted by $(\operatorname{red}_{u_{\cdot}^{n-2}}A, +, u_{n-1})$.

Proposition 1.3. If the n-monoid $(A, ()_+)$ has more than one unit, let u_1^{n-1} and v_1^{n-1} be two units, then the binary reduces $(red_{u_1^{n-2}}A, +, u_{n-1})$ and $(red_{v_1^{n-2}}A, *, v_{n-1})$ are isomorphic.

Proof. Indeed, if $u_1^{n-1}, v_1^{n-1}, u_{n-1}u_1^{n-2}, v_{n-1}v_1^{n-2}$ are left and right unit, then the map $f: A \to A$ defined by $f(x) = (v_{n-1}, x, u_1^{n-2})_+$ is an unitary homomorphism of the monoids $(\operatorname{red}_{u_1^{n-2}}A, +, u_{n-1})$ and $(\operatorname{red}_{v_1^{n-2}}A, *, v_{n-1})$. To see this we notice that

$$f(u_{n-1}) = (v_{n-1}, u_{n-1}, u_1^{n-2})_+ = v_{n-1}$$

and for all $x, y \in A$ we have

$$\begin{aligned} f(x+y) &= (v_{n-1}, x+y, u_1^{n-2})_+ = (v_{n-1}, (x, u_1^{n-2}, y)_+, u_1^{n-2})_+ = \\ &= (((v_{n-1}, x, u_1^{n-2})_+, v_1^{n-1})_+, y, u_1^{n-2})_+ = \\ &= ((v_{n-1}, x, u_1^{n-2})_+, v_1^{n-2}, (v_{n-1}, y, u_1^{n-2})_+)_+ = \\ &= (f(x), v_1^{n-2}, f(y))_+ = f(x) * f(y). \end{aligned}$$

Moreover f is one-to-one, because f(x) = f(y) implies

$$(v_{n-1}, x, u_1^{n-2})_+ = (v_{n-1}, y, u_1^{n-2})_+$$

from where by Proposition 1.1 we have

$$(v_1^{n-2}, (v_{n-1}, x, u_1^{n-2})_+, u_{n-1})_+ = (v_1^{n-2}, (v_{n-1}, y, u_1^{n-2})_+, u_{n-1})_+,$$
 or
$$((v_1^{n-1}, x)_+, u_1^{n-1})_+ = ((v_1^{n-1}, y)_+, u_1^{n-1})_+,$$

that is x = y.

The map f is surjective, for any $y \in A$ there is $x = (v_1^{n-2}, y, u_{n-1})_+ \in A$ such that f(x) = y.

Therefore f is a monoids isomorphism.

An other approache for reducing an *n*-semigroup to a semigroup is the following construction [5]:

Let $(A, ()_{+})$ be an *n*-semigroup with right unit u_1^{n-1} . If on $G = \bigcup_{i=1}^{n-1} A^i$ is defined the relation

$$a_{1}^{i}\rho a_{1}^{\prime i} \Leftrightarrow \left(u_{i}^{n-1}a_{1}^{i}\right)_{+} = \left(u_{i}^{n-1}a_{1}^{\prime i}\right)_{+} \Leftrightarrow \left(x_{1}^{n-i}a_{1}^{i}\right)_{+} = \left(x_{1}^{n-i}a_{1}^{\prime i}\right)_{+},$$

for all $x_1^i \in A$, then ρ is a equivalence relation. Let $\begin{bmatrix} a_1^i \end{bmatrix} = \rho(a_1^i)$. Obviously that $\begin{bmatrix} u_1^{n-1} \end{bmatrix} = \{v_1^{n-1}, (x, v_1^{n-1})_+ = x, \forall x \in A\}$, is the class of all right unit as system of elements. Moreover, if on G/ρ we define

the binary operation:

$$\begin{bmatrix} a_1^i \end{bmatrix} \cdot \begin{bmatrix} b_1^j \end{bmatrix} = \begin{cases} \begin{bmatrix} a_1^i b_1^j \end{bmatrix}, & \text{if } i+j < n \\ \begin{bmatrix} a_1^{i+j-n} \left(a_{i+j-n+1}^i b_1^j \right)_+ \end{bmatrix}, & \text{if } i+j \ge n, \end{cases}$$

then G/ρ is a monoid with unit $[u_1^{n-1}]$. For all $a_1^n \in A$ we have $[(a_1 \dots a_n)_+] = [a_1] \cdot [a_2] \cdot \dots \cdot [a_n]$. The set $A_0 = A^{n-1}/\rho$ is a submonoid of G/ρ .

Moreover, if $(A, ()_{+})$ is a semicommutative *n*-group, then A_0 is a invariant commutative submonoid. To see this we notice that for all $[x_1^i] \in G/\rho$ and $\begin{bmatrix} a_1^{n-1} \end{bmatrix} \in A_0$, we have

$$[x_1^i] \cdot [a_1^{n-1}] = [x_1^{i-1}(x_i a_1^{n-1})_+] = [x_1^{i-1}(a_{n-1}a_1^{n-2}x_i)_+] = = [x_1^{i-2}a_{n-2}(a_{n-1}a_1^{n-3}x_{i-1}^i)_+] = \dots = [a_{n-i}^{n-2}, (a_{n-1}a_1^{n-i-1}x_1^i)_+] = [a_{n-i}^{n-1}a_1^{n-i-1}] \cdot [x_1^i].$$

The two methods of reducing the n-monoids to monoids are not independent:

Proposition 1.4. If $(A, ()_+)$ is a n-semigroup with right unit u_1^{n-1} , then the reduced to respect to u_1^{n-2} of $(A, ()_+)$, $(red_{u_1^{n-2}}A, +, u_{n-1})$ is isomorphic to submonoid A_0 of G/ρ if and only if $u_{n-1}u_1^{n-2}$ is left unit in $(A, ()_+)$, that is $(A, ()_+)$ is a n-monoid.

The proof for n-semigroup is given in [5].

This result justifies our definition for an *n*-monoid, as an *n*-semigroup for which there is at least one system of (n-1) elements u_1^{n-1} such that it is right unit and $u_{n-1}u_1^{n-2}$ is a left unit.

2. Positively ordered *n*-monoids and some relations on the n-MONOIDS

We generalize for n-monoid the notion of positively ordered monoid defined in [8]:

Definition 2.1. Positively ordered *n*-monoid (from now on P.O. n - M) is a structure

$$\mathbf{A} = (A, ()_+, U(A), \leq)$$

such that:

 O_1 . $(A, ()_+, U(A))$ is a semicommutative *n*-monoid;

 $O_2.~(A,\leq)$ is a partially preordered set under a relation " \leq " and for every unit $u_1^{n-1} \in U(A)$ holds

$$u_{n-1} \leq a$$
, for all $a \in A$.

 O_3 . If a, b are elements of A, then $a \leq b$ implies

(*)
$$(c_1^{i-1}, a, c_{i+1}^n)_+ \le (c_1^{i-1}, b, c_{i+1}^n)_+, \text{ for all } c_1^n \in A, i = 1, 2, ..., n.$$

Proposition 2.1. The condition O_3 is fulfilled if the relations (*) hold only for i = 1 and i = 2.

90

Proof. Indeed, if $a \leq b$ implies $(a, c_2^n)_+ \leq (b, c_2^n)_+$ and $(c_1, a, c_3^n)_+ \leq (c_1, b, c_3^n)_+$ for all $c_1^n \in A$, then $(c_2, a, u_1^{n-2}) \leq (c_2, b, u_1^{n-2})_+$ and

$$(c_1, c_2, a, c_4^n)_+ = (c_1, c_2, (a, u_1^{n-1})_+, c_4^n)_+ = (c_1, (c_2, a, u_1^{n-2})_+, u_{n-1}, c_4^n)_+ \le \le (c_1, (c_2, b, u_1^{n-2})_+, u_{n-1}, c_4^n)_+ = (c_1, c_2, (b, u_1^{n-1})_+, c_4^n)_+ = (c_1, c_2, b, c_4^n)_+.$$

$$= (c_1, (c_2, c_3, \omega_1)) + (\omega_1 - 1, c_4) + (c_1, c_2, (c_3, \omega_1)) + (c_4) + (c_1, c_2, c_3, \omega_4)$$

By induction if the relation (*) hold for i = 1, 2, ..., k-1, then it holds for k too, $k=3,\ldots,n.$

Remark 2.1. Using the transitivity of the relation \leq , from O_3 it follows straight forward that if $a_i \leq b_i$ for all $i = \overline{1, n}$ we have $\left(a_{\sigma(1)}^{\sigma(n)}\right)_+ \leq \left(b_{\sigma(1)}^{\sigma(n)}\right)_+$ for arbitrary permutation σ of the set $\{1, 2, ..., n\}$.

Remark 2.2. If in the *n*-monoid $(A, ()_+, u_1^{n-1})$ the cancellation laws hold, we immediately obtain a partial converse of O_3 .

If $(c_1^{i-1}, a, c_{i+1}^n)_+ \leq (c_1^{i-1}, b, c_{i+1}^n)_+$ and $a \neq b$, then a < b, or a and b are incomparable.

Note that in the case n = 2, **A** is a positively ordered monoid in the sense of Wehrung.

Remark 2.3. If $(A, ()_+, U(A), \leq)$ is a P.O. *n*-M. and $u_1^{n-1} \in U(A)$, then $(\operatorname{red}_{u_1^{n-2}}A, +, u_{n-1}, \leq)$ is a positively ordered monoid.

If in Definition 2.1 we replace O_2 by

 O'_2 . (A, \leq) is an ordered set under relation \leq ,

then \mathbf{A} is called a partially ordered *n*-monoid.

The notion of partially ordered n-groups is defined and studied by Crombez [1] and studied by Ušan [6], [7], too.

In what it follows we generalize in the case of the n-monoids some relations, defined by Wehrung [8] on the binary case.

Definition 2.2. Let $(A, ()_+, u_1^{n-1})$ be an *n*-monoid and $a, b \in A$. We define the following relations:

- (1) $a \preccurlyeq b \Leftrightarrow (\exists x_1^{n-1} \in A)((a, x_1^{n-1})_+ = b);$ (2) $a \ll b \Leftrightarrow (\exists x_1^{n-2} \in A)((a, x_1^{n-2}, b)_+ = b);$ (3) $a \preccurlyeq_u b \Leftrightarrow (\exists x \in A)((a, u_1^{n-2}, x)_+ = b);$ (4) $a \ll_u b \Leftrightarrow (a, u_1^{n-2}, b)_+ = b.$

Remark 2.4. The above relations is not independent. So

 $a \ll_u b \Rightarrow a \ll b \Rightarrow a \preccurlyeq b \Rightarrow a \preccurlyeq_u b \Rightarrow a \preccurlyeq_b,$

i.e. the two relations (1) and (3) are the same.

The first two implications are obviously. If $a \preccurlyeq b$, then there is $x_1^{n-1} \in A$ such that $(a, x_1^{n-1})_+ = b$, hence

$$b = \left(\left(a, u_1^{n-1} \right)_+, x_1^{n-1} \right)_+ = \left(a, u_1^{n-2}, \left(u_{n-1}, x_1^{n-1} \right)_+ \right)_+ \quad \text{and} \quad a \preccurlyeq_u b.$$

Conversely, if $a \preccurlyeq_u b$ there is $x \in A$ such that $(a, u_1^{n-2}, x)_{\perp} = b$, hence $a \preccurlyeq b$. Therefore $a \preccurlyeq b \iff a \preccurlyeq_u b$.

As a consequence the following holds

Maria S. Pop and Adina Pop

Remark 2.5. If v_1^{n-1} is other unit of the *n*-monoid $(A, ()_+, u_1^{n-1})$, then

$$a \preccurlyeq_u b \Leftrightarrow a \preccurlyeq_v b$$

Proposition 2.2. 1°. If $(A, ()_+, u_1^{n-1})$ is a semicommutative *n*-monoid, then $(A, ()_+, u_1^{n-1}, \preccurlyeq)$ is a P.O. n - M.

We will call the relation \preccurlyeq the minimal or canonical preordering.

2°. The relation (2) " \ll " is not necessarily reflexive but it is transitive and compatible with the n-ary operation.

If for all $a \in A$ there are $x_1^{n-2} \in A$; $(a, x_1^{n-2}, a)_+ = a$, then $(A, ()_+, u_1^{n-1}, \ll)$ is P.O. n - M.

3°. A necessary and sufficient condition for that the relation (4) " \ll_u " to be a partial ordered is

$$\forall a \in A, \ \left(a, \ u_1^{n-2} \ a\right)_+ = a.$$

Proof. 1° O_1 . From $(a \ u_1^{n-1})_+ = a$, $\forall a \in A$, we have $a \preccurlyeq a$, i.e., the relation is reflexive. This relation is transitive too: $a \preccurlyeq b$ and $b \preccurlyeq c$ implies $\exists x_1^{n-1} \in A$; $(a, x_1^{n-1})_+ = b$ and $\exists y_1^{n-1} \in A$; $(b, y_1^{n-1})_+ = c$, hence $(a x_1^{n-2} (x_{n-1}, y_1^{n-1})_+)_+ = c$, at where $a \preccurlyeq c$. Moreover:

 O_2 . For any $a \in A$, $(u_{n-1}u_1^{n-2}a)_+ = a$ implies $u_{n-1} \preccurlyeq a$;

 O_3 . If $a \preccurlyeq b$, then $\exists x_1^{n-1} \in A$ such that $(a, x_1^{n-1})_+ = b$.

Then for all $c_1^n \in A$ and $i = \overline{1, n}$ by semicommutativity and associativity of n-ary operation we obtain:

$$\left(c_{1}^{i-1}, b, c_{i+1}^{n}\right)_{+} = \left(c_{1}^{i-1}, (a, x_{1}^{n-1})_{+}, c_{i+1}^{n}\right)_{+} = \left(\left(c_{1}^{i-1}, a, c_{i+1}^{n}\right)_{+}, x_{n-i+1}^{n}x_{1}^{n-i}\right)_{+}.$$

From this result $(c_1^{i-1}, a, c_{i+1}^n)_+ \preccurlyeq (c_1^{i-1}, b, c_{i+1}^n)_+.$

2°. The transitivity is immediately. Let now $a_i \ll b_i$ be $i = \overline{1, n}$, i.e. there are $x_{i1}^{i,n-2} \in A$, $i = \overline{1, n}$, such that $(a_i, x_{i1}^{i,n-2}, b_i)_+ = b_i$. Because the *n*-ary operation is semicommutative it is medial and

$$(b_1^n)_+ = ((a_1, x_{11}^{1,n-2}, b_1)_+, \dots, ((a_n, x_{n1}^{n,n-2}, b_n)_+)_+) = ((a_1^n)_+, (x_{11}^{n1})_+, \dots, (x_{1,n-2}^{n,n-2})_+, (b_1^n)_+)_+$$

whence $(a_1^n)_+ \ll (b_1^n)_+$.

The relation (2) is not necessarily reflexive. If for

$$\forall a \in A \exists x_1^{n-2} \in A; (a, x_1^{n-2}, a)_+ = a,$$

then $(A, ()_+, u_1^{n-1}, \ll)$ is a P.O.n - M.

3°. If $a \ll_u b$ and $b \ll_u a$, we have $(a u_1^{n-2}b)_+ = b$ and $(b u_1^{n-2}a)_+ = a$. By semicommutivity of *n*-ary operation we have a = b. From $a \ll_u b$ and $b \ll_u c$ result

$$c = \left(b \, u_1^{n-2} c\right) = \left(\left(a \, u_1^{n-2} b\right)_+ u_1^{n-2} c\right)_+ = \left(a \, u_1^{n-2} \left(b \, u^{n-2} c\right)_+\right)_+ = \left(a \, u_1^{n-2} c\right)_+,$$

hence $a \ll_u c$. Then the relation (4) is an orderer relation if and only if for all $a \in A$ we have $(a u_1^{n-2} a)_+ = a$.

92

We remark that the relation \preccurlyeq is a preorder but not necessarily a partial order on A. A sufficient condition for it to be a partial order is that $((a u_1^{n-2}, x)_+ u_1^{n-2}, y)_+ = a$ imply $(a u_1^{n-2}, x)_+ = a$, for all $a, x, y \in A$. If the relation \preccurlyeq is a partial order on A, then analogous binary case we say that the *n*-monoid A is difference ordered. The 3-monoid, $(A, ()_+)$ from example 2, has this property, but the 3-monoid $(B, ()_+)$ has not this property. Of course, if $a \preccurlyeq b$, then the elements $x_1^{n-1} \in A$ satisfying $(a x_1^{n-1})_+ = b$ need not be unique.

The following statements generalize the results of F. Wehrung [7] from the binary in the *n*-ary, $n \ge 2$, case.

Proposition 2.3. Let $(A, ()_+, u_1^{n-1}, \leq)$ be a P.O.n – M. Then

- (i) If **A** is minimal, then $a \ll b$ and $b \preccurlyeq c$ implies $a \ll c$;
- (ii) If the relation " \leq " is antisymmetric, then $a \leq b$ and $b \ll_u c$ implies $a \ll_u c$.

Proof. (i) The relation $b \preccurlyeq c$ implies that there are $x_1^{n-1} \in A$ such that $(b, x_1^{n-1})_+ = c$. From $a \ll b$ that are $y_1^{n-2} \in A$ such that $(ay_1^{n-2}b)_+ = b$. Then

$$c = (bx_1^{n-1})_+ = \left((ay_1^{n-2}b)_+ x_1^{n-1} \right) = \left(ay_1^{n-2} (bx_1^{n-1})_+ \right)_+ = (ay_1^{n-2}c)$$

and $a \ll c$.

(ii) Because $(b, u_1^{n-2}, c)_+ = c$ and **A** is P.O. n - M, the relation $a \le b$ implies $(a, u_1^{n-2}, c)_+ \le (b, u_1^{n-2}, c)_+$, hence $(a, u_1^{n-2}, c)_+ \le c$. But, by reflexivity of the relation \le , from $u_{n-1} \le a$; $c \le c$; $u_i \le u_i$; $i = \overline{1, n-2}$ we have

$$c = \left(u_{n-1}u_1^{n-2}c\right)_+ \le \left(a\,u_1^{n-2}c\right)_+$$

By antisymmetry of relation " \leq " results $(a, u_1^{n-2}, c)_+ = c$, therefore $a \ll_u c$. \Box

Furthermore, if A is minimal P.O.n - M, then this last property (*ii*) characterizes antisymmetry.

Proposition 2.4. The following condition on a semicommutative n-monoid with unit u_1^{n-1} are equivalent

(i) If $a \preccurlyeq b$ and $b \ll_u c$ in A, then $a \ll_u c$;

(ii) If $a \preccurlyeq b$ and $b \preccurlyeq a$ in A, then a = b.

Proof. Assume (i) and let $a \preccurlyeq_u b$ and $b \preccurlyeq_u a$. Then there exist elements x and y in A satisfying $(au_1^{n-2}x)_+ = b$ and $(bu_1^{n-2}y)_+ = a$.

Thus

$$a = ((au_1^{n-2}x)_+u_1^{n-2}y)_+ = ((xu_1^{n-2}a)_+u_1^{n-2}y)_+ =$$

= $(xu_1^{n-2}, (a, u_1^{n-2}, y)_+)_+ = (xu_1^{n-2}, (y, u_1^{n-2}, a)_+)_+ =$
= $((x, u_1^{n-2}, y)_+, u_1^{n-2}, a)_+$

so $(x, u_1^{n-2}, y)_+ \ll_u a$. But $x \preccurlyeq_u (x u_1^{n-2} y)_+$ and by (i), this implies that $x \ll_u a$. Therefore $a = (a u_1^{n-2} x)_+ = b$.

Now, conversely, assume (ii) and let $a \preccurlyeq_u b$ and $b \ll_u c$ in A. Then there exists an element x of A satisfying $(au_1^{n-2}x)_{\perp} = b$ so,

$$((au_1^{n-2}c)_+u_1^{n-2},x)_+ = ((au_1^{n-2}x)_+u_1^{n-2}c)_+ = (bu_1^{n-2}c)_+ = c,$$

Maria S. Pop and Adina Pop

proving that $(au_1^{n-2}c) \preccurlyeq c$. But $c \preccurlyeq (au_1^{n-2}c)_+$ and so, by (ii), we have $c = (au_1^{n-2}c)_+$, proving that $a \ll c$.

Remark 2.6. If $(A, ()_+)$ is an *n*-group, then the relations (1) and (2) are the coarse preordering $A \times A$.

The connection between the above relations and Wehrung's is given by

Proposition 2.5. If $(A, ()_+, u_1^{n-1})$ is an semicommutative n-monoid, $a, b \in A$, then in the $(red_{u_1^{n-2}}A, +, u_{n-1})$ we have:

$$a \preccurlyeq b \Leftrightarrow (\exists c \in A); a + c = b$$

 $a \ll_u b \Leftrightarrow a + b = b.$

The following proposition describes so-called the right and left cone (cf. Fuchs [3]), i.e. the set $K_r(a) \stackrel{\text{def}}{=} \{x; a \leq x\}$, respectively $K_l(a) \stackrel{\text{def}}{=} \{x; x \leq a\}$. For example, if $(A, ()_+, u_{n-1}, \leq)$ is an positively ordered *n*-monoid then $K_r(u_{n-1}) = A$ and $\{v_{n-1}; v_1^{n-1} \in U(A)\} \subseteq K_l(u_{n-1})$.

Proposition 2.6. Let $(A, ()_+, \leq, u_1^{n-1})$ be a positively ordered n-monoid. Then $(K_r(a), ()_+)$ and $(K_l(a), ()_+)$ are sub-n-semigroups of the n-monoid $(A, ()_+)$ if and only if $a \leq \binom{(n)}{a}_+$ respectively $\binom{(n)}{a}_+ \leq a$.

Proof. Let $a \leq {\binom{n}{a}}_+$ be. For every sequence $x_1^n \in K_r(a)$ we have $a \leq x_i$; $i = \overline{1, n}$. Hence, by Remark 2.1 we conclude that $a \leq {\binom{n}{a}}_+ \leq (x_1^n)_+$. Whence, by transitivity of \leq , we have $a \leq (x_1^n)_+$, i.e. $(x_1^n)_+ \in K_r(a)$. So $K_r(a)$ is a sub-*n*-semigroup of the *n*-monoid $(A, ()_+)$.

Assume now that $K_r(a)$ is a sub-*n*-semigroup pf $(A, ()_+)$. Because $a \in K_r(a)$, it follows that $\binom{(n)}{a}_+ \in K_r(a)$, whence $a \leq \binom{(n)}{a}_+$.

References

- Crombez, G., On a partially ordered n-groups, Abhandhungen ans dem Math.-Sem. der Univ. Hamburg, 39 (1973), 141-146
- [2] Dörnte, W., Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1-19
- [3] Fucs, L., Partially oredered algebraic systems, Pergamon Press, Oxford, 1963
- [4] Golan, J., Power Algebras over Semirings with Applications in Mathematics and Computer Science, Kluwer Acad. Publ., 488
- [5] Pop S. Maria, Contribuții la teoria n-semigrupurilor, Teză de doctorat, Univ. "Babeş Bolyai", Cluj-Napoca, 1979
- [6] Ušan, J., Žižović, M., On ordered n-groups, Quasigroups and Related Systems, 4 (1997), 77-87
- [7] Ušan, J., n-Groups in the light of the neutral operations, Mathematica Moravica, Monograph, Special vol. (2003), 59-65
- [8] Wehrung, F., Injective positively ordered monoids I, Journal Pure and Applied Algebra, 83 (1992), 43-82

NORTH UNIVERSITY OF BAIA MARE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE VICTORIEI 76, 430122 BAIA MARE, ROMANIA *E-mail address:* mspop@ubm.ro *E-mail address:* adina@ubm.ro

94