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A quadratic programming method for saddle
point formulations in contact problems with
friction

NICOLAE POP and IOANA ZELINA

Abstract. The paper is concerned with the numerical solution of the quasi-variational in-
equality modelling a contact problem with Coulomb friction. After discretization of the problem
by mixed finite elements and with Lagrangian formulation of the problem by choosing appropri-
ate multipliers, the duality approach is improved by splitting the normal and tangential stresses.

The novelty of our approach in the present paper consists in the splitting of the normal stress and
tangential stress, which leads to a better convergence of the solution, due to a better conditioned
stiffness matrix. This better conditioned matrix is based on the fact that these blocks diagonal

matrices obtained, contain coefficients of the same size order. For the saddle point formulation
of the problem, using static condensation, we obtain a quadratic programming problem. We use
Gauss-Seidel iterations to approximate the solution of this problem.

1. Variational formulations of contact problems with Coulomb

friction

Consider a linear elastic body that occupies a domain Ω ⊂ R
2, with a Lipschitz

boundary Γ. Let Γ0, Γ1 and ΓC be open and disjoint parts of Γ which do not
depend on time such that Γ = Γ0 ∪ Γ1 ∪ ΓC .

Assume that the body is subjected to volume forces of density F ∈ (L2(Ω))2,
to surface traction of density T ∈ (L2(Γ1))

2 and is held fixed on Γ0. The ΓC

denotes a contact part of boundary where unilateral contact and Coulomb friction
conditions between Ω and perfectly rigid foundation are considered. Supposing
that a positive coefficient Φ of Coulomb friction is given, we introduce the space
of virtual displacements

V =
{

v ∈ (H1(Ω))2|v = 0 on Γ0

}

and its convex subset of kinematically admissible displacements

K = {v ∈ V |vn ≡ v · n ≤ d on ΓC}.

Here, d ∈ C(Γ̄C), d ≥ 0 is an initial gap between the body and the rigid
foundation and n ∈ (L∞(ΓC))2 denotes the outer unit normal vector to boundary
Γ.

We assume that the normal force on ΓC is known so that one can evaluate the
non-negative slip bound g ∈ L∞(ΓC) as a product of the friction coefficient and
the normal stress, i.e. g = Φλ1, when λ1 is the normal count stress.
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The primal variational formulation of the contact problem with given friction
is:

(P1) Find u ∈ K such that J(u) = min
v∈K

J(v).

The minimized functional representing the total potential energy of the body
has the form:

J(v) =
1

2
a(v, v) − L(v) + j(v)

where:

- the bilinear form

a(v, w) =

∫

Ω

aijklεij(v)εkl(w)dx

contains the fourth order symmetric tensor aijkl, i, j, k, l = 1, 2, representing the

Hook’s low σij(v) = aijklεkl(v) and linearized strain tensor ε(v) =
1

2
(∇v+∇T v);

- linear functional L is given by:

L(v) =

∫

Ω

Fvdx +

∫

Γ1

Tvds;

- the sublinear functional j is given by:

j(v) =

∫

ΓC

g |vt| ds

where vt ≡ v · t and t ∈ (L∞(ΓC))2 denotes the unit tangent vector to boundary
Γ.

It is known that (P1) is non-differentiable due to the sublinear term j, and has a
unique solution [3].

The primal variational formulation (P1) is equivalent to the quasi-variationl
inequality:

(P2) Find u ∈ K such that a(u, v − u) + j(v − u) ≥ (L, u − v) ∀v ∈ K.

The existence and uniqueness of the solution of this quasi-variational inequality
are proven under the assumption the Φ is sufficiently small and mes(Γ0) > 0 [1].

The Lagrangian formulation of the problem (P1) is given by:
L : V × Λ1 × Λ2 →R, and

L(v, µ1, µ2) =
1

2
a(v, v) − L(v) + 〈µ1, vn − d〉 +

∫

ΓC

µ2vtds

where Λ1 = {µ1 ∈ H−
1

2 (ΓC)|µ1 ≥ 0} , Λ2 = {µ2 ∈ L∞(ΓC)| |µ2| ≤ g on ΓC}.

The space H−
1

2 (ΓC) is the dual of

H
1

2 (ΓC) = {h ∈ L2(ΓC)| ∃v ∈ V s.t. h = vn on ΓC}

and the ordering µ1 ≥ 0 means, in the variational form, that: 〈µ1, vn − d〉 ≤

0, ∀ v ∈ K, where 〈·, ·〉 denotes the duality pairing between H−
1

2 (ΓC) and H
1

2 (ΓC).

Since L2(ΓC) is dense in H−
1

2 (ΓC), the duality pairing 〈·, ·〉 is represented by the
scalar product in L2(ΓC).

The Lagrange multipliers µ1, µ2 are considered as functional on the part of the
boundary Γ. It is important that the Lagrange multipliers do have mechanical
significance: while the first one counts for the non-penetration conditions and
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represents the normal stress, the second one removes the non-differentiability of
the sublinear functional

j(v) = sup
µ2∈Λ2

∫

ΓC

µ2vtds

and represents the tangential stress.
The equivalence between the problem (P1) and the lagrangian formulation is

given by:

inf
v∈K

J(v) = inf
v∈V

sup
µ1∈Λ1,µ2∈Λ2

L(v, µ1, µ2).

By the mixed variational formulation of the problem (P1) we mean a saddle
point problem:

find (w, λ1, λ2) ∈ V × Λ1 × Λ2 such that

(P3) L(w, µ1, µ2) ≤ L(w, λ1, λ2) ≤ L(v, λ1, λ2), ∀(v, µ1, µ2) ∈ V × Λ1 × Λ2.

It is known that (P3) has a unique solution [7] and its first component w =
u ∈ K solves (P1) and the Lagrange multipliers λ1, λ2 represent the normal and
tangential contact stress on the contact part of the boundary, respectively.

Remarks.
1o. For the contact problem with Coulomb friction, we use the formula g ≡ Φλ1,

for the slip bound on the contact boundary ΓC , where λ1 ≡ λ1(g) is the normal
stress on ΓC and Φ is the coefficient of friction. Unfortunately this problem cannot
be solved as a convex quadratic programming problem because g is an a priori
parameter in (P3), while λ1 is an a posteriori one.

2o. Because we can consider the mapping Ψ : Λ1 → Λ1, Ψ : g → λ1 ≡ λ1(g)
defined by the second component of the solution for the contact problem with
given friction (P3), the solution of the contact problem with Coulomb friction will
be defined as a fixed point of this maping in Λ1. Results concerning the existence
of fixed points for sufficiently small friction coefficients may be found in [5].

2. Finite element approximations of the contact problems with

Coulomb friction

We suppose that Ω is a polygonal domain with regular triangulation Th that
is consistent with the decomposition of boundary Γ = Γ0 ∪ Γ1 ∪ ΓC . On Th

we consider the classical piecewise linear basis functions {ϕj} defining the finite
element subspace Vh ⊂ V with dimVh = n. We denote by m the number of
contact nodes on ΓC . On ΓC we construct a regular partition TH with the norm
denoted by H independent of the triangulation Th. On TH we consider the space
ΛH of piecewise constant functions with dimΛH = p, and we define the spaces
Λi,H = Λi ∩ ΛH for i = 1, 2.

With this discretization, if we replace the space V by the space Vh , the problem
(P1) becomes:

(P1)
h Find u ∈ Kh such that J(u) = min

v∈Kh

J(v),

where J(v) = 1
2vvv

TKvKvKv − vvvTfff + gggT |TvTvTv| and Kh = {vvv ∈ R
n|NvNvNv ≤ ddd}. Here, we

by denote KKK ∈ R
n×n the positive definite stiffness matrix, fff ∈ R

n is the load
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vector, ggg ∈ R
m is the nodal slip bounds vector for contact nodes. The matrices

N,TN, TN, T ∈ R
m×n contain the rows of the normal and tangential vectors in the contact

nodes, respectively, and ddd ∈ R
n is the vector of distances between the contact

nodes and the rigid foundation.
The matrix form of the Lagrangian for the problem (P1)

h is:

L(vvv,µµµ1,µµµ2) =
1

2
vvvTKKKv − fffT v + µµµT

2 TvTvTv + µµµT
1 (NVNVNV − d)

where µµµ1 ∈ Λ1, µµµ2 ∈ ΛΛΛ2 are the Lagrange multipliers and ΛΛΛ1 = {µµµ1 ∈ R
m|µµµ1 ≥ 000},

ΛΛΛ2 = {µµµ2 ∈ R
m||µµµ2| ≤ ggg}.

The algebraic mixed formulation of (P1)
h is:

Find (vvv,µµµ1,µµµ2) ∈ R
n ×ΛΛΛ1 ×ΛΛΛ2 such that

(2.1) KKKuuu = fff −NNNTλλλ1 − TTTTλλλ2

(2.2) (NNNuuu − ddd)T (λλλ1 −µµµ1) + uuuTTTTT (λλλ2 −µµµ2) ≥ 0, (µµµ1,µµµ2) ∈ ΛΛΛ1 ×ΛΛΛ2.

After computing u from (2.1) and substituting u into (2.2), we obtain the
algebraic dual formulation:

(2.3) min

{

1

2
λλλTAAAλλλ − λλλTBBB

}

s.t. λλλ1 ≥ 0, |λλλ1| ≤ ggg, λλλ = (λλλT
1 ,λλλT

2 )T ,

where

AAA =

(

NNNKKK−1NNNT NNNKKK−1TTTT

TTTKKK−1NNNT TTTKKK−1TTTT

)

and BBB =

(

NNNKKK−1fff − ddd

TTTKKK−1fff

)

.

The problem (2.3) is a quadratic programming problem that can be solved by
several efficient algorithms.

3. Gauss-Seidel algorithm for solving the algebraic dual

formulation

It is known that the matrix A is ill conditioned, and its diagonal blocks cor-
responding to the normal and tangential stress are closely related the dual Schur
complement whose spectrum is not so ill conditioned.

The performance of duality algorithms may be improved if we split the normal
and tangential stress. To exploit this fact, let us introduce a new notation for the
natural block structure of the dual Hessian A and for the matrix B, corresponding
to normal stress, λλλN , and tangential stress λλλT :

AAA =

(

AAA11 AAA12

AAA21 AAA22

)

, BBB =

(

BBB1

BBB2

)

, λλλ =

(

λλλ1

λλλ2

)

.

The Gauss-Seidel algorithm for problem (2.3), constructs a sequence of approx-

imations of λλλ
(i)
NNN and λλλ

(0)
TTT as follows:

Initialize λλλ
(0)
NNN := ggg(0); λλλ

(0)
TTT := 0; iii : 0;

repeat

iii := iii + 1;

λ
(iii)
TTT := (DDD −LLL)−1 · (UUU · λ

(iii−1)
TTT + BBB2) such that |λTTT | ≤ φ · λ

(iii−1)
NNN ;

λ
(iii)
NNN := AAA−1

11 · (BBB1 −AAA12 · λ
(iii)
TTT ) such that λNNN ≥ 0

until |λλλ(i) − λλλ(i−1)| ≤ Tol;
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where Tol is the chosen tolerance, the matrices DDD, −LLL and −UUU represent the diag-
onal, strictly lower triangular and strictly upper triangular parts of SSS, respectively,
with SSS = AAA21AAA

−1
11 AAA12 −AAA22 is the Schur complement of the matrix AAA.

Conclusions. The novelty of our approach in the present paper consists in
the splitting of the normal stress and tangential stress, which leads to a better
convergence of the solution, due to a better conditioned stiffness matrix. This
batter conditioned matrix is based on the fact that these blocks diagonal matrices
obtained, contain coefficients of the same size order.

4. Numerical examples. Contact of a long bar on a plane surface

This example has been considered by Raous [5] and it has the advantage of
being very elementary and that of giving different contact states for given loading
and coefficient of friction.

Table 1. Contact states for different loading cases

µ F
daN/mm2

f
daN/mm2

Separate
part AB mm

Sliding
part BC mm

Stick
part CD mm

1
1
0.2
0.2
0.2

10
15
10
10
10

-5
-5
-5
-15
-25

3.75
5
0
0
0

20
20.75
40
22.5
5

16.25
7.5
0
17.5
35
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