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Order relation on the solutions sets of
Z-conditional Cauchy equations on groups

VASILE POP

ABSTRACT. For a fixed pair of groups (G, o) and (H, %) and for all sets Z C G x G we consider
the Z-conditional Cauchy equations
CZ:f:G*)Hv f(zoy):f(x)*f(y), (I,y)EZ.
We prove that the family of the sets of solutions {S(Cz)|Z C G x G} is a closure-system.
This system is not a sublattice of (P(HS), C) and generally it is not algebraic closure-system.

1. INTRODUCTION

Let (G,0) and (H,*) be two groups. The functions f : G — H which verifies
the relations

(L) flzoy) = fz)* f(y)
for all pairs (x,y) € G x G are group morphisms, f € Hom(G, H). The equation
(1.1) is the functional equation of morphisms or Cauchy equation.

If we look for the functions f which verifies (1.1) only for a subset of points
(z,y) € G x G we obtain other functional equations, which were called ”condi-
tional Cauchy equations” (J. Dhombres [1]) or Cauchy’s functional equations on
restricted domain” (M. Kuczma [5]).

2. MAIN RESULTS

In the paper we shall consider the family of Cauchy conditional equations for
a pair of fixed groups (G, H) and we shall study the order structure of the set of
the solutions, as a subset of the power set of HE.

Definition 2.1. If Z C G x G is a fixed set then the functional equation:
(Cy) : { f:G—H
floy)=f@) fy), (x,y) € Z
is called Z-conditional Cauchy equation or Cauchy equation conditioned by the
set Z.

Remark 2.1. If we denote by S(Cz) the set of the solutions of the equation
(Cz), then for Z = () we have S(Cy) = HE and if Z = G x G then S(Cgxq) =
Hom(G, H).

Let {Z;] ¢ € I} be a family of subsets Z; C G x G and S(Cy,) the set of the
solutions of the equations (Cyg,), i € I.
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Proposition 2.1. For any family Z; C G x G, i € I the following statements
holds:
a) If Zy C Zy then S(Cz,) C S(Cgz,);

b) |JS(Cz) € S(C2);

el
¢) [ 5(Cz,) = S(Cv) where Z = () Z; and U = | J Z;.
i€l i€l i€l

Proof. a) If f € S(Cyz,) then f(zoy) = f(x) * f(y) for every (z,y) € Zy C Z1, it
results f € S(Cgz,).

b)Z=|JZ 2z 4 S(Cs)CS(Cy)icl = |JS(Cs)C SCy).

el el
)2 c(%=U 2 S(Cu)CS(Cpyicl = S(Cy)c()S(Cz).
i€l el
If f € () S(Cz,) then f(zoy) = f(x)* f(y), (x,y) € Zi,i €] = flroy)=
el
F@) % f(y); (@,y) € (Zi=U = feS(Cu). O
el

Remark 2.2. Generally the inclusion from b) is strict, which can be viewed from
the following example:

(G,0) = (H,x) = (R,4+); Z1 =R x[0,00), Zo=Rx(—00,0]
5(Cz,) = 5(Cz,) ={f :R=R| f(z+y) = f(z) + f(v)}
S(Czinz) ={f :R—R| f(0) =0}
Let Z = {S(Cz)| Z C G x G} C P(HY) be the family formed by those subsets

of HY which are solutions of some Z-conditional Cauchy equation.

Theorem 2.1. The set Z form a closure-system on HS of with the closure oper-
ator is J : P(HY) — P(HY) defined by J(F) = S(Cy,), where F C P(HY) an
arbitrary family and the set Ur is

Ur ={(z,y) € G x G| f(xoy) = f(zx) * fly), [ €F}.

Proof. From Proposition 2.1 it follows that the intersection of any family in Z is
in Z, thus Z is a closure system.
If 7 C HY then the closure operator is defined by:

J(F) = {S(Cz)| F € S(C2)}.

We shall assign for each function f € HY the set Uy of the pairs on which f
verifies the relations (1.1).

Let U = {(z,y) €e G x G| f(xoy) = f(x)* f(y)}.
We have f € S(Cz) < Z C Uy, hence

FCS(Cz) & ZCUy feF & ZC (| Up=Ur
feF

Using the definition of J(F) and the relation ¢), from Proposition 2.1 we have:
J(F) =({S8(C2)| Z c Ur} = 8(Cu)
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where
U=|J{Zl Z cUs} =Ur.
Therefore:
Ur = (Us= ({9l flzou) = f(z)* f(y)} =
fer fer

={(z,9) € G x G| f(zoy) = f(z)* f(y), [ €F}
and the proof is complete. O

Remark 2.3. Generally the closure system Z is a complete lattice, but it is not
a sublattice of the lattice (P(H%), C) because it is not closed to the union. For
justification we give the following example:

Example 2.1. Let (G,0) = (H *) = (Zs,+) b
modulo 3 and the sets: Z; = {(0,0)}, Z, = {(1,
We shall show that S(Cz,)US(Cg,) & Z.

We have

(Cz,) ={f : Z3 — Z3| £(0) =0}
S(Cz,) =1{f: Zs — Zs| f(0) =2f(1)}
each of these sets of solutions has 9 elements, hence in the union we have at most
18 elements (it can be established that there are 15 elements).
Because in H® = S(Cj) we have 3% = 27 elements, obviously
5(Cz,) US(Cz,) # S(Cy).
Now we suppose by contradiction that there exists Z C G x G, Z # () such that
S(Cz,)US(Cgz,) = S(Cz). I (x9,y0) € Z, then for every f € S(Cz,)US(Cyz,)

we have f(zo +yo) = f(x0) + f(yo).
Take f1 € S(Cyz,) defined thus: f1(0)

~, ~ -~ ~

deﬁnedbyfg(/)\Al,;\f )—0 f2(2) =0.
If (z,y) € {(1,1),(1,2),(2,2)} = A then
filz+y) # filz) + fi(y).

If (z,y) € {(0,0),(0,1),(1,2),(2,0)} = B then

fa(z +y) # fo(x) + faly).

Hence (z0,y0) € A and (z9,y0) € B, but AU B = Z3 X Zg it results (zg,yo) &
Zs3 x Zs, which is contradiction with our hypothesis Z # ().

the group of congruence classes

)}-

e
1

0, 1(1) =0, f1(2) =Tand f, € S(Cz,)

(1
2

Remark 2.4. Generally the closure-system Z from Theorem 2.1, is not an alge-
braic closure-system. We will justify this statement with an example.

Example 2.2. Consider Cauchy’s equations on the group (Z, +) of integers num-
bers, more precisely (G,0) = (H,x) = (Z,4+) and the family of the solutions of
Cauchy’s Z-equation.
Z={S8(Cz)| ZCZx1Z}.
We show that the closure system Z is not algebraic. For this we shall construct
a directed family to the right D C Z, for which U D¢gZ.
DeD
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Let Z,, = Zxn-Z C Zx7Z; n € N* and the family D = {S(Cz,)|n € N*}. Disa
directed family (for every m,n € N* there exists kK = m-n such that Zy C Z, and
Zy, C Zy, hence there exists k such that S(Cz, ) C S(Cz,) and S(Cz,) C S(Cz,).

Suppose by contradiction that there exists Z C Z x Z such that

U S(Cz,) = S(Cy).
neN*
If Z # 0 and (xg,yo) € Z, then
F(@o+yo) = flxo) + f(wo), fe | S(Cz)

neN*

For n > 3 we define the functions f, : Z — Z,

k if z=n-k
f"(x)_{kJrnl if z=n-k+r

where k € Z, 0 < r < n. First we prove that f, € S(Cz,).
If (z,n-y) € Z, then

| i+, ifr=n-z1, 1 €%Z
fnlz +mn y){ r1+y+n—1, fa=n-a21+r,21€Z, re{l,...,n—1}

Ty, ifx=n-x1, x1 €%
fol@) =< z1+n—-1, fez=n-z1+r, x1€Z, re{l,...,n—1}
faln-y)=y

thus fp(xz +n-y) = fu(x) + fu(n-y), for all z,y € Z.

From (29, y0) € Z we have f,(zo+yo) = fu(xo)+ frn(yo) and we get that g or yo
is divisible by n: If xg = n-k1+r1, yo = n-ka+re, ki, ke € Z,r1,73 € {1,...,n—1}
then xg +yo=n- (k1 + ka) +r1+712, 11 +r2 € {1,...,n,...,2n — 2}, so
f(l’o) :kl +T7J71, f(yo) :k2+n71 and

flo+yo) €{br+ka+1, ki +ka+n—1, ki +ky+14+n—1},

hence f(xo) + f(yo) = k1 + k2 +2n — 2 # f(xo0 + yo)-
Hence at least one of these numbers is divisible by an infinity of numbers, thus it
is zero.

We showed that Z C {(«,0),(0,z)| € Z} = U hence
S(Cy) C S(Cz) = | S(Cz,).
neN*

But the function fo : Z — Z

o ={ ¥ 120

is from S(Cy) but it is not in S(Cyz, ) for every n € N* (1 = fo(1 +n) # fo(1) +
fo(?’b) = 2).
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