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Order relation on the solutions sets of
Z-conditional Cauchy equations on groups

VASILE POP

Abstract. For a fixed pair of groups (G, ◦) and (H, ∗) and for all sets Z ⊂ G×G we consider

the Z-conditional Cauchy equations

CZ : f : G −→ H, f(x ◦ y) = f(x) ∗ f(y), (x, y) ∈ Z.

We prove that the family of the sets of solutions {S(CZ)|Z ⊂ G × G} is a closure-system.

This system is not a sublattice of (P(HG),⊂) and generally it is not algebraic closure-system.

1. Introduction

Let (G, ◦) and (H, ∗) be two groups. The functions f : G → H which verifies
the relations

(1.1) f(x ◦ y) = f(x) ∗ f(y)

for all pairs (x, y) ∈ G × G are group morphisms, f ∈ Hom(G,H). The equation
(1.1) is the functional equation of morphisms or Cauchy equation.

If we look for the functions f which verifies (1.1) only for a subset of points
(x, y) ∈ G × G we obtain other functional equations, which were called ”condi-
tional Cauchy equations” (J. Dhombres [1]) or Cauchy’s functional equations on
restricted domain” (M. Kuczma [5]).

2. Main results

In the paper we shall consider the family of Cauchy conditional equations for
a pair of fixed groups (G,H) and we shall study the order structure of the set of
the solutions, as a subset of the power set of HG.

Definition 2.1. If Z ⊂ G × G is a fixed set then the functional equation:

(CZ) :

{
f : G → H

f(x ◦ y) = f(x) ∗ f(y), (x, y) ∈ Z

is called Z-conditional Cauchy equation or Cauchy equation conditioned by the
set Z.

Remark 2.1. If we denote by S(CZ) the set of the solutions of the equation
(CZ), then for Z = ∅ we have S(C∅) = HG and if Z = G × G then S(CG×G) =
Hom(G,H).

Let {Zi| i ∈ I} be a family of subsets Zi ⊂ G × G and S(CZi
) the set of the

solutions of the equations (CZi
), i ∈ I.
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Proposition 2.1. For any family Zi ⊂ G × G, i ∈ I the following statements

holds:

a) If Z1 ⊂ Z2 then S(CZ2
) ⊂ S(CZ1

);

b)
⋃

i∈I

S(CZi
) ⊂ S(CZ);

c)
⋂

i∈I

S(CZi
) = S(CU ) where Z =

⋂

i∈I

Zi and U =
⋃

i∈I

Zi.

Proof. a) If f ∈ S(CZ2
) then f(x ◦ y) = f(x) ∗ f(y) for every (x, y) ∈ Z2 ⊂ Z1, it

results f ∈ S(CZ1
).

b) Z =
⋃

i∈I

Zi ⊂ Zi

a)
⇒ S(CZi

) ⊂ S(CZ), i ∈ I ⇒
⋃

i∈I

S(CZi
) ⊂ S(CZ).

c) Zi ⊂
⋂

i∈I

Zi = U
a)
⇒ S(CU ) ⊂ S(CZi), i ∈ I ⇒ S(CU ) ⊂

⋂

i∈I

S(CZi
).

If f ∈
⋂

i∈I

S(CZi
) then f(x ◦ y) = f(x) ∗ f(y), (x, y) ∈ Zi, i ∈ I ⇒ f(x ◦ y) =

f(x) ∗ f(y); (x, y) ∈
⋂

i∈I

Zi = U ⇒ f ∈ S(CU ). �

Remark 2.2. Generally the inclusion from b) is strict, which can be viewed from
the following example:

(G, ◦) = (H, ∗) = (R,+); Z1 = R × [0,∞), Z2 = R × (−∞, 0]

S(CZ1
) = S(CZ2

) = {f : R → R| f(x + y) = f(x) + f(y)}

S(CZ1∩Z2
) = {f : R → R| f(0) = 0}

Let Z = {S(CZ)| Z ⊂ G×G} ⊂ P(HG) be the family formed by those subsets
of HG which are solutions of some Z-conditional Cauchy equation.

Theorem 2.1. The set Z form a closure-system on HG of with the closure oper-

ator is J : P(HG) → P(HG) defined by J(F) = S(CUF
), where F ⊂ P(HG) an

arbitrary family and the set UF is

UF = {(x, y) ∈ G × G| f(x ◦ y) = f(x) ∗ f(y), f ∈ F}.

Proof. From Proposition 2.1 it follows that the intersection of any family in Z is
in Z, thus Z is a closure system.

If F ⊂ HG then the closure operator is defined by:

J(F) =
⋂

{S(CZ)| F ⊂ S(CZ)}.

We shall assign for each function f ∈ HG the set Uf of the pairs on which f

verifies the relations (1.1).
Let Uf = {(x, y) ∈ G × G| f(x ◦ y) = f(x) ∗ f(y)}.
We have f ∈ S(CZ) ⇔ Z ⊂ Uf , hence

F ⊂ S(CZ) ⇔ Z ⊂ Uf ; f ∈ F ⇔ Z ⊂
⋂

f∈F

Uf = UF .

Using the definition of J(F) and the relation c), from Proposition 2.1 we have:

J(F) =
⋂

{S(CZ)| Z ⊂ UF} = S(CU )
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where
U =

⋃
{Z| Z ⊂ UF} = UF .

Therefore:

UF =
⋂

f∈F

Uf =
⋂

f∈F

{(x, y)| f(x ◦ u) = f(x) ∗ f(y)} =

= {(x, y) ∈ G × G| f(x ◦ y) = f(x) ∗ f(y), f ∈ F}

and the proof is complete. �

Remark 2.3. Generally the closure system Z is a complete lattice, but it is not
a sublattice of the lattice (P(HG),⊂) because it is not closed to the union. For
justification we give the following example:

Example 2.1. Let (G, ◦) = (H, ∗) = (Z3,+) be the group of congruence classes

modulo 3 and the sets: Z1 = {(0̂, 0̂)}, Z2 = {(1̂, 1̂)}.
We shall show that S(CZ1

) ∪ S(CZ2
) 6∈ Z.

We have

(CZ2
) = {f : Z3 → Z3| f(0̂) = 0̂}

S(CZ2
) = {f : Z3 → Z3| f(0̂) = 2f(1̂)}

each of these sets of solutions has 9 elements, hence in the union we have at most
18 elements (it can be established that there are 15 elements).

Because in HG = S(C∅) we have 33 = 27 elements, obviously

S(CZ1
) ∪ S(CZ2

) 6= S(C∅).

Now we suppose by contradiction that there exists Z ⊂ G×G, Z 6= ∅ such that
S(CZ1

) ∪ S(CZ2
) = S(CZ). If (x0, y0) ∈ Z, then for every f ∈ S(CZ1

) ∪ S(CZ2
)

we have f(x0 + y0) = f(x0) + f(y0).

Take f1 ∈ S(CZ1
) defined thus: f1(0̂) = 0̂, f1(1̂) = 0̂, f1(2̂) = 1̂ and f2 ∈ S(CZ2

)

defined by f2(0̂) = 1̂, f2(1̂) = 0̂, f2(2̂) = 0̂.

If (x, y) ∈ {(1̂, 1̂), (1̂, 2̂), (2̂, 2̂)} = A then

f1(x + y) 6= f1(x) + f1(y).

If (x, y) ∈ {(0̂, 0̂), (0̂, 1̂), (1̂, 2̂), (2̂, 0̂)} = B then

f2(x + y) 6= f2(x) + f2(y).

Hence (x0, y0) 6∈ A and (x0, y0) 6∈ B, but A ∪ B = Z3 × Z3 it results (x0, y0) 6∈
Z3 × Z3, which is contradiction with our hypothesis Z 6= ∅.

Remark 2.4. Generally the closure-system Z from Theorem 2.1, is not an alge-
braic closure-system. We will justify this statement with an example.

Example 2.2. Consider Cauchy’s equations on the group (Z,+) of integers num-
bers, more precisely (G, ◦) = (H, ∗) = (Z,+) and the family of the solutions of
Cauchy’s Z-equation.

Z = {S(CZ)| Z ⊂ Z × Z}.

We show that the closure system Z is not algebraic. For this we shall construct

a directed family to the right D ⊂ Z, for which
⋃

D∈D

D 6∈ Z.
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Let Zn = Z×n·Z ⊂ Z×Z; n ∈ N
∗ and the family D = {S(CZn

)| n ∈ N
∗}. D is a

directed family (for every m,n ∈ N
∗ there exists k = m ·n such that Zk ⊂ Zm and

Zk ⊂ Zn hence there exists k such that S(CZm
) ⊂ S(CZk

) and S(CZn
) ⊂ S(CZk

).
Suppose by contradiction that there exists Z ⊂ Z × Z such that

⋃

n∈N∗

S(CZn) = S(CZ).

If Z 6= ∅ and (x0, y0) ∈ Z, then

f(x0 + y0) = f(x0) + f(y0), f ∈
⋃

n∈N∗

S(CZn
).

For n ≥ 3 we define the functions fn : Z → Z,

fn(x) =

{
k if x = n · k
k + n − 1 if x = n · k + r

where k ∈ Z, 0 < r < n. First we prove that fn ∈ S(CZn
).

If (x, n · y) ∈ Zn then

fn(x + n · y) =

{
x1 + y, if x = n · x1, x1 ∈ Z

x1 + y + n − 1, if x = n · x1 + r, x1 ∈ Z, r ∈ {1, . . . , n − 1}

fn(x) =






x1, if x = n · x1, x1 ∈ Z

x1 + n − 1, if x = n · x1 + r, x1 ∈ Z, r ∈ {1, . . . , n − 1}
fn(n · y) = y

thus fn(x + n · y) = fn(x) + fn(n · y), for all x, y ∈ Z.

From (x0, y0) ∈ Z we have fn(x0+y0) = fn(x0)+fn(y0) and we get that x0 or y0

is divisible by n: If x0 = n·k1+r1, y0 = n·k2+r2, k1, k2 ∈ Z, r1, r2 ∈ {1, . . . , n−1}
then x0 + y0 = n · (k1 + k2) + r1 + r2, r1 + r2 ∈ {1, . . . , n, . . . , 2n − 2}, so
f(x0) = k1 + n − 1, f(y0) = k2 + n − 1 and

f(x0 + y0) ∈ {k1 + k2 + 1, k1 + k2 + n − 1, k1 + k2 + 1 + n − 1},

hence f(x0) + f(y0) = k1 + k2 + 2n − 2 6= f(x0 + y0).
Hence at least one of these numbers is divisible by an infinity of numbers, thus it
is zero.

We showed that Z ⊂ {(x, 0), (0, x)| x ∈ Z} = U hence

S(CU ) ⊂ S(CZ) =
⋃

n∈N∗

S(CZn
).

But the function f0 : Z → Z

f0(x) =

{
0, x = 0
1, x 6= 0

is from S(CU ) but it is not in S(CZn
) for every n ∈ N

∗ (1 = f0(1 + n) 6= f0(1) +
f0(n) = 2).
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