CARPATHIAN J. MATH. **20** (2004), No. 1, 119 - 123

Order relation on the solutions sets of Z-conditional Cauchy equations on groups

VASILE POP

ABSTRACT. For a fixed pair of groups (G, \circ) and (H, *) and for all sets $Z \subset G \times G$ we consider the Z-conditional Cauchy equations

 $C_Z: f: G \longrightarrow H, \ f(x \circ y) = f(x) * f(y), \ (x, y) \in Z.$

We prove that the family of the sets of solutions $\{S(C_Z)|Z \subset G \times G\}$ is a closure-system. This system is not a sublattice of $(\mathcal{P}(H^G), \subset)$ and generally it is not algebraic closure-system.

1. INTRODUCTION

Let (G, \circ) and (H, *) be two groups. The functions $f : G \to H$ which verifies the relations

$$(1.1) \quad f(x \circ y) = f(x) * f(y)$$

for all pairs $(x, y) \in G \times G$ are group morphisms, $f \in Hom(G, H)$. The equation (1.1) is the functional equation of morphisms or Cauchy equation.

If we look for the functions f which verifies (1.1) only for a subset of points $(x, y) \in G \times G$ we obtain other functional equations, which were called "conditional Cauchy equations" (J. Dhombres [1]) or Cauchy's functional equations on restricted domain" (M. Kuczma [5]).

2. Main results

In the paper we shall consider the family of Cauchy conditional equations for a pair of fixed groups (G, H) and we shall study the order structure of the set of the solutions, as a subset of the power set of H^G .

Definition 2.1. If $Z \subset G \times G$ is a fixed set then the functional equation:

$$(C_Z): \begin{cases} f: G \to H\\ f(x \circ y) = f(x) * f(y), \ (x, y) \in Z \end{cases}$$

is called Z-conditional Cauchy equation or Cauchy equation conditioned by the set Z.

Remark 2.1. If we denote by $S(C_Z)$ the set of the solutions of the equation (C_Z) , then for $Z = \emptyset$ we have $S(C_{\emptyset}) = H^G$ and if $Z = G \times G$ then $S(C_{G \times G}) = Hom(G, H)$.

Let $\{Z_i | i \in I\}$ be a family of subsets $Z_i \subset G \times G$ and $S(C_{Z_i})$ the set of the solutions of the equations $(C_{Z_i}), i \in I$.

Received: 26.09.2004; In revised form: 12.01.2005

²⁰⁰⁰ Mathematics Subject Classification. 39B55, 06A06.

Key words and phrases. Conditional Cauchy equations, order relations.

Vasile Pop

Proposition 2.1. For any family $Z_i \subset G \times G$, $i \in I$ the following statements holds:

a) If $Z_1 \subset Z_2$ then $S(C_{Z_2}) \subset S(C_{Z_1})$; b) $\bigcup_{i \in I} S(C_{Z_i}) \subset S(C_Z)$; c) $\bigcap_{i \in I} S(C_{Z_i}) = S(C_U)$ where $Z = \bigcap_{i \in I} Z_i$ and $U = \bigcup_{i \in I} Z_i$.

Proof. a) If $f \in S(C_{Z_2})$ then $f(x \circ y) = f(x) * f(y)$ for every $(x, y) \in Z_2 \subset Z_1$, it results $f \in S(C_{Z_1})$.

b)
$$Z = \bigcup_{i \in I} Z_i \subset Z_i \xrightarrow{a} S(C_{Z_i}) \subset S(C_Z), \ i \in I \Rightarrow \bigcup_{i \in I} S(C_{Z_i}) \subset S(C_Z).$$

c)
$$Z_i \subset \bigcap_{i \in I} Z_i = U \xrightarrow{a} S(C_U) \subset S(C_{Z_i}), \ i \in I \Rightarrow S(C_U) \subset \bigcap_{i \in I} S(C_{Z_i}).$$

If
$$f \in \bigcap_{i \in I} S(C_{Z_i}) \ \text{then} \ f(x \circ y) = f(x) * f(y), \ (x, y) \in Z_i, \ i \in I \Rightarrow f(x \circ y) =$$

$$f(x) * f(y); \ (x, y) \in \bigcap_{i \in I} Z_i = U \Rightarrow f \in S(C_U).$$

Remark 2.2. Generally the inclusion from b) is strict, which can be viewed from the following example:

$$(G, \circ) = (H, *) = (\mathbb{R}, +); \quad Z_1 = \mathbb{R} \times [0, \infty), \quad Z_2 = \mathbb{R} \times (-\infty, 0]$$
$$S(C_{Z_1}) = S(C_{Z_2}) = \{f : \mathbb{R} \to \mathbb{R} | f(x+y) = f(x) + f(y)\}$$
$$S(C_{Z_1 \cap Z_2}) = \{f : \mathbb{R} \to \mathbb{R} | f(0) = 0\}$$

Let $\mathcal{Z} = \{S(C_Z) | Z \subset G \times G\} \subset \mathcal{P}(H^G)$ be the family formed by those subsets of H^G which are solutions of some Z-conditional Cauchy equation.

Theorem 2.1. The set Z form a closure-system on H^G of with the closure operator is $J : \mathcal{P}(H^G) \to \mathcal{P}(H^G)$ defined by $J(\mathcal{F}) = S(C_{U_{\mathcal{F}}})$, where $\mathcal{F} \subset \mathcal{P}(H^G)$ an arbitrary family and the set $U_{\mathcal{F}}$ is

$$U_{\mathcal{F}} = \{ (x, y) \in G \times G | f(x \circ y) = f(x) * f(y), f \in \mathcal{F} \}.$$

Proof. From Proposition 2.1 it follows that the intersection of any family in \mathcal{Z} is in \mathcal{Z} , thus \mathcal{Z} is a closure system.

If $\mathcal{F} \subset H^G$ then the closure operator is defined by:

$$J(\mathcal{F}) = \bigcap \{ S(C_Z) | \ \mathcal{F} \subset S(C_Z) \}.$$

We shall assign for each function $f \in H^G$ the set U_f of the pairs on which f verifies the relations (1.1).

Let $U_f = \{(x, y) \in G \times G | f(x \circ y) = f(x) * f(y)\}.$ We have $f \in S(C_Z) \Leftrightarrow Z \subset U_f$, hence

$$\mathcal{F} \subset S(C_Z) \iff Z \subset U_f; \quad f \in \mathcal{F} \iff Z \subset \bigcap_{f \in \mathcal{F}} U_f = U_{\mathcal{F}}.$$

Using the definition of $J(\mathcal{F})$ and the relation c), from Proposition 2.1 we have:

$$J(\mathcal{F}) = \bigcap \{ S(C_Z) | \ Z \subset U_{\mathcal{F}} \} = S(C_U)$$

120

where

$$U = \bigcup \{ Z \mid Z \subset U_{\mathcal{F}} \} = U_{\mathcal{F}}.$$

Therefore:

$$U_{\mathcal{F}} = \bigcap_{f \in \mathcal{F}} U_f = \bigcap_{f \in \mathcal{F}} \{ (x, y) | f(x \circ u) = f(x) * f(y) \} =$$
$$= \{ (x, y) \in G \times G | f(x \circ y) = f(x) * f(y), f \in \mathcal{F} \}$$

and the proof is complete.

Remark 2.3. Generally the closure system \mathcal{Z} is a complete lattice, but it is not a sublattice of the lattice $(\mathcal{P}(H^G), \subset)$ because it is not closed to the union. For justification we give the following example:

Example 2.1. Let $(G, \circ) = (H, *) = (\mathbb{Z}_3, +)$ be the group of congruence classes modulo 3 and the sets: $Z_1 = \{(\widehat{0}, \widehat{0})\}, Z_2 = \{(\widehat{1}, \widehat{1})\}.$

We shall show that $S(C_{Z_1}) \cup S(C_{Z_2}) \notin \mathbb{Z}$.

We have

$$(C_{Z_2}) = \{ f : \mathbb{Z}_3 \to \mathbb{Z}_3 | f(0) = 0 \}$$

$$S(C_{Z_2}) = \{ f : \mathbb{Z}_3 \to \mathbb{Z}_3 | f(\widehat{0}) = 2f(\widehat{1}) \}$$

each of these sets of solutions has 9 elements, hence in the union we have at most 18 elements (it can be established that there are 15 elements).

Because in $H^G = S(C_{\emptyset})$ we have $3^3 = 27$ elements, obviously

$$S(C_{Z_1}) \cup S(C_{Z_2}) \neq S(C_{\emptyset}).$$

Now we suppose by contradiction that there exists $Z \subset G \times G$, $Z \neq \emptyset$ such that $S(C_{Z_1}) \cup S(C_{Z_2}) = S(C_Z)$. If $(x_0, y_0) \in Z$, then for every $f \in S(C_{Z_1}) \cup S(C_{Z_2})$ we have $f(x_0 + y_0) = f(x_0) + f(y_0)$.

Take $f_1 \in S(C_{Z_1})$ defined thus: $f_1(\widehat{0}) = \widehat{0}, f_1(\widehat{1}) = \widehat{0}, f_1(\widehat{2}) = \widehat{1}$ and $f_2 \in S(C_{Z_2})$ defined by $f_2(\widehat{0}) = \widehat{1}, f_2(\widehat{1}) = \widehat{0}, f_2(\widehat{2}) = \widehat{0}.$

If $(x, y) \in \{ (\hat{1}, \hat{1}), (\hat{1}, \hat{2}), (\hat{2}, \hat{2}) \} = A$ then

$$f_1(x+y) \neq f_1(x) + f_1(y).$$

If $(x, y) \in \{(\widehat{0}, \widehat{0}), (\widehat{0}, \widehat{1}), (\widehat{1}, \widehat{2}), (\widehat{2}, \widehat{0})\} = B$ then $f_2(x+y) \neq f_2(x) + f_2(y).$

Hence $(x_0, y_0) \notin A$ and $(x_0, y_0) \notin B$, but $A \cup B = \mathbb{Z}_3 \times \mathbb{Z}_3$ it results $(x_0, y_0) \notin \mathbb{Z}_3 \times \mathbb{Z}_3$, which is contradiction with our hypothesis $Z \neq \emptyset$.

Remark 2.4. Generally the closure-system \mathcal{Z} from Theorem 2.1, is not an algebraic closure-system. We will justify this statement with an example.

Example 2.2. Consider Cauchy's equations on the group $(\mathbb{Z}, +)$ of integers numbers, more precisely $(G, \circ) = (H, *) = (\mathbb{Z}, +)$ and the family of the solutions of Cauchy's Z-equation.

$$\mathcal{Z} = \{ S(C_Z) | \ Z \subset \mathbb{Z} \times \mathbb{Z} \}.$$

We show that the closure system \mathcal{Z} is not algebraic. For this we shall construct a directed family to the right $\mathcal{D} \subset \mathcal{Z}$, for which $\bigcup D \notin \mathcal{Z}$.

$$D \in D$$

Vasile Pop

Let $Z_n = \mathbb{Z} \times n \cdot \mathbb{Z} \subset \mathbb{Z} \times \mathbb{Z}$; $n \in \mathbb{N}^*$ and the family $\mathcal{D} = \{S(C_{Z_n}) | n \in \mathbb{N}^*\}$. \mathcal{D} is a directed family (for every $m, n \in \mathbb{N}^*$ there exists $k = m \cdot n$ such that $Z_k \subset Z_m$ and $Z_k \subset Z_n$ hence there exists k such that $S(C_{Z_m}) \subset S(C_{Z_k})$ and $S(C_{Z_n}) \subset S(C_{Z_k})$. Suppose by contradiction that there exists $Z \subset \mathbb{Z} \times \mathbb{Z}$ such that

$$\bigcup_{n\in\mathbb{N}^*} S(C_{Z_n}) = S(C_Z).$$

If $Z \neq \emptyset$ and $(x_0, y_0) \in Z$, then

$$f(x_0 + y_0) = f(x_0) + f(y_0), \quad f \in \bigcup_{n \in \mathbb{N}^*} S(C_{Z_n}).$$

For $n \geq 3$ we define the functions $f_n : \mathbb{Z} \to \mathbb{Z}$,

$$f_n(x) = \begin{cases} k & \text{if } x = n \cdot k \\ k + n - 1 & \text{if } x = n \cdot k + r \end{cases}$$

where $k \in \mathbb{Z}$, 0 < r < n. First we prove that $f_n \in S(C_{Z_n})$. If $(x, n \cdot y) \in Z_n$ then

$$f_n(x+n \cdot y) = \begin{cases} x_1 + y, & \text{if } x = n \cdot x_1, \ x_1 \in \mathbb{Z} \\ x_1 + y + n - 1, & \text{if } x = n \cdot x_1 + r, \ x_1 \in \mathbb{Z}, \ r \in \{1, \dots, n - 1\} \end{cases}$$
$$f_n(x) = \begin{cases} x_1, & \text{if } x = n \cdot x_1, \ x_1 \in \mathbb{Z} \\ x_1 + n - 1, & \text{if } x = n \cdot x_1 + r, \ x_1 \in \mathbb{Z}, \ r \in \{1, \dots, n - 1\} \\ f_n(n \cdot y) = y \end{cases}$$

thus $f_n(x+n \cdot y) = f_n(x) + f_n(n \cdot y)$, for all $x, y \in \mathbb{Z}$.

From $(x_0, y_0) \in \mathbb{Z}$ we have $f_n(x_0+y_0) = f_n(x_0) + f_n(y_0)$ and we get that x_0 or y_0 is divisible by n: If $x_0 = n \cdot k_1 + r_1$, $y_0 = n \cdot k_2 + r_2$, $k_1, k_2 \in \mathbb{Z}, r_1, r_2 \in \{1, \dots, n-1\}$ then $x_0 + y_0 = n \cdot (k_1 + k_2) + r_1 + r_2$, $r_1 + r_2 \in \{1, \dots, n, \dots, 2n-2\}$, so $f(x_0) = k_1 + n - 1$, $f(y_0) = k_2 + n - 1$ and

$$f(x_0 + y_0) \in \{k_1 + k_2 + 1, \ k_1 + k_2 + n - 1, \ k_1 + k_2 + 1 + n - 1\},\$$

hence $f(x_0) + f(y_0) = k_1 + k_2 + 2n - 2 \neq f(x_0 + y_0)$. Hence at least one of these numbers is divisible by an infinity of numbers, thus it is zero.

We showed that $Z \subset \{(x,0), (0,x) | x \in \mathbb{Z}\} = U$ hence

$$S(C_U) \subset S(C_Z) = \bigcup_{n \in \mathbb{N}^*} S(C_{Z_n}).$$

But the function $f_0 : \mathbb{Z} \to \mathbb{Z}$

$$f_0(x) = \begin{cases} 0, & x = 0\\ 1, & x \neq 0 \end{cases}$$

is from $S(C_U)$ but it is not in $S(C_{Z_n})$ for every $n \in \mathbb{N}^*$ $(1 = f_0(1+n) \neq f_0(1) + f_0(n) = 2)$.

122

References

- [1] Dhombres, J., Some aspect of functional equations, Chualalongkorn Univ., Bangkok, 1979
- [2] Dhombres, J., Ger, R., Conditional Cauchy equations, Glasnik Matemtika, 13(33) (1978), 39-62
- [3] Dhombres, J., Ger, R., Equationes de Cauchy conditionnelles, C.R. Acad. Sci. Paris, Sér. A, 280, 1975, 573-575
- [4] Ger, R., Functional equations with a restricted domain, Rend. Sem. Mat-Fiz, Milano, 47 (1977), 176-184
- [5] Kuczma, M., Cauchy's functional equations on a restricted domain, Colloq. Math. 28 (1973), 313-315
- Kuczma, M., An introduction to the theory of functional equations and inequalities, Univ. Slaksi, Warszawa, 1985
- [7] Kuczma, M., Functional equations on restricted domain, Aequationes Math., 18 (1978), 1-34
- [8] Pic, Gh., Purdea, I., Treatise of modern algebra, EA București, 1977

TECHNICAL UNIVERSITY CLUJ-NAPOCA DEPARTMENT OF MATHEMATICS C. DAICOVICIU 15, 400020, CLUJ-NAPOCA, ROMANIA *E-mail address:* vasile.pop@utcluj.ro