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Fixed points, upper and lower fixed points:
abstract Gronwall lemmas

IOAN A. RUS

Abstract. The aim of this paper is to study four basic problems of operatorial inequalities.

1. Introduction

Let (X,≤) be an ordered set and A : X → X an operator. We denote
FA := {x ∈ X| A(x) = x} - the fixed point set of A;
(UF )A := {x ∈ X| A(x) ≤ x} - the upper fixed point set of A;
(LF )A := {x ∈ X| A(x) ≥ x} - the lower fixed point set of A.
In this paper we shall study the following problems:

Problem 1. If FA = {x∗A}, in which conditions we have that

(LF )A ≤ x∗A ≤ (UF )A ?

Problem 2. If FA 6= ∅, in which conditions there exists ϕ : X → FA such that
(i) x ≤ A(x) ⇒ x ≤ ϕ(x)?
(ii) x ≥ A(x) ⇒ x ≥ ϕ(x)?

Problem 3. If FA = {x∗A} and B : X → X is an operator such that FB = {x∗B}
and A ≤ B in which conditions we have that

x ≤ A(x) ⇒ x ≤ x∗B ?

Problem 4. If FA 6= ∅, FB 6= ∅, A ≤ B, in which conditions there exists
ψ : X → FB such that

x ≤ A(x) ⇒ x ≤ ψ(x) ?

Throughout this paper we follow the terminology and notations in I. A. Rus
[40]. For the convenience of the reader we shall recall some of them.

2. Picard and weakly Picard operators

Let (X,→) be an L-space and A : X → X an operator.

Definition 2.1. (I. A. Rus [40]). The operator A is Picard operator (PO) if
(i) FA = {x∗A};
(ii) An(x) → x∗A as n→ ∞, ∀ x ∈ X.

Definition 2.2. (I. A. Rus [40]). The operator A is weakly Picard operator
(WPO) if the sequence (An(x))n∈N converges for all x ∈ X and the limit (which
may depend on x) is a fixed point of A.
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Definition 2.3. (I. A. Rus [40]). If A : X → X is an WPO, then we consider the
operator A∞ : X → X defined by A∞(x) = lim

n→∞
An(x).

Remark 2.1. It is clear that A∞(X) = FA.

Remark 2.2. For some examples of POs and WPOs in a variety of L-spaces see
[40] pp. 194-195, 198-201, Sz. András [1], A. Buică [6], [7], C. Crăciun [10], V.
Dincuţă [12], N. Lungu [25], L. Lungu and I. A. Rus [26], [27], V. Mureşan [29],
[30], I. A. Rus [38], [39],...

Remark 2.3. For some examples of L-spaces see I. A. Rus [40], P. P. Zabreijko
[48], S. Keikkilä and S. Seikkala [17], M. Kwapisz [21], J. Schröder [42].

3. Problem 1

Let (X,→) be an L-space and, ≤ an ordered relation on X. If the following
implication holds

(3.1) xn ≤ yn, xn → x∗, yn → y∗ as n→ ∞ ⇒ x∗ ≤ y∗,

then, by definition, (X,→,≤) is an ordered L-space.
The following result is given in [40].

Lemma 3.1. (Abstract Gronwall lemma). Let (X,→,≤) be an ordered L-space
and A : X → X an operator. We suppose that

(i) A is PO;
(ii) A is increasing.

Then

(LF )A ≤ x∗A ≤ (UF )A,

where x∗A is the unique fixed point of A.

Proof. Let x ∈ (LF )A. From (ii) we have that

x ≤ A(x) ≤ · · · ≤ An(x), ∀ n ∈ N
∗.

From (i), An(x) → x∗A as n→ ∞. Since the ordered relation is closed, by (3.1)
we obtain x ≤ x∗A. In a similar way we prove that

x ∈ (LF )A ⇒ x ≥ x∗A.

�

Remark 3.1. Condition (ii) implies that (LF )A and (UF )A are invariant subsets
for A. So, in Lemma 3.1, instead of condition (i) we can put the condition

(i’) the restriction of A to (UF )A ∪ (LF )A is a PO.

From Lemma 3.1 we have

Theorem 3.1. Let X be a sequentially complete, Hausdorff separated, ordered
uniform space and A : X → X an increasing operator. Let (dα)α∈A be a separated
saturated set of pseudometrics defining the uniform structure on X. We suppose
that there exist an operator ϕ : A → A and the positive numbers λα > 0 such that

dα(A(x), A(y)) ≤ λαdϕ(α)(x, y), for all α ∈ A and x, y ∈ X,
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and the series

dα(x, y) +
∞
∑

n=1

λαλϕ(α) . . . λϕn−1(α)dϕn(α)(x, y)

are convergent for each α ∈ A and all x, y ∈ X.
Then the operator A is PO and we have

(LF )A ≤ x∗A ≤ (UF )A.

Proof. Consider the ordered L-space (X,
(dα)α∈A

−−−−−→,≤). By a theorem of N. Ghe-
orghiu (see [41], pp. 28) the operator A is PO. The proof follows by Lemma
3.1. �

Theorem 3.2. Let (X, d,≤) be an ordered complete metric space and A : X → X

an increasing operator. We suppose that there exist ai > 0, i = 1, 2, 3, with
a1 + a2 + a3 < 1, such that

d(A(x), A(y)) ≤ a1d(x, y) + a2d(x,A(x)) + a3d(y,A(y)), ∀ x, y ∈ X.

Then A is PO and
(LF )A ≤ x∗A ≤ (UF )A.

Proof. Consider the ordered L-space (X,
d
→,≤). By a theorem of Ćirić-Reich-Rus

(see I. A. Rus [38], pp. 10, 48-50) the operator A is PO. Now we apply Lemma
3.1. �

Theorem 3.3. (V. Lakshmikantham, S. Leela and A. A. Martynyuk (1989; [23])).
Let (X, d,≤) be an ordered complete metric space and A : X → X an increasing
operator. We suppose that there exists n0 ∈ N

∗ such that An0 is a contraction.
Then

(LF )A ≤ x∗A ≤ (UF )A.

Proof. By Theorem 1.3.2 in [38] the operator A is PO in (X,
d
→). The proof follows

by Lemma 3.1. �

Theorem 3.4. (K. Valeev (1973; [45]), L. Losonczi (1973; [24]), V. Ya. Stetsenko
and M. Shaaban (1986; [43])). Let (X, ‖ · ‖,≤) be an ordered Banach space and
A : X → X an increasing PO. Then

(LF )A ≤ x∗A ≤ (UF )A.

Remark 3.2. In Lemma 3.1, instead of (X,→,≤) we can put one of the following:

• (X, d,≤) an ordered complete metric space;
• (X, d,≤) an ordered complete K-metric space;
• (X, d,≤) an ordered complete 2-metric space;
• (X,F, τ,≤) an ordered complete probabilistic metric space.

Instead of condition (i) we can put any condition in the above spaces which
implies that A is PO. For some examples, see [40].

Remark 3.3. Let (X,≤) be an ordered set and A : X → X an operator. In order
to have a concrete Gronwall lemma we follow the following algorithm:

• we examine if A is increasing
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• we choose an L-space structure on X which satisfies (3.1)
• we examine if A is PO on (X,→)
• we ”determine” the unique fixed point of A, x∗A.

The last step in the above algorithm is a difficult problem in the way to obtain
a concrete Gronwall lemma (see N. Lungu and I. A. Rus [27]). As an example we
have

Theorem 3.5. (I. A. Rus [40]). Let (X,+,≤,→) be an ordered L-space group.
Let A : X → X an operator and y ∈ X. We suppose that

(i) A is PO;
(ii) A is additive, continuous and increasing;

(iii) the Neumann series
∑

k∈N

Ak(y) converges.

Then we have
a) x ≤ A(x) + y ⇒ x ≤

∑

k∈N

Ak(y);

b) x ≥ A(x) + y ⇒ x ≥
∑

k∈N

Ak(y).

Remark 3.4. For other abstract and concrete Gronwall lemmas see [1], [3], [5],
[9], [13], [14], [15], [21], [22], [23], [28], [31], [46], [47], [50].

Remark 3.5. For Gronwall lemmas via Picard and weakly Picard operators see
Sz. András [1], A. Buică [6], [7], C. Crăciun [10], V. Dincuţă [12], N. Lungu [25],
N. Lungu and I. A. Rus [26], [27], V. Mureşan [29], [30], I. A. Rus [39], [40].

4. Problem 2

We begin with

Lemma 4.1. (I. A. Rus [40]). Let (X,→,≤) be an ordered L-space and A : X → X

an operator. We suppose that
(i) A is WPO;
(ii) A is increasing.

Then
a) x ≤ A(x) ⇒ x ≤ A∞(x);
b) x ≥ A(x) ⇒ x ≥ A∞(x).

Proof. (a). Let x ≤ A(x). From (ii) we have that

x ≤ An(x), ∀ n ∈ N.

Since the ordered relation is closed, we obtain x ≤ A∞(x).
(b). In a similar way we can prove (b). �

Remark 4.1. A∞(x) is the minimum element of FA ∩ [x, ·), where [x, ·) := {y ∈
X| y ≥ x}.

From Lemma 4.1 we have

Lemma 4.2. (monotone iteration lemma). Let (X,→,≤) be an ordered L-space
and A : X → X an operator. We suppose that:

(i) A is WPO;
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(ii) A is increasing;
(iii) there exist x ∈ (LF )A, y ∈ (UF )A such that x ≤ y.

Then
(a) x ≤ A(x) ≤ · · · ≤ An(x) ≤ · · · ≤ A∞(x) ≤ A∞(y) ≤ · · · ≤ An(y) ≤ · · · ≤

A(y) ≤ y.
(b) A∞(x) is the minimum element of FA ∩ [x, y] and A∞(y) is the maximum

element of FA ∩ [x, y].

Remark 4.2. Instead of (i) we can put the following condition
(i) the restriction of A to (LF )A ∪ (UF )A is WPO.

Theorem 4.1. Let (X,≤) be an ordered set and A : X → X an operator. We
suppose that

(i) A is increasing;
(ii) xn ∈ X, xn ≤ xn+1, n ∈ N ⇒ ∃ sup

n∈N

xn and

A

(

sup
n∈N

xn

)

= sup
n∈N

A(xn).

Then
x ≤ A(x) ⇒ x ≤ sup

n∈N

An(x).

Proof. Let C(X) := {(xn)n∈N| xn ≤ xn+1, n ∈ N}, and Lim(xn)n∈N := sup
n∈N

xn.

Then (X,C(X),Lim) is an L-space and A : (LF )A → (LF )A is WPO. We remark
that A∞(x) = sup

n∈N

An(x), for x ∈ (LF )A.

Now the proof follows Lemma 4.1 and Remark 4.2. �

Theorem 4.2. Let (X, d,≤) be an ordered complete metric space, A : X → X

and α ∈]0, 1[. We suppose that
(i′) d(A2(x), A(x)) ≤ αd(x,A(x)), ∀ x ∈ X;
(i′′) A is closed;
(ii) A is increasing.

Then A is WPO in (X,
d
→) and we have (a) and (b) in Lemma 4.1.

Proof. The conditions (i′), (i′′) imply that A is WPO in (X,
d
→) (see [40]). The

proof follows by Lemma 4.1. �

Theorem 4.3. Let (X, d,≤) be an ordered complete metric space and θ : X → R+

a functional. We suppose that
(i′) the operator A satisfies the Caristi condition relative to θ, i.e.,

d(x,A(x)) ≤ θ(x) − θ(A(x)), ∀ x ∈ X;

(i′′) the operator A is closed;
(ii) A is increasing.

Then A is WPO in (X,
d
→) and we have (a) and (b) in Lemma 4.1.

Proof. From (i’) we have that
∑

n∈N

d(An(x), An+1(x)) ≤ θ(x), ∀ x ∈ X.
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This implies that (An(x))n∈N is a Cauchy sequence, so (An(x)))n ∈ N converges
for all x ∈ X. From (i”), the limit is the fixed point of A. We are in the conditions
of Lemma 4.1. �

From Lemma 4.2 we have

Theorem 4.4. (S. Carl and S. Heikkilä [8]). Let [x, y] be a nonempty order
interval in the ordered metric space (X, d,≤) and A : [x, y] → [x, y] be an increasing
operator. If (A(xn))n∈N converges whenever (xn)n∈N is monotone sequence in
[x, y], then A has the least fixed point x∗ and the greatest fixed point x∗ in [x, y].

Theorem 4.5. (R. Precup [34]). Let (X, ‖ · ‖,≤) be an ordered Banach space,
[x, y] ⊂ X an order interval (x < y) and A : [x, y] → [x, y] an increasing operator.
Assume one of the following conditions holds:

(i) K := {x ∈ X| x ≥ 0} is a regular cone.
(ii) K is a normal cone and A is completely continuous.

Then there exist x∗, x
∗ ∈ [x, y], x≤x

∗, x∗, x
∗ ∈ FA and An(x)

‖·‖
−−→ x∗,

An(y)
‖·‖
−−→ x∗.

Remark 4.3. For other results for Problem 2 see H. Amann [2], E. N. Dancer
and P. Hess [11], S. Heikkilä and S. Seikkala [17], P. Hess [18], M. W. Hirsch [19],
M. A. Krasnoselskii and P. Zabreiko [20], M. Kwapisz [21], J. Schröder [42].

5. Problem 3

For Problem 3 we have the following general results

Lemma 5.1. (Abstract Gronwall-comparison lemma). Let (X,→,≤) be an or-
dered L-space and A,B : X → X two operators. We suppose that

(i) A and B are POs;
(ii) A is increasing;
(iii) A ≤ B.

Then

x ≤ A(x) ⇒ x ≤ x∗B .

Proof. Let FA = {x∗A} and FB = {x∗B}. From Lemma 3.1, x ≤ A(x) implies that
x ≤ x∗A.

Now we prove that x∗A ≤ x∗B .
For this, by induction we prove that

(5.1) x∗A ≤ Bn(x∗A), ∀ n ∈ N.

For n = 1, we have x∗A = A(x∗A) ≤ B(x∗A).
From x∗A ≤ Bk(x∗A), we have

x∗A = A(x∗A) ≤ A(Bk(x∗A)) ≤ B(Bk(x∗A)) = Bk+1(x∗A).

So, we have (5.1).
Since B is PO we have that

Bn(x) → x∗B as n→ ∞, ∀ x ∈ X.

From (5.1) we have x∗A ≤ x∗B . �
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From the proof of Lemma 5.1 we have

Lemma 5.2. Let (X,→,≤) be an ordered L-space and A,B : X → X two opera-
tors. We suppose that

(i) A and B are POs;
(ii) A and B are increasing;
(iii) x = A(x) ⇒ x ≤ B(x).

Then

x ≤ A(x) ⇒ x ≤ x∗B .

Remark 5.1. If in Lemma 5.2, instead of condition (iii) we put
(iii′) x = A(x) ⇒ x ≥ B(x),

then we have

x ≤ A(x) ⇒ x ≥ x∗B .

Remark 5.2. See Remark 3.2.

For example from Lemma 5.2 we have

Theorem 5.1. Let (X, d,≤), d(x, y) ∈ R
m, be a complete generalized metric space

and A,B : X → X two operators. We suppose that
(i′) A and B are contractions;
(ii) A and B are increasing;
(iii) x = A(x) ⇒ x ≤ B(x).

Then A and B are POs and

x ≤ A(x) ⇒ x ≤ x∗B .

Proof. From (i) and Perov’s theorem it follows that A and B are POs. �

Remark 5.3. For applications of Lemma 5.2 to Volterra integral equations see
N. Lungu and I. A. Rus [27].

Remark 5.4. Let (X,≤) be an ordered L-space and A : X → X an operator.
In order to have a concrete Gronwall-comparison lemma we follow the following

algorithm:

• We examine if A is increasing.
• We choose an L-space structure on X which satisfies (3.1).
• We choose an increasing operatorB which satisfies condition (iii) in Lemma

5.2.
• We examine if A and B are POs on (X,→).
• We ”determine” the unique fixed point of B, x∗B.

For example we have

Theorem 5.2. Let (X,+,≤,→) be an ordered L-space group. Let A and B two
operators and y ∈ X. We suppose that

(i) A+ y and B are PO;
(ii) A and B are increasing;

(iii) B is additive, continuous and the Neumann series
∑

k∈N

Ak(y) converges;
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(iv) x = A(x) + y ⇒ x ≤ B(x) + y.
Then

x ≤ A(x) + y ⇒ x ≤
∑

k∈N

Bk(y).

Proof. (i) and (iii) imply that the operator B + y is PO. Condition (ii) implies
that A + y and B + y are increasing. So, we are in the conditions of Lemma 5.2

for the operators A+ y and B + y. On the other hand we remark that
∑

k∈N

Bk(y)

is the unique solution of the equation x = B(x) + y. �

6. Problem 4

We have

Lemma 6.1. Let (X,→,≤) be an ordered L-space and A,B : X → X two
operators. We suppose that

(i) A and B are WPOs;
(ii) A is increasing;
(iii) A ≤ B.

Then
(a) x ≤ y ⇒ A∞(x) ≤ B∞(y);
(b) if in addition B is increasing

then
x ≤ A(x) ⇒ x ≤ B∞(x).

Proof. (a) Let x ≤ y. From (ii) we have A(x) ≤ A(y). From (iii) it follows that
A(x) ≤ B(y). By induction we have that An(x) ≤ Bn(y), for all n ∈ N. Since the
ordered relation, ≤ is closed we have A∞(x) ≤ A∞(y).

(b). Let x ∈ X, such that x ≤ A(x). From Lemma 4.1 we have that x ≤ A∞(x).
From (a) in the case y = x, it follows that A∞(x) ≤ B∞(x), so, x ≤ B∞(x). �

Remark 6.1. Comments and applications of Lemma 6.1 will be presented else-
where.
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