CARPATHIAN J. MATH. **20** (2004), No. 1, 125 - 134

Fixed points, upper and lower fixed points: abstract Gronwall lemmas

IOAN A. RUS

ABSTRACT. The aim of this paper is to study four basic problems of operatorial inequalities.

1. INTRODUCTION

Let (X, \leq) be an ordered set and $A: X \to X$ an operator. We denote $F_A := \{x \in X | A(x) = x\}$ - the fixed point set of A; $(UF)_A := \{x \in X | A(x) \leq x\}$ - the upper fixed point set of A; $(LF)_A := \{x \in X | A(x) \geq x\}$ - the lower fixed point set of A. In this paper we shall study the following problems:

Problem 1. If $F_A = \{x_A^*\}$, in which conditions we have that

$$(LF)_A \le x_A^* \le (UF)_A$$

Problem 2. If $F_A \neq \emptyset$, in which conditions there exists $\varphi : X \to F_A$ such that (i) $x \leq A(x) \Rightarrow x \leq \varphi(x)$?

(ii) $x \ge A(x) \Rightarrow x \ge \varphi(x)$?

Problem 3. If $F_A = \{x_A^*\}$ and $B: X \to X$ is an operator such that $F_B = \{x_B^*\}$ and $A \leq B$ in which conditions we have that

$$x \le A(x) \Rightarrow x \le x_B^* ?$$

Problem 4. If $F_A \neq \emptyset$, $F_B \neq \emptyset$, $A \leq B$, in which conditions there exists $\psi: X \to F_B$ such that

$$x \le A(x) \Rightarrow x \le \psi(x)$$
?

Throughout this paper we follow the terminology and notations in I. A. Rus [40]. For the convenience of the reader we shall recall some of them.

2. PICARD AND WEAKLY PICARD OPERATORS

Let (X, \rightarrow) be an L-space and $A: X \rightarrow X$ an operator.

Definition 2.1. (I. A. Rus [40]). The operator A is Picard operator (PO) if (i) $F_A = \{x_A^*\}$;

(ii) $A^n(x) \to x_A^*$ as $n \to \infty, \forall x \in X$.

Definition 2.2. (I. A. Rus [40]). The operator A is weakly Picard operator (WPO) if the sequence $(A^n(x))_{n\in\mathbb{N}}$ converges for all $x \in X$ and the limit (which may depend on x) is a fixed point of A.

Received: 26.09.2004; In revised form: 12.01.2005

²⁰⁰⁰ Mathematics Subject Classification. 54H10, 54H25, 47J20.

Key words and phrases. L-spaces, Picard operators, weakly Picard operators, fixed points, upper fixed points, lower fixed points, Gronwall lemmas.

Definition 2.3. (I. A. Rus [40]). If $A: X \to X$ is an WPO, then we consider the operator $A^{\infty}: X \to X$ defined by $A^{\infty}(x) = \lim_{n \to \infty} A^n(x)$.

Remark 2.1. It is clear that $A^{\infty}(X) = F_A$.

Remark 2.2. For some examples of POs and WPOs in a variety of L-spaces see [40] pp. 194-195, 198-201, Sz. András [1], A. Buică [6], [7], C. Crăciun [10], V. Dincuță [12], N. Lungu [25], L. Lungu and I. A. Rus [26], [27], V. Mureşan [29], [30], I. A. Rus [38], [39],...

Remark 2.3. For some examples of L-spaces see I. A. Rus [40], P. P. Zabreijko [48], S. Keikkilä and S. Seikkala [17], M. Kwapisz [21], J. Schröder [42].

3. Problem 1

Let (X, \rightarrow) be an L-space and, \leq an ordered relation on X. If the following implication holds

(3.1) $x_n \leq y_n, \ x_n \to x^*, \ y_n \to y^* \text{ as } n \to \infty \Rightarrow x^* \leq y^*,$

then, by definition, (X, \rightarrow, \leq) is an ordered L-space.

The following result is given in [40].

Lemma 3.1. (Abstract Gronwall lemma). Let (X, \rightarrow, \leq) be an ordered L-space and $A: X \rightarrow X$ an operator. We suppose that

(i) A is PO;
(ii) A is increasing.
Then

$$(LF)_A \le x_A^* \le (UF)_A,$$

where x_A^* is the unique fixed point of A.

Proof. Let $x \in (LF)_A$. From (ii) we have that

$$x \le A(x) \le \dots \le A^n(x), \ \forall \ n \in \mathbb{N}^*.$$

From (i), $A^n(x) \to x_A^*$ as $n \to \infty$. Since the ordered relation is closed, by (3.1) we obtain $x \leq x_A^*$. In a similar way we prove that

$$x \in (LF)_A \Rightarrow x \ge x_A^*.$$

Remark 3.1. Condition (ii) implies that $(LF)_A$ and $(UF)_A$ are invariant subsets for A. So, in Lemma 3.1, instead of condition (i) we can put the condition (ii) the restriction of A to $(UF)_{A} \rightarrow (UF)_{A}$ is a PO

(i') the restriction of A to $(UF)_A \cup (LF)_A$ is a PO.

From Lemma 3.1 we have

Theorem 3.1. Let X be a sequentially complete, Hausdorff separated, ordered uniform space and $A: X \to X$ an increasing operator. Let $(d_{\alpha})_{\alpha \in \mathcal{A}}$ be a separated saturated set of pseudometrics defining the uniform structure on X. We suppose that there exist an operator $\varphi: \mathcal{A} \to \mathcal{A}$ and the positive numbers $\lambda_{\alpha} > 0$ such that

$$d_{\alpha}(A(x), A(y)) \leq \lambda_{\alpha} d_{\varphi(\alpha)}(x, y), \text{ for all } \alpha \in \mathcal{A} \text{ and } x, y \in X,$$

and the series

$$d_{\alpha}(x,y) + \sum_{n=1}^{\infty} \lambda_{\alpha} \lambda_{\varphi(\alpha)} \dots \lambda_{\varphi^{n-1}(\alpha)} d_{\varphi^{n}(\alpha)}(x,y)$$

are convergent for each $\alpha \in \mathcal{A}$ and all $x, y \in X$.

Then the operator A is PO and we have

$$(LF)_A \le x_A^* \le (UF)_A.$$

Proof. Consider the ordered L-space $(X, \xrightarrow{(d_{\alpha})_{\alpha \in \mathcal{A}}}, \leq)$. By a theorem of N. Gheorghiu (see [41], pp. 28) the operator A is PO. The proof follows by Lemma 3.1.

Theorem 3.2. Let (X, d, \leq) be an ordered complete metric space and $A: X \to X$ an increasing operator. We suppose that there exist $a_i > 0$, i = 1, 2, 3, with $a_1 + a_2 + a_3 < 1$, such that

$$d(A(x), A(y)) \le a_1 d(x, y) + a_2 d(x, A(x)) + a_3 d(y, A(y)), \ \forall \ x, y \in X.$$

Then A is PO and

$$(LF)_A \le x_A^* \le (UF)_A.$$

Proof. Consider the ordered L-space $(X, \stackrel{d}{\rightarrow}, \leq)$. By a theorem of Ćirić-Reich-Rus (see I. A. Rus [38], pp. 10, 48-50) the operator A is PO. Now we apply Lemma 3.1.

Theorem 3.3. (V. Lakshmikantham, S. Leela and A. A. Martynyuk (1989; [23])). Let (X, d, \leq) be an ordered complete metric space and $A : X \to X$ an increasing operator. We suppose that there exists $n_0 \in \mathbb{N}^*$ such that A^{n_0} is a contraction. Then

$$(LF)_A \le x_A^* \le (UF)_A$$

Proof. By Theorem 1.3.2 in [38] the operator A is PO in (X, \xrightarrow{d}) . The proof follows by Lemma 3.1.

Theorem 3.4. (K. Valeev (1973; [45]), L. Losonczi (1973; [24]), V. Ya. Stetsenko and M. Shaaban (1986; [43])). Let $(X, \|\cdot\|, \leq)$ be an ordered Banach space and $A: X \to X$ an increasing PO. Then

$$(LF)_A \le x_A^* \le (UF)_A.$$

Remark 3.2. In Lemma 3.1, instead of (X, \rightarrow, \leq) we can put one of the following:

- (X, d, \leq) an ordered complete metric space;
- (X, d, \leq) an ordered complete K-metric space;
- (X, d, \leq) an ordered complete 2-metric space;
- (X, F, τ, \leq) an ordered complete probabilistic metric space.

Instead of condition (i) we can put any condition in the above spaces which implies that A is PO. For some examples, see [40].

Remark 3.3. Let (X, \leq) be an ordered set and $A : X \to X$ an operator. In order to have a concrete Gronwall lemma we follow the following algorithm:

• we examine if A is increasing

- we choose an L-space structure on X which satisfies (3.1)
- we examine if A is PO on (X, \rightarrow)
- we "determine" the unique fixed point of A, x_A^* .

The last step in the above algorithm is a difficult problem in the way to obtain a concrete Gronwall lemma (see N. Lungu and I. A. Rus [27]). As an example we have

Theorem 3.5. (I. A. Rus [40]). Let $(X, +, \leq, \rightarrow)$ be an ordered L-space group. Let $A: X \rightarrow X$ an operator and $y \in X$. We suppose that

(i) A is PO;

- (ii) A is additive, continuous and increasing;
- (iii) the Neumann series $\sum_{k \in \mathbb{N}} A^k(y)$ converges.

Then we have

a)
$$x \le A(x) + y \Rightarrow x \le \sum_{k \in \mathbb{N}} A^k(y);$$

b) $x \ge A(x) + y \Rightarrow x \ge \sum_{k \in \mathbb{N}} A^k(y).$

Remark 3.4. For other abstract and concrete Gronwall lemmas see [1], [3], [5], [9], [13], [14], [15], [21], [22], [23], [28], [31], [46], [47], [50].

Remark 3.5. For Gronwall lemmas via Picard and weakly Picard operators see Sz. András [1], A. Buică [6], [7], C. Crăciun [10], V. Dincuță [12], N. Lungu [25], N. Lungu and I. A. Rus [26], [27], V. Mureşan [29], [30], I. A. Rus [39], [40].

4. Problem 2

We begin with

Lemma 4.1. (I. A. Rus [40]). Let (X, \rightarrow, \leq) be an ordered L-space and $A : X \rightarrow X$ an operator. We suppose that

(i) A is WPO; (ii) A is increasing. Then a) $x \le A(x) \Rightarrow x \le A^{\infty}(x);$ b) $x \ge A(x) \Rightarrow x \ge A^{\infty}(x).$

Proof. (a). Let $x \leq A(x)$. From (ii) we have that

 $x \le A^n(x), \ \forall \ n \in \mathbb{N}.$

Since the ordered relation is closed, we obtain $x \leq A^{\infty}(x)$. (b). In a similar way we can prove (b).

Remark 4.1. $A^{\infty}(x)$ is the minimum element of $F_A \cap [x, \cdot)$, where $[x, \cdot) := \{y \in X | y \ge x\}$.

From Lemma 4.1 we have

Lemma 4.2. (monotone iteration lemma). Let (X, \rightarrow, \leq) be an ordered L-space and $A: X \rightarrow X$ an operator. We suppose that: (i) A is WPO;

Fixed points, upper and lower fixed points: abstract Gronwall lemmas

(*ii*) A is increasing;

(iii) there exist $x \in (LF)_A$, $y \in (UF)_A$ such that $x \leq y$.

Then

(a) $x \le A(x) \le \dots \le A^n(x) \le \dots \le A^\infty(x) \le A^\infty(y) \le \dots \le A^n(y) \le \dots \le A(y) \le y$.

(b) $A^{\infty}(x)$ is the minimum element of $F_A \cap [x, y]$ and $A^{\infty}(y)$ is the maximum element of $F_A \cap [x, y]$.

Remark 4.2. Instead of (i) we can put the following condition

(i) the restriction of A to $(LF)_A \cup (UF)_A$ is WPO.

Theorem 4.1. Let (X, \leq) be an ordered set and $A : X \to X$ an operator. We suppose that

(i) A is increasing;

(ii)
$$x_n \in X, x_n \le x_{n+1}, n \in \mathbb{N} \Rightarrow \exists \sup_{n \in \mathbb{N}} x_n \text{ and}$$
$$A\left(\sup_{n \in \mathbb{N}} x_n\right) = \sup_{n \in \mathbb{N}} A(x_n).$$

Then

$$x \le A(x) \Rightarrow x \le \sup_{n \in \mathbb{N}} A^n(x)$$

Proof. Let $C(X) := \{(x_n)_{n \in \mathbb{N}} | x_n \leq x_{n+1}, n \in \mathbb{N}\}$, and $\operatorname{Lim}(x_n)_{n \in \mathbb{N}} := \sup_{n \in \mathbb{N}} x_n$. Then $(X, C(X), \operatorname{Lim})$ is an L-space and $A : (LF)_A \to (LF)_A$ is WPO. We remark that $A^{\infty}(x) = \sup_{n \in \mathbb{N}} A^n(x)$, for $x \in (LF)_A$.

Now the proof follows Lemma 4.1 and Remark 4.2.

Theorem 4.2. Let (X, d, \leq) be an ordered complete metric space, $A : X \to X$ and $\alpha \in]0,1[$. We suppose that

 $\begin{array}{l} (i') \ d(A^2(x), A(x)) \leq \alpha d(x, A(x)), \ \forall \ x \in X; \\ (i'') \ A \ is \ closed; \\ (ii) \ A \ is \ increasing. \end{array}$

Then A is WPO in $(X, \stackrel{d}{\rightarrow})$ and we have (a) and (b) in Lemma 4.1.

Proof. The conditions (i'), (i'') imply that A is WPO in (X, \xrightarrow{d}) (see [40]). The proof follows by Lemma 4.1.

Theorem 4.3. Let (X, d, \leq) be an ordered complete metric space and $\theta : X \to \mathbb{R}_+$ a functional. We suppose that

(i') the operator A satisfies the Caristi condition relative to θ , i.e.,

$$d(x, A(x)) \le \theta(x) - \theta(A(x)), \ \forall \ x \in X;$$

(i'') the operator A is closed;

(ii) A is increasing.

Then A is WPO in $(X, \stackrel{d}{\rightarrow})$ and we have (a) and (b) in Lemma 4.1.

Proof. From (i') we have that

$$\sum_{n \in \mathbb{N}} d(A^n(x), A^{n+1}(x)) \le \theta(x), \ \forall \ x \in X.$$

This implies that $(A^n(x))_{n \in \mathbb{N}}$ is a Cauchy sequence, so $(A^n(x)))n \in \mathbb{N}$ converges for all $x \in X$. From (i"), the limit is the fixed point of A. We are in the conditions of Lemma 4.1.

From Lemma 4.2 we have

Theorem 4.4. (S. Carl and S. Heikkilä [8]). Let [x, y] be a nonempty order interval in the ordered metric space (X, d, \leq) and $A : [x, y] \to [x, y]$ be an increasing operator. If $(A(x_n))_{n \in \mathbb{N}}$ converges whenever $(x_n)_{n \in \mathbb{N}}$ is monotone sequence in [x, y], then A has the least fixed point x_* and the greatest fixed point x^* in [x, y].

Theorem 4.5. (R. Precup [34]). Let $(X, \|\cdot\|, \leq)$ be an ordered Banach space, $[x, y] \subset X$ an order interval (x < y) and $A : [x, y] \to [x, y]$ an increasing operator. Assume one of the following conditions holds:

(i) $K := \{x \in X | x \ge 0\}$ is a regular cone.

(ii) K is a normal cone and A is completely continuous.

Then there exist $x_*, x^* \in [x, y], x_{\leq} x^*, x_*, x^* \in F_A$ and $A^n(x) \xrightarrow{\parallel \cdot \parallel} x_*, A^n(y) \xrightarrow{\parallel \cdot \parallel} x^*.$

Remark 4.3. For other results for Problem 2 see H. Amann [2], E. N. Dancer and P. Hess [11], S. Heikkilä and S. Seikkala [17], P. Hess [18], M. W. Hirsch [19], M. A. Krasnoselskii and P. Zabreiko [20], M. Kwapisz [21], J. Schröder [42].

5. Problem 3

For Problem 3 we have the following general results

Lemma 5.1. (Abstract Gronwall-comparison lemma). Let (X, \rightarrow, \leq) be an ordered L-space and $A, B : X \rightarrow X$ two operators. We suppose that

(i) A and B are POs;

(ii) A is increasing;

(*iii*) $A \leq B$.

Then

$$x \le A(x) \Rightarrow x \le x_B^*.$$

Proof. Let $F_A = \{x_A^*\}$ and $F_B = \{x_B^*\}$. From Lemma 3.1, $x \leq A(x)$ implies that $x \leq x_A^*$.

Now we prove that $x_A^* \leq x_B^*$.

For this, by induction we prove that

(5.1) $x_A^* \leq B^n(x_A^*), \ \forall \ n \in \mathbb{N}.$

For n = 1, we have $x_A^* = A(x_A^*) \le B(x_A^*)$. From $x_A^* \le B^k(x_A^*)$, we have

$$x_A^* = A(x_A^*) \le A(B^k(x_A^*)) \le B(B^k(x_A^*)) = B^{k+1}(x_A^*).$$

So, we have (5.1).

Since B is PO we have that

$$B^n(x) \to x_B^*$$
 as $n \to \infty, \ \forall \ x \in X$.

From (5.1) we have $x_A^* \leq x_B^*$.

From the proof of Lemma 5.1 we have

Lemma 5.2. Let (X, \rightarrow, \leq) be an ordered L-space and $A, B : X \rightarrow X$ two operators. We suppose that

(i) A and B are POs; (ii) A and B are increasing; (iii) $x = A(x) \Rightarrow x \le B(x)$. Then

$$x \le A(x) \Rightarrow x \le x_B^*.$$

Remark 5.1. If in Lemma 5.2, instead of condition (*iii*) we put (*iii'*) $x = A(x) \Rightarrow x \ge B(x)$,

then we have

$$x \le A(x) \Rightarrow x \ge x_B^*.$$

Remark 5.2. See Remark 3.2.

For example from Lemma 5.2 we have

Theorem 5.1. Let (X, d, \leq) , $d(x, y) \in \mathbb{R}^m$, be a complete generalized metric space and $A, B : X \to X$ two operators. We suppose that

(i') A and B are contractions;

(*ii*) A and B are increasing;

(*iii*) $x = A(x) \Rightarrow x \le B(x)$.

Then A and B are POs and

$$x \le A(x) \Rightarrow x \le x_B^*.$$

Proof. From (i) and Perov's theorem it follows that A and B are POs.

Remark 5.3. For applications of Lemma 5.2 to Volterra integral equations see N. Lungu and I. A. Rus [27].

Remark 5.4. Let (X, \leq) be an ordered L-space and $A: X \to X$ an operator.

In order to have a concrete Gronwall-comparison lemma we follow the following algorithm:

- We examine if A is increasing.
- We choose an L-space structure on X which satisfies (3.1).
- We choose an increasing operator B which satisfies condition (iii) in Lemma 5.2.
- We examine if A and B are POs on (X, \rightarrow) .
- We "determine" the unique fixed point of B, x_B^* .

For example we have

Theorem 5.2. Let $(X, +, \leq, \rightarrow)$ be an ordered L-space group. Let A and B two operators and $y \in X$. We suppose that

(i) A + y and B are PO;

(ii) A and B are increasing;

(iii) B is additive, continuous and the Neumann series $\sum_{k \in \mathbb{N}} A^k(y)$ converges;

 $(iv) \ x = A(x) + y \Rightarrow x \le B(x) + y.$ Then

$$x \le A(x) + y \Rightarrow x \le \sum_{k \in \mathbb{N}} B^k(y).$$

Proof. (i) and (iii) imply that the operator B + y is PO. Condition (ii) implies that A + y and B + y are increasing. So, we are in the conditions of Lemma 5.2 for the operators A + y and B + y. On the other hand we remark that $\sum_{k \in \mathbb{N}} B^k(y)$

is the unique solution of the equation x = B(x) + y.

6. Problem 4

We have

Lemma 6.1. Let (X, \rightarrow, \leq) be an ordered L-space and $A, B : X \rightarrow X$ two operators. We suppose that

(i) A and B are WPOs; (ii) A is increasing; (*iii*) $A \leq B$. Then (a) $x \le y \Rightarrow A^{\infty}(x) \le B^{\infty}(y);$ (b) if in addition B is increasing

then

$$x \le A(x) \Rightarrow x \le B^{\infty}(x).$$

Proof. (a) Let $x \leq y$. From (ii) we have $A(x) \leq A(y)$. From (iii) it follows that $A(x) \leq B(y)$. By induction we have that $A^n(x) \leq B^n(y)$, for all $n \in \mathbb{N}$. Since the ordered relation, \leq is closed we have $A^{\infty}(x) \leq A^{\infty}(y)$.

(b). Let $x \in X$, such that $x \leq A(x)$. From Lemma 4.1 we have that $x \leq A^{\infty}(x)$. From (a) in the case y = x, it follows that $A^{\infty}(x) \leq B^{\infty}(x)$, so, $x \leq B^{\infty}(x)$.

Remark 6.1. Comments and applications of Lemma 6.1 will be presented elsewhere.

References

- [1] András, Sz., Gronwall type inequalities via subconvex sequences, Seminar on Fixed Point Theory, 3 (2002), 183-188
- [2] Amann, H., Fixed point equations and nonlinear eigenvalue problem in ordered Banach spaces, SIAM Review, 18 (1976), 620-709
- [3] Bainov, D. and Simeonov, P., Integral inequalities and applications, Kluwer, Dordrecht, 1992
- [4] Baluev, A., Sur la théorié abstraite de la méthode de Čaplygin (en russe), Dokl. Akad. Nauk SSSR, 83 (1952), 781-784
- P. R. Beesak, P. R., Gronwall inequalities, Carleton Math. Lecture Notes, 1975, Nr. 11
- [6] Buică, A., Elliptic and parabolic differential inequalities, Demonstratio Math., 33 (2000), Nr. 4, 783-792
- [7] A. Buică, A., Gronwall-type nonlinear integral inequalities, Mathematica, 44 (2002), Nr. 1, 19-23
- [8] Carl, S., and Heikkila, S., On discontinuous implicite evolution equations, J. Math. Anal. Appl., 219 (1998), 455-471
- [9] Corduneanu, C., Integral Equations and Applications, Cambridge University Press, 1991

- [10] Crăciun, C., On some Gronwall inequalities, Seminar on Fixed Point Theory, 1 (2000), 31-34
- [11] Dancer, E. N. and Hess, P., Stability of fixed points for order-preserving discrete-time dynamical systems, J. Reineagew. Math., 419 (1991), 125-139
- [12] Dincuță, V., An application of the weakly Picard operators technique to a Dirichlet problem, Seminar on Fixed Point Theory, 1 (2000), 35-38
- [13] Eisenfeld, J. and Lakshmikantham, V., Remarks on nonlinear contraction and comparison principle in abstract cones, Tech. Report, No. 25, Univ. of Texas at Arlington, 1975
- [14] Flett, T. M., Differential Analysis, Cambridge Univ. Press, 1980
- [15] Guo, D., Lakshmikantham, V. and Liu, X., Nonlinear Integral Equations in Abstracts Spaces, Kluwer, Dordrecht, 1996
- [16] Heikkilä, S. and Lakshmikantham, V., Monoton Iterative Technique for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994
- [17] Heikkilä, S. and Seikkala, S., On the estimation of successive approximations in abstract spaces, J. Math. Anal. Appl., 58 (1977), No. 2, 378-383
- [18] Hess, P., Periodic-Parabolic Boundary Value Problems and Positivity, Longman, 1991
- [19] Hirsch, M. W., Fixed points of monotone maps, J. Diff. Eq., 123 (1995), 171-179
- [20] Krasnoselskii, M. A. and Zabreiko, P., Geometrical Methods in Nonlinear Analysis, Springer, Berlin, 1984
- [21] Kwapisz, M., General inequalities and fixed-point problems, 341-353, in General Inequalities
 2 (E. F. Beckenbach (ed.)), Birkhäuser, Basel, 1980
- [22] Lakshmikantham, V. and Leela, S., Differential and Integral Inequalities, Acad. Press, New York, 1969
- [23] Lakshmikantham, V., Leela, S. and Martynyuk, A. A., Stability Analysis of Nonlinear Systems, Marcel Dekker, New York, 1989
- [24] Losonczi, L., A generalization of the Gronwall-Bellman lemma and its applications, J. Math. Anal. Appl., 44 (1973), 701-709
- [25] Lungu, N., On some Gronwall-Bihari-Wendorff-type inequalities, Seminar on Fixed Point Theory, 3 (2002), 249-254
- [26] Lungu, N. and Rus, I. A., Hyperbolic differential inequalities, Libertas Math., 21 (2001), 35-40
- [27] Lungu, N. and Rus, I. A., Gronwall inequalities in higher dimensions via Picard operators (to appear)
- [28] Mitrinović, D. S., Pevcarić, J. E. and Fink, A. M. Inequalities Involving Functions and their Integrals and Derivatives, Kluwer, Dordrecht, 1991
- [29] Mureşan, V., A Gronwall type inequality for Fredholm operators, Mathematica, 41 (1999), Nr. 2, 227-231
- [30] Mureşan, V., Functional-Integral Equations, Mediamira, Cluj-Napoca, 2003
- [31] Pachpatte, B. G., Inequalities for finite difference equations, Marcel Dekker, New York, 2002
- [32] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1987
- [33] Peetre, J., Rus, I. A., Sur la positivité de la fonction de Green, Math. Scandinavica, 21 (1967), 80-89
- [34] Precup, R., Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002
- [35] Rus, B., Rus, I. A., Trif, D., Some properties of the ω-limit points set of an operator, Studia Univ. Babeş-Bolyai, 44 (1999), 85-92
- [36] Rus, I. A., Sur la positivité de la fonction de Green correspondante au problème bilocal, Glasnik Mathematicki, 5 (1970), 251-257
- [37] Rus, I. A., Ecuații diferențiale, ecuații integrale şi sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996
- [38] Rus, I. A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001
- [39] Rus, I. A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar on Fixed Point Theory, 3 (2002), 335-346
- [40] Rus, I. A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), Nr. 1, 191-219

- [41] Rus, I. A., Petruşel, A., Petruşel, G., Fixed Point Theory: 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002
- [42] Schröder, J., Operator Inequalities, Acad. Press, New York, 1980
- [43] Stetsenko V. Ya. and Shaaban, M., On operational inequalities analogous to Gronwall-Bihari ones, D. A. N. Tadj., 29 (1986), 393-398
- [44] Tsalyuk, Z. B., Volterra functional inequalities, Yzv. Vyssh. Ucheb. Zaved., 3 (1969), 86-95
- [45] Valeev, K., Une généralization du lemme de Gronwall-Bellman (en russe), Ukrain. Mat. Ž., 25 (1973), 518-521
- [46] Ver Eecke, P., Applications du calcul différentiel, Presses Univ. de France, Paris, 1985
- [47] Walter, W., Differential and integral inequalities, Springer, Berlin, 1979
- [48] Zabreijko, P. P., K-metric and K-normed linear spaces: survey, Collect. Math., 48 (1997), 825-859
- [49] Zeidler, E., Nonlinear Functional Analysis and its Applications, I, Springer, Berlin, 1993
- [50] Zima, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio Math., 31 (1998), 325-332

BABEŞ-BOLYAI UNIVERSITY

DEPARTMENT OF APPLIED MATHEMATICS, M. KOGĂLNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: iarus@math.ubbcluj.ro