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Generalized Inverses of Means

IULIA COSTIN

Abstract. A mean N is called complementary to M with respect to P if it verifies the
relation

P (M(a, b), N(a, b)) = P (a, b), ∀a, b > 0.

The complementary of M with respect to the geometric mean was called by C. Gini the inverse
of M . We call the complementary of M with respect to a weighted geometric mean, generalized
inverse of M . We study some generalized inverses, using the series expansion of means.

1. Introduction

Usually the means are given by the following

Definition 1.1. A mean is a function M : R
2
+ → R+, which has the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b > 0 .

We use here weighted Gini means defined by

Br,s;λ(a, b) =

[

λ · ar + (1 − λ) · br

λ · as + (1 − λ) · bs

]
1

r−s

, r 6= s

with λ ∈ [0, 1] fixed. Weighted Lehmer mean, Cr;λ = Br,r−1;λ and weighted power
means Pr,λ = Br,0;λ are also used. We remark that

Br,s;0= Cr;0 = Pr,0 = Π2 and Br,s;1= Cr;1 = Pr,1 = Π1 ,

where we denoted by Π1 and Π2 the first respectively the second projections defined
by

Π1(a, b) = a, Π2(a, b) = b, ∀a, b ≥ 0.

Given three means M,N and P , their composition

P (M,N)(a, b) = P (M(a, b), N(a, b)), ∀a, b > 0,

defines also a mean P (M,N).

Definition 1.2. A mean N is called complementary to M with respect to

P (or P−complementary to M) if verifies

P (M,N) = P.

More comments on this notion and its importance can be found in [6]. We study
the complementariness with respect to weighted geometric means Gλ = P0,λ. We

denote the Gλ− complementary of M by MG(λ) and we call it the generalized
inverse of M .
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2. Series expansion of means

For the study of some problems related to means in [5] is used the power se-
ries expansion. In fact, for a mean M is considered the series of the normalized
functions M(1, 1 − x), x ∈ (0, 1) .

For example, in [3] is given the series expansion of the weighted Gini mean

Bp,p−r;t(1, 1 − x) = 1 − (1 − t) · x + t (1 − t) (2p − r − 1) ·
x2

2!
− t (1 − t)

· {t[6p2 − 6p (r + 1) + (r + 1) (2r + 1)] − 3p (p − r) − (r − 1) (r + 1)} ·
x3

3!

− t (1 − t) · {t2[−24p3 + 36p2 (r + 1) − 12p (r + 1) (2r + 1) + (r + 1) (2r + 1)

· (3r + 1)] + +t[24p3 − 12p2 (3r + 1) + 12p (r + 1) (2r − 1) − 3 (r + 1) (2r + 1)

· (r − 1)] −−4p3 + 6p2 (r − 1) − 2p
(

2r2 − 3r − 1
)

+ (r − 2) (r − 1) (r + 1)}

·
x4

4!
−−t (1 − t) ·

[

t3
(

120p4 − 240p3 (r + 1) + 120p2(r + 1)(2r + 1)

−20p(r + 1)(2r + 1)(3r + 1) + (r + 1)(2r + 1)(3r + 1)(4r + 1))

+ t2
(

−180p4 + 180p3(2r + 1) − 90p2(r + 1)(4r − 1) + 30p(r + 1)(2r + 1)(3r − 2)

−6(r − 1)(r + 1)(2r + 1)(3r + 1)) + t
(

70p4 − 20p3(7r − 2) + 10p2(14r2 − 6r − 9)

−10p(r + 1)(7r2 − 12r + 3) + (r − 1)(2r + 1)(7r − 11)(r + 1)
)

− 5p4 + 10p3(r − 2)

−5p2(2r2 − 6r + 3) + 5p(r − 2)(r2 − 2r − 1) − (r + 1)(r − 1)(r − 2)(r − 3)
]

·
x5

5!
+ · · · .

We need also the following result proved in [2].

Theorem 2.1. If the mean M has the series expansion

M(1, 1 − x) = 1 +

∞
∑

n=1

anxn,

then the first terms of the series expansion of its generalized inverse MG(λ) are

MG(λ)(1, 1 − x) = 1 − (1 + α · a1) · x +
α

2

[

(α + 1) · a2
1 + 2 (a1 − a2)

]

· x2

−
α

6

[

(α + 1) (α + 2) · a3
1 + 3 (α + 1) · a1 (a1 − 2a2) + 6 (a3 − a2)

]

· x3

+
α

24
[(α + 1) (α + 2) (α + 3) · a4

1 + 4a2
1 (α + 1) (α + 2) (a1 − 3a2)

+ 12 (α + 1)
(

a2
2 − 2a1 (a2 − a3)

)

+ 24 (a3 − a4)] · x
4 −

α

5!
[(α + 1) (α + 2)

· (α + 3) (α + 4) · a5
1 + 5a3

1 (α + 1) (α + 2) (α + 3) (a1 − 4a2) − 60a2
1

· (α + 1) (α + 2) (a2 − a3) + 60a1 (α + 1)
(

(α + 2) a2
2 + 2 (a3 − a4)

)

+ 60a2 (α + 1)

· (a2 − 2a3) − 120 (a4 − a5)] · x
5 + · · ·

where

α =
λ

1 − λ
.
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3. Generalized inverses of Gini means

As a consequence of the previous result, we get the following

Corollary 3.1. The first terms of the series expansion of the generalized inverse
of the Gini mean Bp,p−r;µ are

B
G(λ)
p,p−r;µ (1, 1 − x) = 1 − (αµ + α − 1) · x − α (1 − µ) [(α + 2p − r) µ − (α − 1)] ·

x2

2!

+ α (1 − µ) {[3! · p2 + 6 (α − r) p + (α − r) (α − 2r)]µ2 − [3p2 − 3 (r − 2α) p

+ (2α − r) (α − r)]µ + (α − 1) (α + 1)} ·
x3

3!
− α (1 − µ) {[4! · p3 + 36 (α − r) p2

+ 12 (α − r) (α − 2r) p + (α − r) (α − 2r)(α − 3r)]µ3 + [−24p3 + 12 (3r − 4α − 1) p2

− 12 (2α − 2r + 1) (α − r) p − (α − 2r) (α − r) (3α + 2 − 3r)]µ2 + [4p3 + 6(2α − r

+ 1)p2 + 2
(

6α (2α − 2r + 1) − 3r + 2r2 − 1
)

p + (α − r)(3α2 + 4α − 3rα − 2r

+ r2 − 1)]µ − (α − 1) (α + 1) (α + 2)} ·
x4

4!
+ α (1 − µ) {[5! · p4 + 240 (α − r) p3

+ 120 (α − r) (α − 2r) p2 + 20 (α − r) (α − 2r) (α − 3r) p + (α − r) (α − 2r) (α − 3r)

· (α − 4r)]µ4 + [−180p4 + 60 (6r − 7α − 2) p3 − 90 (α − r) (3α − 4r + 2) p2

− 30 (α − r) · (α − 2r) (2α + 2 − 3r) p − (α − r) (α − 2r) (α − 3r) (4α + 5 − 6r)]µ3

+ [70p4 + 20 (10α − 7r + 6) p3 + 10
(

−30rα + 18α2 + 24α + 3 + 14r2 − 18r
)

p2

+ 10 (α − r)
(

6α2 + 12α − 12rα + 7r2 − 12r + 3
)

p + (6α2 − 12rα + 15α + 5 + 7r2

− 15r) (α − 2r) (α − r)]µ2 + [−5p4 + 10 (r − 2 − 2α) p3 + (30rα − 30α2 − 60α

−15 − 10r2 + 30r
)

p2 − 5 (2α + 2 − r)
(

2α2 − 2rα + 4α − 2r + r2 − 1
)

p

− (α − r)
(

4α3 − 6rα2 + 15α2 − 15rα + 10α + 4r2α − 5 + 5r2 − r3 − 5r
)

]µ

+ (α − 1) (α + 1) (α + 2) (α + 3)} ·
x5

5!
+ · · · .

Using it, we can prove the following

Theorem 3.2. If

B
G(λ)
p,p−r;µ = Bq,q−s;ν , for r 6= 0, s 6= 0,

then we are in one of the following cases:

(i) B
G(0)
p,p−r;µ = Bq,q−s;0;

(ii) B
G(λ)
p,p−r;1 = Bq,q−s;0;

(iii) B
G( 2

3 )
p,−p = Bq,q−s;1;

(iv) BG
p,p−r;µ = B−p,r−p;1−µ ;

(v) B
G( 1

3 )
p,p−r;0 = Bq,−q , or

(vi) α = λ
1−λ

= ν
1−µ

, µ = (2q−s)(1−ν)
r−2p

(r 6= 2p) ,

ν =
q(q−s)(12p2

−12pr+5r2)+(2p−r)(2q−s)(3p2
−3pr+r2)+s2(r2

−2pr+2p2)
2(rq−ps)(rq−rs+ps) , ν 6= 1
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rq 6= ps, rq + ps 6= rs, (36pr − 7r2 − 36p2)q3(q − 2s) + 3(r − 2p)
·(6p2 − 6pr + r2)q2(2q − 3s) + (2r2 − 7pr + 7p2)s2(p(r − p) + 2sq)
+(−72p3r + 50p2r2 + 36p4 − 14pr3 + r4)q(s − q)+
+(50pr − 9r2 − 50p2)s2q2 + (−2r2s3 + 3(r − 2p)(r2 − 8pr + 8p2)s2)q
+p(r − p)s4 + 3p(r − p)(r − 2p)s3 = 0, with s 6= 2q.

The cases (i) − (v) are always true.

Proof. Equating the coefficients of x in the series of the two members, we get:

(3.1) ν = α (1 − µ) .

Then, the coefficients of x2 give

(3.2) ν [(2q − s) (1 − ν) + (2p − r) µ] = 0

If ν = 0, then, from (3.1) we have one of the cases:
- α = 0, therefore λ = 0, from where we obtain the case (i) , or
- µ = 1, that leads to the case (ii).
If ν 6= 0, then we have from (3.2):

(3.3) (2q − s) (1 − ν) = (r − 2p) µ

1. If r = 2p, then one of the following situations must hold:
1.1. ν = 1 that implies, from (3.1), µ = 2λ−1

λ
, with λ ∈

(

1
2 , 1

)

. Equating the

coefficients of x3, using the relation (3.1) and replacing ν = 1 and r = 2p, it
follows that:

p2µ (2µ − 1) = 0.

We have again three possible situations:
1.1.1. p = 0, therefore r = 0, which contradicts with the hypothesis r 6= 0;
1.1.2. µ = 0, so λ = 1

2 , therefore it is the case (iv), in which r = 2p and µ = 0;

1.1.3. µ = 1
2 , so λ = 2

3 , thus the case (iii).

1.2. 2q = s. Equating the coefficients of x3 and taking into account the previous
relations, the following condition is obtained:

(3.4) p2µ (2µ − 1) = (2ν − 1) (ν − 1) q2.

1.2.1. In this relation, if ν = 1, then one of the following situations must hold:
1.2.1.1. µ = 0, then λ = 1

2 , therefore the case (iv), for r = 2p, s = 2q and µ = 0;

1.2.1.2. µ = 1
2 , then λ = 2

3 , therefore the case (iii), for s = 2q;
1.2.1.3. p = 0, then r = 0, which contradicts with the hypothesis.
1.2.2. In the relation (3.4) if ν = 1

2 , then again one of the following situations
must hold:
1.2.2.1. µ = 0, then λ = 1

3 , which leads to the case (v), for r = 2p;

1.2.2.2. µ = 1
2 , then λ = 1

2 , that is the case (iv), for r = 2p and µ = 1
2 ;

1.2.2.3. p = 0, then r = 0, which contradicts with the hypothesis r 6= 0.
1.2.3. If ν 6= 1 and ν 6= 1

2 in the relation (3.4), then we can write:

(3.5) q2 =
p2µ (2µ − 1)

(2ν − 1) (ν − 1)
.

This has real solutions if (a) µ ∈
[

0, 1
2

]

and ν ∈
(

1
2 , 1

)

, or (b) µ ∈
[

1
2 , 1

]

and

ν ∈
(

0, 1
2

)

. In the case (a), we obtain λ ∈
(

1
3−2µ

, 1
2−µ

)

⊂
(

1
3 , 2

3

)

. We continue
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with equating the coefficients of the reduced Taylor series of B
G(λ)
p,p−r;µ and Bq,q−s;ν .

The coefficients of x4 and the relations (3.1), r = 2p and s = 2q lead us to

(1 + 2ν) (q2 − 2p2µ2 + p2µ − 3q2ν + 2q2ν2) = 0,

which again is (3.4). Equating the coefficients of x5 and taking into account the
same relations and (3.5), we obtain the condition:

p4µ (2µ − 1) (ν + µ − 1) (−10µ + 12µν + 1 − 2ν) = 0.

Hence, we have the following possible situations:
1.2.3.1. p = 0, then q = 0, but also r = 0 = s, which contradicts with the
hypothesis;
1.2.3.2. µ = 0, then (from (3.5)) q = 0, so s = 0, which contradicts with s 6= 0;
1.2.3.3. µ = 1

2 , then (from (3.5)) q = 0, so s = 0, same as previous;

1.2.3.4. ν = 1 − µ, then (from (3.5)) q = ±p, and from (3.1), α = 1, hence λ = 1
2 .

This implies (iv), for r = 2p and taking into account that Bm,n;γ = Bn,m;γ ;

1.2.3.5. −10µ + 12µν + 1− 2ν = 0, hence ν = 10µ−1
12µ−2 , with µ ∈

[

0, 1
10

]

∪
[

1
2 , 1

]

(in

order that 0 ≤ ν ≤ 1). But, for this value of ν, there is no real q from the relation
(3.5) (none of the cases (a) and (b) are satisfied).
2. If r 6= 2p, from (3.3) we obtain:

(3.6) µ =
(2q − s) (1 − ν)

r − 2p
.

Equating the coefficients of x3 and taking into account (3.1) and (3.6), we obtain:

(1 − ν)
[

−2 (rq − ps) (rq − rs + ps) ν +
(

12p2 − 12pr + 5r2
)

q (q − s) +

(3.7) + (r − 2p)
(

3p2 − 3pr + r2
)

(s − 2q) +
(

r2 − 2pr + 2p2
)

s2
]

= 0

2.1. If ν = 1, from (3.6) it follows µ = 0, hence, from (3.1), λ = 1
2 , which leads to

the case (iv) for µ = 0.
2.2. If ν 6= 1, from (3.7) it follows that the following relation must hold:

(3.8) 2 (rq − ps) (rq − rs + ps) ν = −
(

12p2 − 12pr + 5r2
)

q (q − s) +

(3.9) + (r − 2p)
(

3p2 − 3pr + r2
)

(s − 2q) +
(

r2 − 2pr + 2p2
)

s2

2.2.1. If

(3.10) rq = ps,

then the left side of the relation (3.9) is null, hence the right side must also be
null. We have two possible situations:
2.2.1.1. q = 0. Then, from (3.10), p = 0 (s 6= 0), therefore the right side of (3.9)
becomes

r2s (r + s) = 0.

Then, because r 6= 0 and s 6= 0, we have r + s = 0, which means s = −r, from
where µ = 1 − ν and λ = 1

2 , obtaining the case (iv), when p = 0.
2.2.1.2. q 6= 0, then, from (3.10), r = ps

q
. Replacing it in the right side of the

relation (3.9) and equating with 0 we obtain:

p2 (p + q) (2q − s)
2 (

3q2 − 3qs + s2
)

= 0.
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We can have one of the cases:
2.2.1.2.a. p = 0, thus r = 0, that cannot be fulfilled, because r 6= 0;
2.2.1.2.b. p + q = 0, thus r = −s ⇒ (from (3.6)) µ = 1 − ν ⇒ (from (3.1)) λ = 1

2 ,
therefore we obtained the case (iv);
2.2.1.2.c. s = 2q , or r = ps

q
= 2p, that cannot be fulfilled, because we are in the

case r 6= 2p; or
2.2.1.2.d. 3q2 − 3qs + s2 = 0, that cannot be fulfilled unless s = q = 0, which
contradicts with the hypothesis.
2.2.2. If in (3.9) we have rq 6= ps, but rq − rs + ps = 0, then

rq = s (r − p) .

We have r 6= 0, therefore

q =
s (r − p)

r
.

Replacing it in the right side of the relation (3.9) and equating with 0, we obtain

s (r − 2p)
2 (

3p2 − 3pr + r2
)

(s − r) = 0.

But s 6= 0, r 6= 2p and 3p2 − 3pr + r2 6= 0, hence the previous relation can be
fulfilled only if s = r. In this case, we have q = r − p, therefore µ = 1 − ν and
λ = 1

2 , obtaining the case (iv), because Bm,n;γ = Bn,m;γ .
2.2.3. If in (3.9) we have rq 6= ps and rq − rs + ps 6= 0, then we have:

ν = [q (q − s)
(

12p2 − 12pr + 5r2
)

+ (2p − r)
(

3p2 − 3pr + r2
)

·(3.11)

· (2q − s) + s2
(

r2 − 2pr + 2p2
)

]/ [2 (rq − ps) (rq − rs + ps)] .

Equating now the coefficients of x4 and successively applying the relations (3.1),
(3.6) and (3.11), we obtain:

(s − 2q) {(36pr − 7r2 − 36p2)q3(q − 2s) + 3(r − 2p)(6p2 − 6pr + r2)q2

·(2q − 3s) + (2r2 − 7pr + 7p2)s2[p(r − p) + 2sq] + (−72p3r + 50p2r2

+36p4 − 14pr3 + r4)q(s − q) + (50pr − 9r2 − 50p2)s2q2 + [−2r2s3

+3(r − 2p)(r2 − 8pr + 8p2)s2]qp(r − p)s4 + 3p(r − p)(r − 2p)s3} = 0.

2.2.3.1. If s = 2q, from (3.11) we obtain ν = 1
2 , from (3.6) µ = 0, hence α = 1

2 ,

λ = 1
3 . Therefore, the case (v) is obtained.

2.2.3.2. If s 6= 2q, then the case (vi) of the conclusion has to be satisfied.
By direct computation it can be seen that the relations (i) − (v) are verified. �

Corollary 3.2. The equality

CG(λ)
p,µ = Cq,ν

is valid if and only if we are in one of the situations:

(i) C
G(0)
p,µ = Cq,0;

(ii) C
G(λ)
p,1 = Cq,0;

(iii) C
G( 2

3 )
1

2

= Cq,1;

(iv) CG
p,µ = C1−p,1−µ , or

(v) C
G( 1

3 )
p,0 = C 1

2

.
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Proof. It follows from the previous theorem, by taking r = s = 1 and verifying
that in the case (vi) there are no real solutions. �

Corollary 3.3. The equality

B
G(λ)
p,p−r;µ = Pq,ν (for p 6= r, q 6= 0)

is valid if and only if we are in one of the situations:

(i) B
G(0)
p,p−r;µ = Pq,0;

(ii) B
G(λ)
p,p−r;1 = Pq,0;

(iii) B
G( 2

3 )
p,−p = Pq,1 , or

(iv) BG
p,0;µ = P−p,1−µ.

Proof. It follows from the previous theorem, by taking s = q and seeing that in
the case (v) we would have q = 0, whereas in the case (vi) there are no real
solutions. �
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