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Generalized Inverses of Means

TuLia COSTIN

ABSTRACT. A mean N is called complementary to M with respect to P if it verifies the
relation

P(M(a,b), N(a,b)) = P(a,b),Va,b > 0.
The complementary of M with respect to the geometric mean was called by C. Gini the inverse
of M. We call the complementary of M with respect to a weighted geometric mean, generalized
inverse of M. We study some generalized inverses, using the series expansion of means.

1. INTRODUCTION

Usually the means are given by the following
Definition 1.1. A mean is a function M : Ri — R, which has the property
min(a,b) < M(a,b) < max(a,b), Ya,b> 0.
We use here weighted Gini means defined by

1

Aea”" 4+ (1 =N -b"]"=
a"+(1—-X)-b ks
Acas+(1—=X)-b®
with A € [0,1] fixed. Weighted Lehmer mean, C,.x = B, ,_1,» and weighted power
means P,y = B, o.» are also used. We remark that
BT,S;O: Cr;O = 7)7",0 = H2 and Br,s;lz Cr;l = 7)7",1 = Hl )

where we denoted by II; and IT5 the first respectively the second projections defined
by

Br,s;)\(aw b) =

1y (a,b) = a, Ma(a,b) =b, Ya,b > 0.
Given three means M, N and P, their composition
P(M,N)(a,b) = P(M(a,b),N(a,b)), Va,b > 0,
defines also a mean P(M, N).
Definition 1.2. A mean N is called complementary to M with respect to
P (or P—complementary to M) if verifies
P(M,N)=P.

More comments on this notion and its importance can be found in [6]. We study
the complementariness with respect to weighted geometric means Gy = Py . We
denote the Gy— complementary of M by M9 and we call it the generalized
inverse of M.
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2. SERIES EXPANSION OF MEANS
For the study of some problems related to means in [5] is used the power se-
ries expansion. In fact, for a mean M is considered the series of the normalized
functions M (1,1 —z), = € (0,1) .
For example, in [3] is given the series expansion of the weighted Gini mean

2

Bp,p_m(1,1—x):1—(1—t)-x+t(1—t)(2p—r—1)-%—t(l—t)
3

-{t[6p2—6p(r+1)+(T+1)(2r—|—1)]—3p(p—r)—(r—1)(r+1)}~%
—t(1—t)-{t?[—24p> +36p> (r + 1) = 12p(r + 1) (2r + 1) + (r + 1) (2r + 1)
C(Br4+ 1))+ +t[24p® — 120 Br+ 1)+ 12p(r +1) (2r — 1) =3 (r + 1) (2r + 1)
-(7‘—1)]——4p3—|—6p2(7"—1)—2p(27‘2—37‘—1)—|—(r—2)(7’—1)(r—|—1)}

4
. % — —t(1—t)- [t* (120p" — 240p® (r + 1) + 120p*(r + 1)(2r + 1)
)

—20p(r+1)2r+1)Br+1)+ (r+1)2r+1)(3r+1)(4r+1))
+ ¢ (—180p* + 180p° (2r 4+ 1) — 90p° (r 4+ 1)(4r — 1) + 30p(r + 1)(2r + 1)(3r — 2)
—6(r — 1)(r + 1)(2r + 1)(3r + 1)) + ¢ (70p* — 20p*(7r — 2) + 10p*(14r® — 6r — 9)

—10p(r 4+ 1)(7r* = 12r 4+ 3) + (r — 1)(2r + 1)(7r — 11)(r + 1)) — 5p* + 10p*(r — 2)
5

5P (2% — 6r +3) + 5p(r —2)(r2 — 2 — 1) — (r+ 1)(r — 1)(r — 2)(r — 3)] - % .

We need also the following result proved in [2].

Theorem 2.1. If the mean M has the series expansion
o0
M1,1-2)= 1—|—Zanaﬁ",
n=1

then the first terms of the series expansion of its generalized inverse M9 are

Mg(’\)(l,l—x):1—(1+a-a1)~x+%[(a+1)-a%+2(a1—a2)}~x2

—%[(a+1)(a+2)~a‘;’+3(a+1)-a1(a1—2a2)+6(a3—a2)] cx?

2@t 1) o+ 2) o+ 3) - af + 40 o+ 1) (0 +2) (a1 — 3a)
4 (0%

+12(a+1) (a3 — 2a1 (a2 — a3)) +24 (a3 — aq)] - x —5[(a+1) (a+2)
(a+3)(a+4)-a] +5a3 (a+1) (a+2) (a+3)(a; — 4as) — 60a?

(a+1) (+2) (az — az) + 60a1 (a+ 1) ((a +2) a3 + 2 (a3 — as)) + 60as (a + 1)
-(ag — 2a3) — 120 (ag — as)] - 2° + - --

where
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3. GENERALIZED INVERSES OF GINI MEANS

As a consequence of the previous result, we get the following

Corollary 3.1. The first terms of the series expansion of the generalized inverse

of the Gini mean By, p—r., are
g(n) _ x?
By, (L1 —x)= 1—(ozu—!—a—l)-x—a(l—u)[(a+2p—r)u—(a—l)]-5

+a(l—p){B-p* +6(@—1)p+(a—r)(a—2r)u* —[3p* = 3(r—2a)p
4 @a—r) (= i+ (0= 1) (0 D} 25— (L— ) {415 + 30 (a— 1) p?
+12(a—7)(a—=2r)p+ (a—7) (a — 2r)(a — 3r)|u® + [-24p® + 12 (3r — 4a — 1) p?
—12(2a —2r+1) (@ —7)p— (a—2r) (a — ) (B + 2 — 3r)]|u? + [4p® + 6(2a — 7
+1)p® +2(6a (20— 2r+1) =3r+2r* = 1) p+ (a — r)(30” + 4o — 3rov — 2r
+r2 = Dp—(a—1)(a+1)(a+2)}- 4;:+a(1—,u){[5!~p4+240(oz77“)p3
+120 (v — 1) (@ — 2r) p* + 20 (a — 7) (e — 27) (@ — 3r) p + (a — 7) (o — 27) (a — 37)
(o — 4r)]pt + [~180p* 4 60 (61 — Ta — 2) p* — 90 (o — 1) (B — 4r + 2) p?
—30(a—71)-(a—2r)(2a+2—-3r)p— (o —7) (o — 2r) (@ — 37) (4 + 5 — 67)]pi®
+ [70p* + 20 (10c — 7r + 6) p* + 10 (—30ra + 18a” + 24a + 3 + 14r* — 18r) p
+10 (a — 7) (60® + 120 — 127 + 7% — 121 + 3) p + (6a® — 12ra + 150+ 5 + 7r?
—157) (o — 27) (o — )] + [=5p* + 10 (r — 2 — 2a) p*® + (30ra — 3002 — 60a
—15—10r* +30r) p* = 5(2a+2 — 1) (20® — 2ra+4a —2r+1* —1)p
— (e =) (4a® — 6ra® + 150% — 15ra + 10a + 4r°a — 5+ 57> — r® — 5r)p

5

+a—1D(a+)(a+2)(a+3)}- 5'

Using it, we can prove the following
Theorem 3.2. If
Bg()\ = Bq7q75;ua fOT r 7& 0,s 7& 0,

p,p—Tip

then we are in one of the following cases:

G(0) o
i) Bp,p T3 = Bg.g—s05

(
(i) g,(p T = Bg,q—s:05
(
(iv)

iii) B 5. 2 3 = Bygsi;
w B (p_ " =B pr—pi—p ;
g
(U) p,p— rOqu,—q , or
2q—s)(1—
vi) « %zlfwuz%(r#zp)?
a(q—5)(12p>—12pr+57 ) +(2p—r) (24—s) (39> —3pr-+12 ) 5 (r* —2pr-+2p)
2(rq—ps)(rq—rs+ps) v #£E1

V=
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rq # ps,rq + ps # rs, (36pr — Tr? — 36p?)q>(q — 2s) + 3(r — 2p)
(6p* — 6pr +1r2)q*(2q — 3s) + (212 — Tpr + Tp*)s%(p(r — p) + 2sq)
+(=72p%r + 50p?r2 + 36p* — 14pr3 + r4)q(s — q)+
+(50pr — 9r? — 50p?)s%q® + (—2r%s3 + 3(r — 2p)(r? — 8pr + 8p?)s?)q
+p(r —p)st + 3p(r —p)(r — 2p)s® = 0, with s # 2q.

The cases (i) — (v) are always true.

Proof. Equating the coefficients of x in the series of the two members, we get:

(3.1) v=a(l—p).
Then, the coefficients of x2 give
(3.2) V(24— ) (1= v) + (2p—7) 1] = 0

If v = 0, then, from (3.1) we have one of the cases:

- a =0, therefore A = 0, from where we obtain the case (i) , or
- =1, that leads to the case (i7).

If v # 0, then we have from (3.2):

(3.3) (2q=s)(L-v)=(r—2p)p

1. If r = 2p, then one of the following situations must hold:

1.1. v = 1 that implies, from (3.1), p = 2)‘;1, with A € (%,1). Equating the
coefficients of 23, using the relation (3.1) and replacing ¥ = 1 and r = 2p, it
follows that:

pou(2u—1)=0.
We have again three possible situations:
1.1.1. p = 0, therefore r = 0, which contradicts with the hypothesis r # 0;
1.1.2. p =0, so A = 1, therefore it is the case (iv), in which r = 2p and p = 0;
1.1.3. p=3,s0 A =2, thus the case (iii).
1.2. 2q = s. Equating the coefficients of 23 and taking into account the previous
relations, the following condition is obtained:

(3.4) Pup-1)=@2v-1)(r-1)4¢.

1.2.1. In this relation, if ¥ = 1, then one of the following situations must hold:
1.2.1.1. 4 =0, then A\ = %, therefore the case (iv), for r = 2p, s = 2¢ and p = 0;
1.2.1.2. p= 1, then A = 2, therefore the case (iii), for s = 2g;

1.2.1.3. p =0, then r = 0, which contradicts with the hypothesis.

1.2.2. In the relation (3.4) if v = %, then again one of the following situations
must hold:

1.2.2.1. p =0, then A = %, which leads to the case (v), for r = 2p;

1.2.2.2. p= %, then A = 3, that is the case (iv), for r = 2p and p = %;

1.2.2.3. p =0, then r = 0, which contradicts with the hypothesis  # 0.

1.2.3. If v # 1 and v # 3 in the relation (3.4), then we can write:

1
3
1

2u(2n—1
2v-1)(v-1)
This has real solutions if (a) p € [0,3] and v € (3,1), or (b) p € [5,1] and
v E (O, %) In the case (a), we obtain A € (3712/1, ﬁ) - (%, %) We continue
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BIW

pp—rip A0 By g—siw-
The coefficients of * and the relations (3.1), r = 2p and s = 2¢ lead us to

(142v) (¢° — 2p°p® + p*1 — 3¢°v + 24°V°) = 0,

which again is (3.4). Equating the coefficients of 2% and taking into account the
same relations and (3.5), we obtain the condition:

P u—1)(v+p—1) (=10p + 12ur + 1 — 2v) = 0.
Hence, we have the following possible situations:
1.2.3.1. p = 0, then ¢ = 0, but also r = 0 = s, which contradicts with the
hypothesis;
1.2.3.2. u =0, then (from (3.5)) ¢ =0, so s = 0, which contradicts with s # 0;
1.2.3.3. =1, then (from (3.5)) ¢ =0, so s = 0, same as previous;
1.2.3.4. v =1— p, then (from (3.5)) ¢ = +p, and from (3.1), & = 1, hence A = 1.
This implies (iv), for » = 2p and taking into account that By, .y = Bnomiv;
1.2.3.5. —10p+ 12w+ 1 =20 = 0, hence v = 34=5 , with p € [0, 15] U [3,1] (in
order that 0 < v < 1). But, for this value of v, there is no real ¢ from the relation
(3.5) (none of the cases (a) and (b) are satisfied).
2. If r # 2p, from (3.3) we obtain:

with equating the coefficients of the reduced Taylor series of

(20-5)(1-v)

3.6 =
(3.6) I p—
Equating the coefficients of 2% and taking into account (3.1) and (3.6), we obtain:

(1-v) [—2 (rq —ps)(rq—rs+ps)v+ (12p2 — 12pr + 57"2) q(g—s)+

(3.7) + (r —2p) (3p2 — 3pr + 7“2) (s —2q) + (’I“2 — 2pr + 2p2) 52] =0

2.1. If v = 1, from (3.6) it follows p = 0, hence, from (3.1), A = %, which leads to
the case (iv) for p = 0.
2.2. If v # 1, from (3.7) it follows that the following relation must hold:

(3.8) 2(rq—ps)(rqg—rs+ps)v=— (12]02 — 12pr + 51"2) q(qg—s)+

(3.9 +(r —2p) (3p2 — 3pr + 7“2) (s —2q) + (r2 — 2pr + 2p2) 52
2.2.1. If
(3.10) rq = ps,

then the left side of the relation (3.9) is null, hence the right side must also be
null. We have two possible situations:
2.2.1.1. ¢ = 0. Then, from (3.10), p = 0 (s # 0), therefore the right side of (3.9)
becomes

s (r+s) = 0.
Then, because r # 0 and s # 0, we have r + s = 0, which means s = —r, from
where p=1—v and A = %, obtaining the case (iv), when p = 0.
2.2.1.2. ¢ # 0, then, from (3.10), r = %. Replacing it in the right side of the
relation (3.9) and equating with 0 we obtain:

p? (p+q) (29 — 3)2 (3q2 —3gs + 82) =0.
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We can have one of the cases:
2.2.1.2.a. p =0, thus r = 0, that cannot be fulfilled, because r # 0;
2.21.2.b. p+¢ =0, thus r = —s = (from (3.6)) p =1 —v = (from (3.1)) A = 1,
therefore we obtained the case (iv);
2.21.2.c. s=2q,orr= % = 2p, that cannot be fulfilled, because we are in the
case r # 2p; or
2.2.1.2.d. 3¢%> — 3¢gs + s> = 0, that cannot be fulfilled unless s = ¢ = 0, which
contradicts with the hypothesis.
2.2.2. If in (3.9) we have rq # ps, but rq — rs + ps = 0, then

rg=s(r—p).
We have r # 0, therefore

_s(r—p)
pamt

Replacing it in the right side of the relation (3.9) and equating with 0, we obtain

s(r— 2p)2 (3p2 — 3pr + r2) (s—r)=0.

But s # 0, r # 2p and 3p® — 3pr + r2 # 0, hence the previous relation can be
fulfilled only if s = r. In this case, we have ¢ = r — p, therefore y = 1 — v and
A = 1, obtaining the case (iv), because B niy = Bn,my-

2.2.3. If in (3.9) we have rq # ps and rq — rs + ps # 0, then we have:

(3.11) v =[q(q—s) (12p* = 12pr + 5r%) + (2p — ) (3p* — 3pr +1?) -
+(2q = ) + 5% (r® = 2pr + 2p°)]/ [2(rq — ps) (rg — 75 + ps)]..

Equating now the coefficients of 2% and successively applying the relations (3.1),
(3.6) and (3.11), we obtain:

(s —2q) {(36pr — Tr? — 36p?)q>(q — 25) + 3(r — 2p)(6p* — 6pr + 12)¢>
(2 — 3s) + (2% — Tpr + Tp?)s2[p(r — p) + 2sq] + (—=72p3r + 50pr?
+36p* — 14pr® + r*)q(s — q) + (50pr — 9r? — 50p?)s%q? + [—2r2s?
+3(r = 2p)(r* — 8pr + 8p%)s”|qp(r — p)s* + 3p(r — p)(r — 2p)s} = 0.
2.2.3.1. If s = 2q, from (3.11) we obtain v = 1, from (3.6) u = 0, hence a =
A = . Therefore, the case (v) is obtained.

2.2.3.2. If s # 2q, then the case (vi) of the conclusion has to be satisfied.
By direct computation it can be seen that the relations (i) — (v) are verified. O

N

Corollary 3.2. The equality
9N — ¢
Py v

is valid if and only if we are in one of the situations:
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Proof. 1t follows from the previous theorem, by taking r = s = 1 and verifying
that in the case (vi) there are no real solutions. O

Corollary 3.3. The equality
A
BIY = Pyu (forp# 7,0 #0)

is valid if and only if we are in one of the situations:

. G(0
(i) Bp’g%\?m: 4,00
(i) BM,;;1 = Pyo0;
(iii) By =Py . or
(iv) By 0. = P-pi—p-

Proof. Tt follows from the previous theorem, by taking s = ¢ and seeing that in
the case (v) we would have ¢ = 0, whereas in the case (vi) there are no real
solutions. O
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