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Localization of solutions for a problem arising in
the theory of adiabatic tubular chemical reactors

ANDREI HORVAT-MARC and CRISTINA ŢICALĂ

Abstract. We consider the boundary value problem8<: µu′′
− u′ + f (u) = 0, on [0, 1]

µu′ (0) − u (0) = 0
u′ (1) = 0

where µ is a positive real number and f : R → R is continuous.
For this problem, via Krasnoselskii expansion-compression theorem, we establish an existence

result for positive solutions and we use the localization provided by the Theorem 2.3 to give an

aproximation of the solution for some particular cases.

1. Introduction

In this paper we establish existence conditions of positive solutions of boundary
value problem

(1.1)







µu′′ − u′ + f (u) = 0, on [0, 1]
µu′ (0) − u (0) = 0
u′ (1) = 0

This work was inspired by [2], where the problem (1.1) is studied using some
results related to fixed point index. Our approach use the Krasnoselskii expansion-
compression theorem.

The Krasnoselskii expansion-compression theorem has been improved in various
way [2, 3, 4, 10] and applied to establish sufficient conditions for existence of
positive solutions of different problems [1, 5, 7, 9]. In recent paper [6] this technique
is applied to discuss the nonlinear integral equations in Banach spaces.

In what follows, we recall the Krasnoselskii expansion-compression theorem.

Theorem 1.1. [Krasnoselskii expansion-compression fixed point theorem]
Let X be a Banach space, and let K ⊂ X be a con in X. Assume that Ω1, Ω2

are two open subsets of X such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Consider the operator
T : K ∩

(

Ω2\Ω1

)

→ K be completely continuous and either

‖T (x)‖ ≤ ‖x‖ , x ∈ K ∩ Ω1 and ‖T (x)‖ ≥ ‖x‖ , x ∈ K ∩ Ω2

or
‖T (x)‖ ≥ ‖x‖ , x ∈ K ∩ Ω1 and ‖T (x)‖ ≤ ‖x‖ , x ∈ K ∩ Ω2

is true. Then T has a fixed point in K ∩
(

Ω2\Ω1

)

.
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In this section we remind an extension of Krasnoselskii expansion-compression
theorem presented in [5]. This result is the main tool in our approach.

We denote by C ([0, h] ,R+), where R+ = [0,∞), the Banach space of continuous
functions u : [0, h] → R+, endowed with the Chebyshev norm

‖u‖ = max
t∈[0,h]

{|u (t)|} .

Let us consider the Fredholm integral equation

(1.2) u(t) = g(t) +

h
∫

0

k(t, s) f(s, u(s))ds, t ∈ [0, h]

with g ∈ C (0, h) and f : [0, h] × [0,∞) → R continuous.
We introduce the following conditions:

(H1) 0 ≤ kt(s) = k(t, s) ∈ L1[0, h] for any t ∈ [0, h];
(H2) the map t 7−→ kt is continuous from [0, h] to L1 [0, h];
(H3) there are µ ∈ (0, 1), κ ∈ L1 [0, h], and an interval [a, b] ⊂ [0, h] such that

k(t, s) ≥ µκ(s) ≥ 0 for any t ∈ [0, h] and a.e. [0, h];
(H4) k(t, s) ≤ κ(s) for any t ∈ [0, h] and a.e. s ∈ [0, h];
(H5) g ∈ C[0, h] with g(t) ≥ 0 for any t ∈ [0, h] and

min
a≤t≤b

g(t) ≥ µ ‖g‖ = µ sup
0≤t≤h

|g(t)| ;

(H6) f : [0, h] × R → R is continuous;
(H7) there are the nondecreasing mappings ϕ,ψ ∈ C (R+,R+) and the positive

numbers σ, τ such that

0 ≤ f (t, z) ≤ ψ (z) for any t ∈ [0, h] and a.e. z ∈ [0, σ] ,

0 < ϕ (z) ≤ f (t, z) for any t ∈ [0, h] and a.e. z ∈ [0, τ ] ;

(H8) there exists α > 0 such that α < σ and α
‖g‖+K1ψ(α) > 1, where

K1 = sup
0≤t≤h

h
∫

0

k(t, s)ds > 0;

(H9) there exist β > 0, α 6= β, β < τ and t0 ∈ [0, h] such that

β

g(t0) + ϕ(µβ)
b
∫

a

k(t0, s)ds

< 1.

Theorem 1.2. [5] Assume that hypothesis (H1)− (H9) are satisfied. Then, equa-
tion (1.2) has at least one nonnegative solution u ∈ C [0, h] and for this solution
we have that

min {α, β} ≤ ‖u‖ ≤ max {α, β} .

In what follows we present another existence result.
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Lemma 1.1. If 0 < α < β, g ∈ C[0, h] and hypotheses (H1), (H2), (H6), (H7)
and (H8) are satisfied, then there exists a positive solution u0 ∈ C [0, h] for the
nonlinear integral equation (1.2) such that

(1.3) 0 < ‖u0‖ ≤ α.

Proof. Consider the function f∗ : R → R

f∗ (t) =

{

f (t) , if t ≥ 0
f (0) , if t < 0

and the complete continuous operator T ∗ : C ([0, h] ,R+) → C ([0, h] ,R+),

(T ∗u) (t) = g (t) +

∫ h

0

k (t, s) f∗ (u (s)) ds, t ∈ [0, h] .

Let u ∈ C ([0, h] ,R+) be a solution of u (t) = λ (T ∗u) (t), t ∈ [0, h] for some
λ ∈ (0, 1). We have

‖u‖ = sup
t∈[0,h]

u (t) ≤ ‖g‖ + ψ (‖u‖) · sup
t∈(0,h)

∫ h

0

k (t, s) ds.

By (H8) we obtain that ‖u‖ = α and this implies the existence of a positive
solution u0 ∈ C [0, h] such that 0 < ‖u0‖ ≤ α. �

2. Main result

We consider the boundary value problem

(2.4)







µu′′ − u′ + f (u) = 0, on [0, 1]
µu′ (0) − u (0) = 0
u′ (1) = 0

where µ is positive real number and f : [0,∞) → R is continuous. This problem
arises in the theory of adiabatic tubular chemical reactors, where u represents the
temperature.

In some particular cases [2], function f : R
+ → R represents the Arrhenius

reaction rate

(2.5) f (t) = p (q − t) e
−

c

1 + t, with p, q, c pozitive.

It is easy to chek that problem (2.4) is equivalent to the nonlinear integral
equation

(2.6) u (t) =

∫ 1

0

G (t, s) f (u (s)) ds, t ∈ [0, 1]

where the Green function G : [0, 1] × [0, 1] → [0, 1] is given by

(2.7) G (t, s) =

{

1 if 0 ≤ s ≤ t ≤ 1

e
t−s
µ if 0 ≤ t ≤ s ≤ 1

.

For the Green function given by (2.7) we have

Lemma 2.2. (LG1) sup
t∈[0,1]

∫ 1

0
G (t, s) ds = 1;
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(LG2) for t0 ∈ [a, b] the following inequalities hold

(2.8) µ

(

1 − e
a−b
µ

)

≤

∫ b

a

G (t0, s) ds = t0 + µ− a− µe
t0−b
µ ≤ b− a.

In order to apply Theorem 1.2 we need the next intermediate results

Lemma 2.3. Consider the function γ : [0, 1] → [0, 1], γ (t) = e
t
µ . Then

(L1) G (t, s) ≤ γ (s) for t ∈ [0, 1] and a.e. s ∈ [0, 1];
(L2) for any 0 ≤ a < b ≤ 1 we have

(2.9) G (t, s) ≥ e
a−2
µ γ (s) , t ∈ [a, b] and s ∈ [0, 1] .

Proof. (L1) It’s obviously that G (t, s) ≤ 1 ≤ γ (s) = e
t
µ for t, s ∈ [0, 1].

(L2) Let [a, b] ⊂ [0, 1]. If s ∈ [0, 1], t ∈ [a, b] with s ≤ t then (2.9) is equivalent

with 1 ≥ e
a+s−2
µ ≥ e

a−2
µ and this is true because a + s − 2 ≤ 0. If s ∈ [0, 1],

t ∈ [a, b] with s ≥ t then (2.9) is equivalent with e
t−s
µ ≥ e

a+s−2
µ ≥ e

a−2
µ and this

is true because t− a ≥ 0 ≥ 2s− 2. �

The main result of this paper is given in the following theorem

Theorem 2.3. Suppose that the function f : R → R is continuous and there exist
the positive numbers α, β (α 6= β), σ, τ with α < σ, β < τ and the nondecreasing
continuous functions ϕ,ψ ∈ C (R+,R) such that

(2.10) 0 ≤ f (z) ≤ ψ (z) < α a.e. in z ∈ [0, σ] ,

(2.11) 0 < ϕ (z) ≤ f (z) a.e. in z ∈ [0, τ ] ;

(2.12) β < µ

(

1 − e
a−b
µ

)

ϕ

(

βe
a−2
µ

)

for some a, b ∈ [0, 1] , a < b.

Then, the problem (2.4) have at least one positive solution u ∈ C [0, 1]. Further-
more

(A) α ≤ ‖u‖ ≤ β and u (t) ≥ αe
a−2
µ for t ∈ [a, b] if α < β,

(B) β ≤ ‖u‖ ≤ α and u (t) ≥ βe
a−2
µ for t ∈ [a, b] if β < α,

holds.

Proof. The proof is a direct application of Theorem 1.2 with k = G, κ = γ and
g ≡ 0. Hence (H3) and (H4) are equivalent with (L2), respectively (L1). For our
considerations, (H8) implies ψ (z) < α, z ∈ [0, σ] inequality which are impose in
(2.10). By (LG2) we obtain that (2.12) implies (H9). So, we can apply Theorem
1.2 to obtain the existence of positive solution for (2.4). �

Remark that (2.12) can be replaced by

(2.13) β <

(

t0 + µ− a− µe
t0−b
µ

)

ϕ

(

βe
a−2
µ

)

for some 0 ≤ a < t0 < b ≤ 1.
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3. Aplication and numerical results

In this section we obtain some numerical results using Theorem 2.3.
Consider the problem

(3.14)











u′′ − u′ +
(

−u
2 + 1

)

e
−

1
1+u = 0, on [0, 1]

u′ (0) − u (0) = 0
u′ (1) = 0

Problem (3.14) is a particular case of (2.4) with

f (x) =
(

−x
2 + 1

)

e
−

1
1+x , x ∈ [0,∞) .

For x ∈ [0, 1] we have 0.3 < f (x) < 0.4 and therefore let ψ (x) ≡ 0.4 and
ϕ (x) ≡ 0.3. We choose α = 0.4 and β = 0.1. These values satisfi (2.10) and
(2.11). Hypothesis (2.12) is satisfied if b− a > 0.40547. So, we can conclude that
for (3.14) there exists at least one positive solution u ∈ C ([0, 1] , [0, 1]) and for this
solution we have

0.1 ≤ u (t) ≤ 0.4, t ∈ [0, 1]

u (t) ≥ 0.1 · ea−2, t ∈ [a, b] with a ∈
[

0, 1
2

]

, b ∈
[

a+ 1
2 , 1

]

Let Lu (t) = u′′ (t) − u′ (t) + f (u (t)), t ∈ [0, 1]. For the first iteration u0 we
used several values.

Considering u0 = 0.3, it results

u1 (t) =

∫ 1

0

G (t, s) f (u0 (s)) ds

=

∫ 1

0

G (t, s) f (0.3) ds

= 0.393 86t− 0.393 86et−1 + 0.393 86,

where u1 satisfies the boundary conditions and

−0, 00195 < Lu1 (t) < 0.0000152, t ∈ [0, 1].

Considering u0 = 0.25, it results

u1 (t) =

∫ 1

0

G (t, s) f (u0 (s)) ds

=

∫ 1

0

G (t, s) f (0.25) ds

= 0.393 16t− 0.393 16et−1 + 0.393 16,

where u1 satisfies the boundary conditions and

−0.0013 < Lu1 (t) < 0.0007152, t ∈ [0, 1].
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Considering u0 = 0.2, it results

u1 (t) =

∫ 1

0

G (t, s) f (u0 (s)) ds

=

∫ 1

0

G (t, s) f (0.2) ds

= 0.391 14t− 0.391 14et−1 + 0.391 14,

where u1 satisfies the boundary conditions and

0. 00087 × 10−4 < Lu1 (t) < 0.00272, t ∈ [0, 1].
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