
CARPATHIAN J. MATH.

20 (2004), No. 1, 197 - 203

Automata-Based Compositional Analysis of
Component Systems. Design and Implementation
Issues

BAZIL PÂRV, SIMONA MOTOGNA and DRAGOŞ PETRAŞCU

Abstract. Specifying a real-world component system is a complex manual process. It is
essential to be able to verify the correctness and robustness of its behavior, before it becomes
operational. We propose a new way of specifying a component system, based on the concept

of interface, that can be seen as a tool from analysis and design to programming and for type
specification. We construct an algorithm that constructs the model, and can be used to deduct
properties about the system: correctness, termination, deadlock free.

1. Introduction

Component based systems offer strong tools for developing large applications,
that usually are developed in teams. In order to construct a correct system these
components should be assembled in an unfied model, and, desirable, we would
like to be able to obtain properties about the model, that could contribute to
its correctness. The development of a formal model for components provides an
exact analysis of component characteristics and qualities, such that we can reason
about the correctness, efficiency and and interoperability of the system. Such a
model should be designed at an early stage, enabling the software engineers and
programmers to make correct and useful decisions.

Starting from an intuitive model of components (proposed in [4]), we construct
a more exhaustive specification, that will better describe component structure
and interactions, based on the observation that the most important part of a
component is its interface – what is the component providing.

We will discuss in brief the first attempt of constructing a component model,
then we will propose a more sophisticated way to built it, and in the end we will
discuss the benefits of this improved algorithm.

2. Definition of the model

We start by presenting the initial system specification.
The basic notions involved in a component definition are [1]:

• domain D - a set that doesn’t contain the null element;
• set of attributes A - an infinite fixed and arbitrary set; the attributes

signify variables or fields;
• type of an attribute x ∈ A : Type(x) ⊆ D represents the set of possible

values for the attribute x.

Received: 26.09.2004; In revised form: 15.10.2004

2000 Mathematics Subject Classification. 68Q45, 68T10.
Key words and phrases. Component-based systems, formal models, finite automaton.

197



198 Bazil Pârv, Simona Motogna and Dragoş Petraşcu

Considering X a component over the set A of attributes, we will use the follow-
ing notations [1]:

• inports(X) ⊆ A - represents the set of input ports (attributes) of the
component X

• outports(X) ⊆ A - represents the set of output ports (attributes) of the
component X

• attributes(X) ⊆ A - represents the set of attributes of component X

inports(X) ∩ outports(X) = ∅

Thus, we may describe the behavior of the component as producing results to
the output ports as an answer to the input received from the input ports; the ports
represent the interface through which the component interact with other compo-
nents. The behavior is incorporated in the component functionality, described as
a set of tasks.

Definition 2.1. A component over a set A of attributes can be:

• a source component : is a component without inports, that generates
data provided as outports in order to be processed by other components;
if X is a source then:

attributes(X) = outports(X) = {X} inports(X) = ∅

• a destination component : is a component without outports, that re-
ceives data from the system as its inports and usually displays it, but it
doesn’t produce any output; if X is a destination then:

attributes(X) = inports(X) = {X} outports(X) = ∅

• a simple component, performs a single task;
• a compound component : a group of connected components, in which

the output of a component is used as input by another component from
this group.

Definition 2.2. We suppose that the specification of the components from the
system is given in the following form:

Component id:
Inport: . . .
Outport: . . .
Functionality: . . .

Using this definition, the algorithm [4], generates a finite-automata based model,
that also verifies the consistency of the system during construction. The input is
given by a set of component descriptions (as in definition 2.2), and the algorithm
works as follows: detect the source (initial component, outports(Cinit) = ∅), exe-
cute all tasks, mark the component and establish the transitions corresponding to
data flows, and push outport data into the stack; find a component such that its
inports are available into the stack, and continue until all components are markes,
or there is an interruption. The algorithm breaks if either a component C needs
some data as inport that are not provided by any other component, or there exists



Automata-Based Compositional Analysis of Component Systems 199

a cycle (a mutual dependence between the inports and outports of two or more
components).

There are several definitions for components, and we consider that all of them
highlight the following basic characteristics:

• is an independent software module
• provides a functionality, but is not a complete system
• can be accessed only through its interface
• ”black box“ principle: that is, a component can be incorporated in a

software system without regard to how it is implemented [1].

Based on this remark, we have focused on giving a more exact description to
a component, especially on its interface. The interface of a component should
specify all the services and ADT that the component provides to the rest of the
system. The encapsulation principle has an important role in a component system.
There are several levels of encapsulation and data hiding that should be taken into
consideration:

• Code encapsulation: a service that is provided is specified through is sig-
nature, and the code is hidden inside the component. From outside one
just know that a service performs a certain task, but not how it does it.

• Data encapsulation and hiding: again we adopt the view from OOP, where
in a class the instance variables are hidden and can be accessed from out-
side the class only through methods. That’s why, the interface specifi-
cation will consist only class names that component is providing, and no
variables;

Especially because of the interface role in a component, we have reviewed com-
ponent definition.

Definition 2.3. A component will be specified by the following characteristics:

Component id:
Interface:

A component may contain one or several class definition, services, modules,
even code, in a structural programming way (procedures, functions) a.s.o. The
interface of the component should therefor, describe all the exported features of the
component. We will not detail here how this should be achieved. We just assume
that the interface will contain these characteristics, and we will also assume that
we have an ”intelligent“ searching routine, that knows exactly what we are looking
for (service, function, procedure, method of a class), and return the corresponding
result.

The services provided by the component should be seen as functions, so the
interface will specify a list of function signatures. We will conclude by saying that
a component interface has the general form:

Interface = [Domain, List of signatures]

where the Domain describe the classes, modules and other data structures defini-
tions provided by the component.

We adopt the signature definition from OOP: a signature of an operation is provided as: name

: Domain → CoDomain



200 Bazil Pârv, Simona Motogna and Dragoş Petraşcu

3. Constructing the algorithm

Algorithm 1:

Input:

• A set of component descriptions (as in definition 2.3)
• A sequence of tasks to be executed; let it be: [f1, f2, ..., fn]
• initial component name: Cinit

Output: Model of the component-based system, if it can be built, otherwise
corresponding messages.
Begin

i:=1;
Search if fi ∈ Cinit.interface

if yes then
begin

current := Cinit;
mark(Cinit); add state(Cinit);
push fi results in stack;
i:=i+1

end
else break; {model cannot be constructed; }

for i := 2 to n do
Search if fi ∈ current.interface

if yes then
Search if fi.input ∈ stack

if yes then
begin i:=i+1; push fi results in stack;

add corresponding transition; end
else break {no data provided to execute current task}

else
Search if fi ∈ marked component interface

if yes then
Search if fi.input ∈ stack

if yes then
begin i:=i+1; push fi results in stack;

current := C; add corresponding transition; end
else break {no data provided to execute current task}

else
Search if fi ∈ unmarked component interface

if yes then
Search if fi.input ∈ stack

if yes then
begin i:=i+1; push fi results in stack;

mark(C); add state(C);
current := C; add corresponding transition; end

else break {no data provided to execute current task}
else break {task not found}

End.

The algorithm works in the following way: we start from component descrip-
tions, given in the form specified by the definition 2.3, a sequence o tasks, that
should be executed in the given order, without taking into consideration simul-
taneous execution. We also need to provide the initial component (or source),
because we base our model on the fact that this component will provide services
for input operations. Consequently, the first task in the list should perform some
reading tasks.

During construction of the model, at each moment we will have a current com-
ponent. We also use a marking routine in order to include only the components
that are actually used (it’s no use to construct a huge model, containing unseed
components, even if their definitions are given). These two temporary informa-
tion (current component and marked components) offer a way to optimize the



Automata-Based Compositional Analysis of Component Systems 201

construction: when a new task from the list is searched, instead of parsing the
entire set of component definitions, the lookup method will search first in the cur-
rent component; if it isn’t found then the search will be performed in the marked
components, and only after that in the rest of the definitions.

The tasks must the performed in the order specified by the sequence. The
first task should belong to the initial component; if not then the construction is
not possible. We consider that this is a logical supposition, and doesn’t impose
restrictions. If at one moment, a certain task is not found in any component
definition, then the construction of the model will be stopped, with a corresponding
message. The other possible interruption of the algorithm appears in case a certain
task is found, but it’s required input is not available (is not found in the stack),
meaning that no previous task has this exact output. This is the reason why we
have introduce this auxiliary stack: it will store all the intermediary results that
are provided by tasks.

4. Comparison with the other model

There are several similarities and differences between the two models, and we
will argue why we consider that this second approach is a more refined and exact
method.

1) First at all, the first algorithm was though for constructing a correct system:
when a component is inserted into the model all its functionality and data are
available to the system; no restriction is imposed on which tasks are actually
executed, and in what order. From this point of view, the second algorithm takes
into consideration a concrete sequence of tasks to be executed, and assures that
all these tasks are provided by the set of definitions. The resulting model, through
the computed transitions, can generate work flows corresponding to these tasks.

We should also mention that this model can be used in extracting efficiency
information about the components, and give an answer to the following issue
stated by Szyperski: ” Some of component’s services may be less popular than
others, but if none are popular and the particular combination of offered services
is not either, the component has no market. In such a case, the overhead cost of
casting a particular solution into a component form may not be justified“ [5].

2) Why interfaces instead of inports, outports, functionality? Certainly, there is
a strong connection between the two approaches. But, interface-based description
is more realistic, and the signatures of the services contain the information rep-
resented by inports and outports. In case we are working with interfaces, we can
construct the description from definition 2.2 from the set of descriptions accord-
ing to definition 2.3. In case a component comprises more than one functionality,
the first model will not specify clearly which inports, respectively outports, are
corresponding to a certain task (just a union of them). Thus, the second model
description cannot be built from the first model component description, and we
may conclude that the second model provides more information than the first one.

3) However, there is a small disadvantage of the second model: it does not
provide a data flow. If we look at the model as a graph, then a path in this
model will describe a control flow, but no information about data flow. On the
other hand, the first model only provided data flow, and no information about the



202 Bazil Pârv, Simona Motogna and Dragoş Petraşcu

control (tasks to be executed, and in what order). So, depending on which aspect
you want to concentrate, use one specification, or the other one, or both.

This model can be easily extended to include more detailed information: we can
have a complete specification of the signatures from the interfaces, such that we
can check in which condition the tasks can be executed, we can performed some
type checking.

5. Example

Consider the following general set of components:
C1 = (φ, {d1, d2}, {read});
C2 = ({d1, d3}, {d5, d6}, {task1, task2, task3});
C3 = ({d2}, {d3, d7}, {task4});
C4 = ({d5, d7}, {d8}, {task5});
C5 = ({d6, d8}, φ, {write});
C6 = ({d1, d3}, {d4, d5, d6}, {task1, task2, task3});
C7 = ({d1, d5}, {d3}, {task1, task2, task3});
C8 = ({d2, d3}, {d4}, {task4});
C9 = ({d4}, {d5, d6}, {task5});
C10 = ({d6}, φ, {write});
Applying the first algorithm [4], we have obtained the model from figure 1.

Figure 1. A valid model, based on definition 2.2.

Considering the same system, the system definition should be:
component1 = (C1, [φ, (read : φ → d1, d2)]);
component2 = (C2, [φ, (task1 : d1 → d9, task2 : d9 → d5, task3 : d3, d9 → d6)]);
component3 = (C3, [class3,φ]);,

where class3 contains a method task4 : d2 → d3, d7

component4 = (C4, [φ, (task5 : d5, d7 → d8)]);
component5 = (C5, [φ, (write : d6, d8 → φ)]);



Automata-Based Compositional Analysis of Component Systems 203

Figure 2. A valid model, based on definition 2.3. and algorithm 1

References

[1] Cox, Philip T., Baoming, S., A Formal Model for Component-Based Software. In Pro-

ceedings of 2001 IEEE Symposium on Visual/Multimedia Approaches to Programming and
Software Engineering, Stresa, Italy, September 2001
http://www.cs.dal.ca/ pcox/publications/Components-HCC01.pdf

[2] Henzinger, T. A., Masaccio - A Formal Model for Embedded Components, Proceedings of

the First IFIP International Conference on Theoretical Computer Science, Lecture Notes in
Computer Science 1872, Springer-Verlag, 2000, 549-563
http://sec.eecs.berkeley.edu/papers/00/masaccio/masaccio.pdf

[3] Motogna, S., Parv, B., A Formal Model for Components, Bul. Ştiinţ. Univ. Baia Mare, Ser.
B, Matematica-Informatica, XVIII, 2 (2002), 269-274

[4] Parv, B., Motogna, S., Petraşcu, D., Component System Checking Using Compositional

Analysis, Proc. ICCC 2004, Băile Felix, 27-29 Mai 2004

[5] Szyperski, C., Component Software, Beyond Object-Oriented Programming, ACM Press,
Addison-Wesley, NJ, 1998

[6] Varr, D., A Formal Semantics of UML Statecharts by Model Transition Systems, to ap-

pear in Proceedings of ICGT 2002: International Conference on Graph Transformation,
Barcelona, Spain, 2002
http://www.inf.mit.bme.hu/FTSRG/Publications/icgt2002 sc.pdf

Babeş Bolyai University

Department of Computer Science

Str Kogalniceanu No 1, 400084, Cluj-Napoca, Romania

E-mail address: {bparv,motogna,petrascu}@cs.ubbcluj.ro


