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Topology Counting in Nanostructures 
 
MIRCEA V. DIUDEA, DU�ANSKA JANE�IÈ and  ANTE GRAOVAC 
 
ABSTRACT. Tubulenes are capped nanotubes built up from two caps and a distancing 

nanotube/neck of diverse decoration. Ways of �in silico� construction of several finite 
nanostructures, classified by their neck and/or caps, are presented. Topological periodicity is 
presented as constitutive typing enumeration. Semiempirical calculations support the idea that new, 

relatively stable molecules may appear in the soot of vaporized graphite. 1 

 
1. INTRODUCTION 

Fullerenes and nanotubes represent 0D and 1D novel carbon allotropes that have non-
preceding physico-chemical properties [1-4]. They are promising candidates for the 
development of nanodevices and super strong composites [5-11]. 

Apart from the well-known C60 and C70, other cages have been isolated in the solid 
state. Recently, the small cages C36 and C20 have been reported [12-14] and their halves 
used for modelling capped narrow nanotubes [15]. 

A fullerene is, according to a classical definition, an all-carbon molecule CN 
consisting entirely of pentagons (exactly 12) and hexagons (N/2-10) [16]. Non-classical 
fullerene extensions to include rings of other sizes have been considered [17,18]. 

Some basic relations in polyhedral graphs come out from the Euler�s results [19]: 
2 FEN        (1) 

where N, E, and F  are the number of vertices, edges and faces, respectively. Relation (1) 
is given here for a graph embedded on the sphere. Other basic relations are: 

Evd
d d 2        (2) 

 
s s Efs 2        (3) 

where vd and fs denote vertices of degree d and s-sized faces, respectively. 
In view of calculating the strain energy appearing due to diverse polygonal angles, we 

use the POAV1 theory [20-23], which defines the -orbital axis vector is as the vector 
making equal angles  to the three -bonds of the sp2 carbon atom and a 

pyramidalization angle as: 
o90  p        (4) 

This angle is used for estimating the strain energy, induced by a pyramidalized 
carbon atom, by: 

2)(200 pSE        (5) 

                                                           
Received: 26.09.2004; In revised form: 17.01.2004 
2000 Mathematics Subject Classification. 92E10 
Key words and phrases. nanostructures, periodicity, covering type counting 

id3400129 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 



Topology Counting in Nanostructures 

 

224

with p being measured in radians. The difference  ij)3/1(120 gives the deviation 

to planarity. 
This paper is organised as follows: several caps are designed and named in Section 2, 

Capping Nanotubes. The next Section 3, z-Tubulenes, presents tubulenes constructed with 
zigzag distancing nanotubes, peanut-shaped, periodic fulleroids and some topology 
counting theorems. Section 4 draws conclusions. The paper is ended by references. 

 

2. CAPPING NANOTUBES 

Covering transformation is one of the ways in understanding chemical reactions 
occurring in fullerenes [38-41]. A capped nanotube we call here a tubulene. Covering is 

different for the caps and for the nanotube/neck distancing the two caps. A constructive 
enumeration of nanotube caps the reader can find in ref. 24. Within this paper we limit at 
the kfz-caps, obtainable by cutting off the polar ring (of size k) and suitable to Z nanotubes 
(Figure 1). The parent cages are easily deducible from the name of caps, which includes 
the number of atoms N, the a-spiral code [25] and the fitting tube specification, e.g., 
Z[c,n], c being the number of atoms in the cross-section while n is the number of such 
sections along the tube. The number of atoms in the neck is c × n. Note the value n = 0 for 
the tube length in the cap name (see below). When no ambiguity exists, the specification 
of the polyhex (6,3) covering for tubes is omitted. Also note that, in two integer parameter 
(k,l), notation [26], the armchair (single walled) nanotube SWNT is (c/2, c/2) while the 

zigzag one is (c/2,0). 
 
(a) Cap 

])0,2[Z)56()56(6(11
C

kkk kkk 
 

 k = 5 

(b) Cap 
])0,2[Z)656()566()56((9 2/2/2/C

kkk kkk 
 

k = 6 
 

   

 

 

(c) Cap 
])0,2[Z)656(6)566()56((12 2/2/2/C

kkk kkkk 
 

k = 6 

(d) Cap 
])0,2[7575(11 2C

kZkk kkkk 
 

k = 7 
 

 

 

 

Figure 1: The types of kfz-caps herein used for capping nanotubes.  

 
Various caps and various junction zones could be used to construct tubulenes [27-30]. 

Both the cap and nanotube covering can be changed by appropriate operations. 
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3. kfz-TUBULENES 

The cap shown in Figure 1a fit to Z-nanotubes (possibly having various covering). 
Figure 2 illustrates two peanut-shaped kfz-tubulenes of the 

])0,12[Z)56()65(66(66 666C


 cap 

with different distancing nanotubes (observe the complete description of covering). 
 

)7667)56()65(66(168 6666666C  (D6d) )7)57()75(7)56()65(66(168 6336666C  (S6) 

 

  

Figure 2: Peanut-shaped kfz -tubulenes. 
 
The cages in Figure 3 have the shorter distancing tube (one atom and zero atom rows, 

respectively) between the two caps (Figure 1a and 1b, respectively). The name of such 
tubulenes includes the code for the cap and distancing zone up to the second cap, if the 
two caps are identical, or full description, if they are different. 

 
(a) 

])1,10[77)56()65(65(120 55555C
Z

 (b)
])0,12[7)656()566()65(6(108 6333C

Z
 

 
 

Figure 3: Peanut-shaped kfz-tubulenes with the shortest distancing tube 
 

Peanut tubulenes show negative curvature, induced by the presence of rings larger 
than hexagons. Cages such those in Figure 3 have been observed, by transmission electron 
microscopy TEM, in the coalescence reactions occurring in C60 peapods [31]. Their 
energetic and topology are shown in the following sections. 

 

3.1. PERIODIC FULLEROIDS 

At moderate temperature and pressure spherical fullerenes arrange in one dimensional 
assemblies [32]. The primary sp3 [2+2] adduct rearranges, either by Stone-Wales edge 
rotations [33] and/or atom exclusion [34], to give �dimers�, oligomers or just corrugated 
tubules (e. g., having repeat units of peanut-shape, like the objects in Figure 3), as 
observed in fullerene peapods by thermal annealing or by electron irradiation [31]. 
Fullerene coalescence, the main molecular transformation occurring in such processes, is 
presented in detail elsewhere [35]. 
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Let consider the 
])0,2[Z)56()56(6(11

C
kkk kkk 

cap (Figure 1a) and the Z-tube having 

length n = 1; a repeat �dimerization� leads to periodic kfz-tubulenes of corrugated shape, 
of general formula 

)]1,2[Z7)56()56(6(
C

rkkN kkkk 
, just observed in annealed fullerene 

peapods [31]. The last subscript r in the above formula means the number of sphere-like 
repeat moieties. N is calculable by formula: N = 12kr (see Table 1). Figure 4 illustrates 
such a periodic �fulleroid� [29]. 

 

)]1,2[Z7)56()56(6(
C

rkkN kkkk  ; k = 5; r = 4 

 
Figure 4: A periodic kfz-tubulene. 

 
We were interested in topological characterization of such all sp2 periodic objects. 

The following theorem [29] states the counting formulas (i.e., number of faces of size s, fs, 
edges shared by faces  of given size , es1,s2  and vertices shared by corresponding faces, 
vs1,s2,s3) for objects with k = 4 to 7. 
 
Table 1: Tiling counting formulas for periodic fulleroids of general formula 

)]1,2[Z7)56()56(6(
C

rkkN kkkk 
 

 
k = 4, 5, 6, 7 

Faces Vertices 

44 2tf k  * 
46,6,4 2ktv k   

55 22 tkrf k   )32(2 56,6,5 trkv k   

66 2)1(2 trkf k   )1(47,6,5  rkv k  

77 2)1(2 trkf k   )1(27,7,5  rkv k  

Edges 66,6,6 2ktv k   

46,4 2kte k   
77,6,6 2ktv k   

)23(2 56,5 trke k   )1(27,7,7  rkv k  

)1(47,5  rke k
 Total No. atoms 

)2(2 66,6 trke k   krN k 12  

)1(2 77,6 trke k    
)1(47,7  rke k
  

* otherwiseand,if1 zeroksts   

 
THEOREM 1. For a periodic fulleroid, of general formula 

)]1,2[Z7)56()56(6(
C

rkkN kkkk  , the number of faces, edges, and vertices of various types 
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composing its associate graph, can be counted function of the repeat parameter r and 
polar ring size k (Table 1). 

 
The theorem is demonstrated by construction. 

Semiempirical calculations in the series )]1,2[Z7)56()56(6(
C

rkkN kkkk  , k = 5, 

for the first four terms (parent fullerene, with r = 1, included) show HF values in the range 
of C60, and large enough gaps (Table 2). 
 
Table 2: Semiempirical PM3 data for periodic fulleroids of the series 

)]1,2[Z7)56()56(6(
C

rkkN kkkk   

 
 Cage (k; r) N Sym. HF/atom Gap 
1 5; 1 60 Ih 13.512 6.593 
2 5; 2 120 D5d 12.547 6.204 
3 5; 3 180 D5d 12.224 5.917 
4 5; 4 240 D5d 12.062 5.819 

 

3.2. ((5,6,7)3) kfz-TUBULENES 

Tubulenes capped with kfz-caps, like 
])0,2[Z)656()566()56((9 2/2/2/C

kkk kkk   (Figure 1b), 

derived from C60, and those cut off from C78 (an example is given in Figure 1c), are 
((5,6,7)3) kfz-tubulenes with the shortest distancing tube. They have the general formulas: 

 

- ])0,2[Z7)656()566()56(( 2/2/2/C
kkN kkkk   (Figure 3b) [36], 

- ])0,2[Z7)656(6)566()56(( 2/2/2/C
kkN kkkkk   (Figure 5a), 

- ])0,2[Z7)656(6)566()56(( 2/2/2/C
kkN kkkkk   

and combinations of the three types (see Figure 5b). HF values, calculated with the PM3 
Hamiltonian, are listed in Table 3 (entries 1 to 5). These values are in the range of that for 
C60, lower for the peanuts derived from C78. The strain energy per atom S, by POAV1 (see 
above), is lower than that calculated for C60 (comparison made with the [2+2] adduct sp3 
dimer). The gaps are, however, with about 2 eV lower to that for C60, suggesting a relative 
kinetic instability. 
 

(a) 

])0,12[7)665(6)566()65(6(144 63933C
Z  

(b) 

)6)56()656(6)656(7)656()566()65(6(126 33936333C  

 

 

 

 
Figure 5. Peanut-shaped kf z�tubulenes with the shortest distancing tube 
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Periodic tubulenes of corrugated shape, like the kfz�tubulene in Figure 6, were 
observed in C60 peapods submitted to prolonged thermal annealing (the inner tube) [49]. 
Oligomers with r = 2 to 4 show pretty low HF values (Table 3, entries 5 to 7). The 

corresponding of the k = 5 peanut dimer ])1,10[77)56()65(65(120 55555C
Z  (Figure 3a) [36], 

namely the k = 6 dimer, ])1,12[7)656()566()65(6(120 6333C
Z , was also inferred in the 

coalescence of C60 [37]. 
 

)]0,12[7)656()566()65(6(204 6333C
rZ  ; r = 4 

 

 
 

Figure 6: Periodic tubulene with the repeat spherical moiety derived from C60 by cutting 
off the polar hexagons. 

 
The ((5,6,7)3) covering pattern is easily derived, by Stone-Wales edge flipping, in 

polyhex (6,3) nanotubes [38,39]. It can also be embedded in the torus (Figure 7). 
 

)]0,2[7)566()665(( 2/2/T
rkZN kkk  ; k = 6; r = 30; krN 8  

 

Figure 7: A toroidal embedding of the ((5,6,7)3) pattern. 
 
The topology of ((5,6,7)3) decorated structures is calculable as stated by the 

following [36]: 
 

THEOREM 2. For a periodic ((5,6,7)3) covering, of local signature: t5j(0, 4, 1); t6j(2, 2, 
2); and t7j(1, 4, 2), j = 5, 6, 7, the number of faces, edges, and vertices of various types 
composing its associate graph, embedded in the torus, can be counted function of the 
repeat parameter r and ring size k of the  (equivalent) tube cross section (Table 4). 
The theorem is demonstrated by construction. 
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Table 3. Semiempirical PM3 data for periodic peanut cages (Figure 13) and their relatives; 
for comparison, C60 is included. 
 
 Cage Sym. HF/atom 

(kcal/mol) 
Gap 
(eV) 

S/atom 
(kcal/mol) 

1 
])0,12[7)665(6)566()65(6(144 6333C

Zk   D3d 11.911 4.729 5.530 

2 
])0,2[Z7)656(6)566()56((144 2/2/2/C

kk kkkkk   S6 11.666 4.049 5.343 

3 
)6)65()665(6)566(7)665(6)566()65(6(144 33636333C k  C3 11.789 4.266 5.436 

4 
)6)56()665()656(7)656()566()65(6(126 3336333C  C3v 12.349 4.796 5.848 

5 
)2]0,12[7)656()566()65(6(108 6333C Z  D3d 12.953 4.870 6.493 

6 
)3]0,12[7)656()566()65(6(108 6333C Z  D3d 12.878 4.502 5.687 

7 
)4]0,12[7)656()566()65(6(108 6333C Z  D3d 12.681 4.484 5.321 

8 C60 Ih 13.512 6.593 8.257 

 
Table 4: Tiling counting formulas for toroids, of periodic ((5,6,7)3) covering, with general 

formula )]0,2[7)566()665(( 2/2/T
rkZN kkk  . 

 
k = 4, 6,� 

Faces Vertices 

krf 5  krv 36,6,5   

krf 26   krv 27,6,5   

krf 7  krv 7,6,6  

Edges krv 27,7,6   

kre 46,5   Total no. atoms 

kre 7,5  krN 8  

kre 26,6    

kre 47,6    

kre 7,7   

 
A torus T((5,6,7)3)VA[p,q] derived, from an equivalent (6,3)Z[c,n] torus, by SW 

edge rotations, has the parameters: (p; q)  = (c/4; n/4), with c = 2f7 and the repeat unit 
parameter r = q (see Table 4). 
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3.3. ((5,7)3) z-TUBULENES 
 

The tz-Cap ])0,2[5(3
C

kZkk k  fits to a suitable phenylenic ((4,6)3)H tube [40] 

(Figure 5), to give a cage )57)64(75(
C

kkN kkkkk , which further rearranges to a cage 

)57575( 2C
kkN kkkkk , k = 5,7, decorated with only pentagons and heptagons (see below). 

The kfz-cap ])0,2[7575(11 2C
kZkk kkkk  , derived from the above cage, leads, by 

identifying the z-boundary, to a �dimer� (Figure 8, k = 7). 
 

2( ])0,2[7575(11 2C
kZkk kkkk  - k); k = 7 )5)757(5(20 22C

kkk kkkkk ; k = 7 

  
Figure 8: An in silico �dimerization� process. 

 
The coupling process can continue to give periodic cages of formula 

)5)757(5( 2C
kkN krkkkk , with )12(4  rkN  (see Table 5). In the above formula, r 

counts the spheroidal repeat units, r = 2, 3,... 
An example of such periodic cages is given in (Figure 9). It is a third cage having 260 

points and ((5,7)3) decoration ( 60;12 775  fff ), in addition to the 

phantasmagoric fullerenes designed by Fowler and Dress, respectively [41]. 
 

6;5);5)757(5(260 2C  rkkk krkkkk   

 

 

Figure 9: Diudea�s C260 cage with ((5,7)3) decoration. 
 
The topology of ((5,7)3) decorated structures is calculable as shown in the 

following [36]: 
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THEOREM 3. For a periodic cage with ((5,7)3) decoration, the number of faces, edges, 
and vertices of the various types can be counted function of the repeat unit r and polar 
ring size k (Table 5). 
 
The theorem is demonstrated by construction. 
 
Table 5: Periodic cages with ((5,7)3) decoration - net counting. 
 

Formulas for k = 5; 7  
 

55 2)1(2 trkf k   

77 22 tkrf k   

(1) 
(2) 

)1(2 55,5 trke k   

)23(2 77,5 trke k   

)12(27,7  rke k  

(3) 
(4) 
(5) 

55,5,5 2ktv k   

)12(2 77,5,5 trkv k   

)1(27,7,5  rkv k  

)1(27,7,7  rkv k  

 

(6) 
(7) 
(8) 
(9) 

)12(4  rkNk  (10) 

 
* otherwiseand,if1 zeroksts   

 

)]0,2[757( 2T
rkZN kkk  ; k = 6; r = 30; krN 8  

 

Figure 10: A toroidal embedding of the ((5,7)3) pattern. 
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A toroidal embedding of the ((5,7)3) pattern is shown in Figure 10. 
PM3 calculations for some all ((5,7)3) periodic cages are given in Table 6. Only the 

dimeric tubulene ))1,14(75)757(57(140 7271777C
Z (entry 4) appears to have the HF closer 

to C60 (entry 5), while the -electronic structure is pseudo-closed or open. 
 
Table 6: PM3 data for data for some all ((5,7)3) periodic cages of general formula 

])1,2[5)757(5( 2C
kZkkN krkkkk   

 
 Cage 

N, k, r 
Sym. HF/at. Gap 

 tube Z[10,1]    
1 60, 5, 1 Ci 21.158 5.623 
2 100, 5, 2 Ci 18.906 5.592 
 tube Z[14,1]    
3 84, 7, 1 Ci 16.249 4.538 
4 140,7, 2 Ci 15.828 5.114 
     
5 C60 Ci 13.512 6.596 

 
As a consequence, the all ((5, 7)3) tubulenes tend to isomerize to the more stable fa-

tubulenes [36]. 
Semiempirical calculations have been performed on a 2×1GHz Pentium III PC by 

using the PM3 Hamiltonians, in standard parametrization supplied by HyperChem 
(version 4.5, Hypercube, Inc.) [42] software. Structures were optimized by using the 
Polak-Ribier conjugate-gradient method, the energy minimization was terminated at an 
RMS gradient <0.01 kcal/(Å·mol) for all structures. 

Spectral data (see Discussion) were calculated by TOPOCLUJ 2.0 Software Package 
[43]. Stone-Wales rearrangements were performed by the CageVersatile 1.1 software 
package [44]. 

4. CONCLUSIONS 

Construction of tubulenes, by various capping of armchair and zigzag nanotubes, was 
presented. Periodicity of their constitutive topology was evidenced by typing 
enumerations. 

Semiempirical and strain energy calculations support the idea that new, relatively 
stable molecules, with various tessellation, may candidate to the status of real molecules. 
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