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Topology Counting in Nanostructures

MIRCEA V. DIUDEA, DUSANSKA JANEZIC and ANTE GRAOVAC

ABSTRACT. Tubulenes are capped nanotubes built up from two caps and a distancing
nanotube/neck of diverse decoration. Ways of “in silico” construction of several finite
nanostructures, classified by their neck and/or caps, are presented. Topological periodicity is
presented as constitutive typing enumeration. Semiempirical calculations support the idea that new,
relatively stable molecules may appear in the soot of vaporized graphite.

1. INTRODUCTION

Fullerenes and nanotubes represent OD and 1D novel carbon allotropes that have non-
preceding physico-chemical properties [1-4]. They are promising candidates for the
development of nanodevices and super strong composites [5-11].

Apart from the well-known Cg and C;q, other cages have been isolated in the solid
state. Recently, the small cages Czs and C,y have been reported [12-14] and their halves
used for modelling capped narrow nanotubes [15].

A fullerene is, according to a classical definition, an al-carbon molecule Cy
consisting entirely of pentagons (exactly 12) and hexagons (N/2-10) [16]. Non-classical
fullerene extensions to include rings of other sizes have been considered [17,18].

Som(?\I ba% c r'(:el alizons in polyhedral graphs come out from the Euler’s results [19]:

“E+F=

D
where N, E, and F are the number of vertices, edges and faces, respectively. Relation (1)
is given here for a graph embedded on the sphere. Other basic relations are:
> dvy=2E @)

ZSS fs=2E ©)
where vy and fsdenote vertices of degree d and s-sized faces, respectively.

In view of calculating the strain energy appearing due to diverse polygona angles, we
use the POAV 1 theory [20-23], which defines the n-orbital axis vector is as the vector
making equal angles 6 . to the three o-bonds of the sp® carbon atom and a
pyramidalization angle as:

0, =04, —90° 4

This angle is used for estimating the strain energy, induced by a pyramidalized
carbon atom, by:

SE=200-(0,)? (5)
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224 Topology Counting in Nanostructures
with 6, being measured in radians. The difference 120 (1/3)- Zeij gives the deviation

to planarity.

This paper is organised as follows: several caps are designed and named in Section 2,
Capping Nanotubes. The next Section 3, z-Tubulenes, presents tubulenes constructed with
zigzag distancing nanotubes, peanut-shaped, periodic fulleroids and some topology
counting theorems. Section 4 draws conclusions. The paper is ended by references.

2. CAPPING NANOTUBES

Covering transformation is one of the ways in understanding chemical reactions
occurring in fullerenes [38-41]. A capped nanotube we call here a tubulene. Covering is
different for the caps and for the nanotube/neck distancing the two caps. A constructive
enumeration of nanotube caps the reader can find in ref. 24. Within this paper we limit at
the kfz-caps, obtainable by cutting off the polar ring (of size k) and suitable to Z nanotubes
(Figure 1). The parent cages are easily deducible from the name of caps, which includes
the number of atoms N, the a-spiral code [25] and the fitting tube specification, e.g.,
Z[c,n], ¢ being the number of atoms in the cross-section while n is the number of such
sections aong the tube. The number of atomsin the neck is ¢ x n. Note the vdluen = 0 for
the tube length in the cap name (see below). When no ambiguity exists, the specification
of the polyhex (6,3) covering for tubes is omitted. Also note that, in two integer parameter
(k,I), notation [26], the armchair (single walled) nanotube SWNT is (c/2, c/2) while the
zigzag oneis (¢/2,0).

(@CapC

11k (k 6 (56)% (65)K-2[ 2k, 0]) (b) Cap CQk(k (56)%/2(665)%/ 2(656)/ 2-7[ 2k, 0])
k=5 k=6

(c)Cap C

12k (k (56)K/ 2(665)% 26K (656)K 2-Z] 2k, 0]) (d) Cap Cllk(k5k7k52k 7*~z[2k,0])
k=6 k=7

Figure 1: The types of kfz-caps herein used for capping nanotubes.

Various caps and various junction zones could be used to construct tubulenes [27-30].
Both the cap and nanotube covering can be changed by appropriate operations.
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3. kizzTUBULENES

The cap shown in Figure 1a fit to Z-nanotubes (possibly having various covering).

Figure 2 illustrates two peanut-shaped kfz-tubulenes of the CGG(6 65(56)°(6 5°-2[12,0]) cap

with different distancing nanotubes (observe the complete description of covering).

168(6 6°(56)°(65)°7°6°6° 7°) (Ded) Cles(e 6°(56)%(65)°7°(57)%(75)°7°) (S5

Figure 2: Peanut-shaped kfz -tubulenes.

The cagesin Figure 3 have the shorter distancing tube (one atom and zero atom rows,
respectively) between the two caps (Figure 1a and 1b, respectively). The name of such
tubulenes includes the code for the cap and distancing zone up to the second cap, if the
two caps are identical, or full description, if they are different.

(b)C

@ C120(565(56)5(65)57575-2[10,1])

108(6(56)3(665)3(656)37°-2[12,0])

Figure 3: Peanut-shaped kfz-tubulenes with the shortest distancing tube

Peanut tubulenes show negative curvature, induced by the presence of rings larger
than hexagons. Cages such those in Figure 3 have been observed, by transmission electron
microscopy TEM, in the coalescence reactions occurring in Cgs peapods [31]. Their
energetic and topology are shown in the following sections.

3.1. PErRiODIC FULLEROIDS

At moderate temperature and pressure spherical fullerenes arrange in one dimensional
assemblies [32]. The primary sp® [2+2] adduct rearranges, either by Stone-Wales edge
rotations [33] and/or atom exclusion [34], to give “dimers”, oligomers or just corrugated
tubules (e. g., having repeat units of peanut-shape, like the objects in Figure 3), as
observed in fullerene peapods by therma annealing or by electron irradiation [31].
Fullerene coalescence, the main molecular transformation occurring in such processes, is
presented in detail elsewhere [35].
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Let consider the C )cap (Figure 1a) and the Z-tube having

11k (k 6% (56)K (65)K-Z[2k,0]
length n = 1; arepeat “dimerization” leads to periodic kfz-tubulenes of corrugated shape,

of general formula CN(kGk(56)k(65)k7k—z[2k,1]—r)’ just observed in annealed fullerene

peapods [31]. The last subscript r in the above formula means the number of sphere-like
repeat moieties. N is calculable by formula: N = 12kr (see Table 1). Figure 4 illustrates
such a periodic “fulleroid” [29].

C k=5r=4

N(k 6% (56) (65)% 7¥—Z[ 2k 1]r) ’

Figure 4: A periodic kfz-tubulene.

We were interested in topological characterization of such all sp® periodic objects.
The following theorem [29] states the counting formulas (i.e., number of faces of size s, fs,
edges shared by faces of given size, ey and vertices shared by corresponding faces,
Vg os3) fOr objectswithk=4to 7.

Table 1: Tiling counting formulas for periodic fulleroids of general formula

CN (k 6% (56)% (65)K 7*~z[ 2k 1]-r)

k=4,5,6,7
Faces Vertices
fa=2," Va ek = 2Kty
fo = 2kr +2t5 Vsgek = 2K(2r +3+15)
for = 2k(r +1) + 2t Vs 6.7k = 4K(r -1
fre = 2k(r-1+2t; V577 = 2K(r 1)
Edges Ve,6,6k = 2ktg
€6k = 2Kty Ve 6,7k = 2Kt7
& g = 2K(3r +2+t) Vo771 = 2K(r 1)
&7k = 4k(r-1) Total No. atoms
€60k = 2K(r +2+1tg) Ny =12kr

€7k = 2K(r —1+1t7)
€77¢ = 4k(r-1)

* . .
ts=1 if s=k, and zero otherwise

THEOREM 1 For a periodic  fulleroid, of  genera formula
CN(k 6 (56)" (65)F 7*—Z[2k 1]r) * the number of faces, edges, and vertices of various types
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composing its associate graph, can be counted function of the repeat parameter r and
polar ring sizek (Table 1).

The theorem is demonstrated by construction.
Semiempirical calculations in the series CN(k 6% (56) (65) 7%z 2k 1] 1) K = 5

for the first four terms (parent fullerene, with r = 1, included) show HF valuesin the range
of Cgo, and large enough gaps (Table 2).

Table 2: Semiempiricadl PM3 data for periodic fulleroids of the series

CN(k 6% (56) (65)F 7% —Z[2k,1]-1)

Cage (k; r) N Sym.  HF/atom Gap

1 51 60 In 13.512 6.593
2 5,2 120 Dsg 12.547 6.204
3 53 180 Dsq 12.224 5917
4 54 240 Dsg 12.062 5.819

3.2.((5,6,7)3) kizTUBULENES

Tubulenes capped with kfz-caps, like Cgk(k (56)K'2(665)"/2(656)* 222k 0)) (Figure 1b),

derived from Cg, and those cut off from C;g (an example is given in Figure 1c), are
((5,6,7)3) kfz-tubulenes with the shortest distancing tube. They have the general formulas:

- CN(k (56)/2(665)*/2(656)' 2 75~ 2k 0]) (Figure 3b) [36],

- CN(k (56)€/2(665)%' 26 (566)<' 2 7%~ Z[ 2k,0]) (Figure 5a),

) CN(k (56)%/2(665)</ 26 (656)*/ 2 7*~Z[ 2k,0])

and combinations of the three types (see Figure 5b). HF values, calculated with the PM3
Hamiltonian, are listed in Table 3 (entries 1 to 5). These values are in the range of that for
Ceo, lower for the peanuts derived from Crg. The strain energy per atom S, by POAV1 (see
above), is lower than that calculated for Cg, (comparison made with the [2+2] adduct sp®
dimer). The gaps are, however, with about 2 eV lower to that for Cqo, SUggesting arelative
kinetic instability.

@ (b)

C C

126(6(56)°(665)°(656)°7° (656)°6° (665)°(65)°6)

144(6(56)°(665)°6° (566)°7°-7[12,0])

Figure 5. Peanut-shaped kf z—tubulenes with the shortest distancing tube
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Periodic tubulenes of corrugated shape, like the kfz—tubulene in Figure 6, were
observed in Cg peapods submitted to prolonged thermal annealing (the inner tube) [49].
Oligomers with r = 2 to 4 show pretty low HF values (Table 3, entries 5 to 7). The

corresponding of the k = 5 peanut dimer 0120(565(56)5(65)575 7-7[101)) (Figure 3a) [36],

namely the k = 6 dimer, C120(6(56)3(665)3(656)375_2[12’1]), was also inferred in the
coalescence of Cgq [37].

C

204(6(56)3(665)°(656)*7°~Z[12,0]-r) » | =4

Figure 6: Periodic tubulene with the repeat spherical moiety derived from Cg, by cutting
off the polar hexagons.

The ((5,6,7)3) covering pattern is easily derived, by Stone-Wales edge flipping, in
polyhex (6,3) nanotubes [38,39]. It can aso be embedded in the torus (Figure 7).

T

N((566)*'2(665)"/2 75~ Z[ 2k,0] 1) k=6;r=230; N=8kr

Figure 7: A toroidal embedding of the ((5,6,7)3) pattern.

The topology of ((5,6,7)3) decorated structures is calculable as stated by the
following [36]:

THEOREM 2. For a periodic ((5,6,7)3) covering, of local signature: ts(0, 4, 1); t5(2, 2,
2); and t(1, 4, 2), j = 5, 6, 7, the number of faces, edges, and vertices of various types
composing its associate graph, embedded in the torus, can be counted function of the
repeat parameter r and ring size k of the (equivalent) tube cross section (Table 4).

The theorem is demonstrated by construction.
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Table 3. Semiempirical PM3 data for periodic peanut cages (Figure 13) and their relatives;
for comparison, Cgisincluded.

Cage Sym. HF/aom  Gap Satom
(kcal/mol) (eV) (kcal/mal)

C Dag 11911 4729 5.530

S 11.666  4.049 5.343

144(6(56)°(665)°6X (566)°7°-2[12,0])

C144(|< (56)¢/2(665)"/2 6% (656)*/ 2 7% —Z[ 2k, 0])

C GCs 11.789  4.266 5.436

144(6(56)°(665)°6* (566)°7° (665)6° (665)° (65)°6)

Clze(6(56)3(665)3(656)376 (656)3(566)°(65)°6) Cav 12349 4796 5848
D 12.953 4.870 6.493

C108(6(56)3(665)3(656)376—2[12,0]—2) s
C D3y 12.878 4.502 5.687

108(6(56)°(665)°(656)°7°~Z[12,0]-3)

C Dgy 12.681 4484 5.321

108(6(56)°(665)%(656)°7°-Z[12,0]-4)
Ceo Ih 13512  6.593 8.257

o N o g b W N P

Table 4: Tiling counting formulas for toroids, of periodic ((5,6,7)3) covering, with general

formuIaTN ((566)/2(665)/ 27X~z 2k,0]-r) *

k=4,86,...

Faces Vertices
fo =kr Vs 6 = SKI
fo =2kr Vg7 = 2Kr
f,=kr Vg7 = Kr

Edges Vg.7.7 = 2kr

&6 = Akr Tota no. atoms
€57 = kr N = 8kr
€56 = 2Kr

€67 = 4kr

e;7 =kr

A torus T((5,6,7)3)VA[p,q] derived, from an equivaent (6,3)Z[c,n] torus, by SW
edge rotations, has the parameters. (p; q) = (c/4; n/4), with ¢ = 2f; and the repeat unit
parameter r = g (see Table 4).
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3.3. ((5,7)3) z-TUBULENES

The tz-Cap C3k(k5k_z[2k‘0])fits to a suitable phenylenic ((4,6)3)H tube [40]
(Figure 5), to give a cage CN(k5k7k(46)k7k5kk), which further rearranges to a cage
CN (K5 752 755K K - k = 5,7, decorated with only pentagons and heptagons (see below).

The kiz-cap Cyyy i sk7452 7+ 712k oy » derived from the above cage, leads, by
identifying the z-boundary, to a “dimer” (Figure 8, k = 7).

2(C C ook (ks (7577425 ky 1 k= 7

11k (k5K7852k 7 _z[2k,0]) - K)s k=7

Figure 8: Aninsilico “dimerization” process.

The coupling process can continue to give periodic cages of formula
CN(k5k(7k52k7k)r5k k)» WithN =4k(2r +1) (see Table 5). In the above formula, r

counts the spheroidal repeat units, r = 2, 3,...
An example of such periodic cagesis givenin (Figure 9). It isathird cage having 260

points and ((5,7)3) decoration ( fg= f;+12; f; =60), in addition to the
phantasmagoric fullerenes designed by Fowler and Dress, respectively [41].

C

260(k5" (7¥ 52K 7Y 5Kk);  k=5; r=6

Figure 9: Diudea’s Cyg cage with ((5,7)3) decoration.

The topology of ((5,7)3) decorated structures is calculable as shown in the
following [36]:
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THEOREM 3. For a periodic cage with ((5,7)3) decoration, the number of faces, edges,
and vertices of the various types can be counted function of the repeat unit r and polar
ring sizek (Table 5).
The theorem is demonstrated by construction.

Table 5: Periodic cages with ((5,7)3) decoration - net counting.

Formulasfor k=5; 7

fo = 2k(r +1) + 2tg (1)

£, = 2kr + 21, 2

€5 = 2K(r +1+tg) gg

€57x = 2K(3r +2+17) (5)
€77 = 2k(2r -1

Vs 55k = 2Kls E%

Vss7k = 2K(2r +1+17) g

V7 7.7¢ = 2k(r -1

N, = 4k(2r +1) (10)

*ts =1 if s=k, and zerootherwise

TN (7k52k7k ~Z[2k,0]-r) : k=6;r=30; N=8kr

Figure 10: A toroidal embedding of the ((5,7)3) pattern.
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A toroidal embedding of the ((5,7)3) pattern is shown in Figure 10.
PM3 calculations for some al ((5,7)3) periodic cages are given in Table 6. Only the

dimeric tubulene C140(757 (7751777)2577-7 (14,2)) (entry 4) appears to have the HF closer
to Cg (entry 5), while the n-electronic structure is pseudo-closed or open.

Table 6: PM3 data for data for some all ((5,7)3) periodic cages of general formula

CN(k 5 (7% 57K 7V 5K k—Z[ 2k 1)

Cage Sym. HF/at. Gap
N, k, r
tube Z[10,1]
1 60, 5, 1 G 21158  5.623
2 100, 5, 2 G 18.906  5.592
tube Z[14,1]
3 84,7, 1 G 16.249 4538
4 140,7, 2 G 15828 5.114
5 Ceo G 13512 6.596

As a consequence, the al ((5, 7)3) tubulenes tend to isomerize to the more stable fa-
tubulenes [36].

Semiempirical calculations have been performed on a 2<1GHz Pentium III PC by
using the PM3 Hamiltonians, in standard parametrization supplied by HyperChem
(version 4.5, Hypercube, Inc.) [42] software. Structures were optimized by using the
Polak-Ribier conjugate-gradient method, the energy minimization was terminated at an
RMS gradient <0.01 kcal/(A-mol) for all structures.

Spectral data (see Discussion) were calculated by TOPOCLUJ 2.0 Software Package
[43]. Stone-Wales rearrangements were performed by the CageVersatile 1.1 software
package [44].

4. CONCLUSIONS

Construction of tubulenes, by various capping of armchair and zigzag nanotubes, was
presented. Periodicity of their congtitutive topology was evidenced by typing
enumerations.

Semiempirical and strain energy calculations support the idea that new, relatively
stable molecules, with various tessellation, may candidate to the status of real molecules.
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