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The Second Path Matrix of the Graph and its 
Characteristic Polynomial 
 

PETER E. JOHN  and  MIRCEA V. DIUDEA 

 
ABSTRACT. The second path matrix S(G) collects all the second paths in the graph G. Its 
characteristic polynomial shows some regularity in several particular graphs, such as paths, cycles, 
stars and complete graphs, as well as in bipartite graphs. Formulas for calculating the characteristic 
polynomials in these graphs are given. The first eigenvalue of S(G) showed an excellent correlating 
ability.1 
 

1. INTRODUCTION 

Let G = (V, E) be a molecular graph with the vertex (atom) set V = V(G) and edge 
(bond) set E = E(G). A = A(G) denotes the n x n adjacency matrix of G, which entries are 
unity if two vertices (atoms) are adjacent and zero otherwise [1,2]. I = I(G) stands for the 
n x n  unit matrix. In the above, )(GVn  . 

Polynomial description of a molecular graph was used in Quantum Chemistry since 
the early Hûckel theory, the roots of the most studied Characteristic Polynomial: 

 
)](det[),( GxGxChA AI       (1) 

being associated to the -electron energy levels of the molecular orbitals in conjugated 
hydrocarbons. Other related topics: Topological Resonance Energy TRE, Topological 
Effect on Molecular Orbitals, TEMO, the Aromatic Sextet Theory, AST, the Kekulé 
Structure Count, KSC, etc.[1-4] make use of the polynomial description of a molecular 
graph. 

Let ak = ak(G) denote the coefficients of the characteristic polynomial  from the 
graph G on n vertices: 
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Formulas for evaluating coefficients ak make use of either the Sachs graphs,1 
contained as subgraphs in G or numeric methods of linear algebra [5,6]. 

Extension of relation (1) was made by Hosoya [7] and others [8-11] by changing the 
adjacency matrix with the distance matrix and next by any square topological matrix. 

A value y is called an eigenvalue of G if and only if ChA(y,G) = 0. 
A graph G is said to be bipartite if each vertex is colored black or white so that 

adjacent vertices have different colours. In this case the vertex set V(G) is the union of 
two disjoint sets B = B(G) and W = W(G) of black and white vertices of G, respectively. 
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2. SECOND PATH MATRIX 

The second path matrix S = S(G) is defined as the difference between the squared 
adjacency matrix and the diagonal matrix D = D(G) of vertex degrees in G: 

 

DASS  2)(G       (3) 

The characteristic polynomial of S is: 
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This polynomial is deducible from ),( GxChA in the case of some simple graphs, 

such as: 
 

(1) Path: G = Pn 

 

kn 2 :   22 ),(),( kk PxChAPxChS     (5) 

 
12  kn :    ),(),(),( 112   kkk PxChAPxChAPxChS   (6) 

 
(2) Star: G = Sn 

 
),(),( 1 nn KxChAxSxChS      (7) 

 
(3) Cycle: G = Cn 

 

kn 2 :  22 ),(),( kk CxChACxChS      (8) 

 
kn 2 + 1: ),(),( 1212   kk CxChACxChS    (9) 

 
(4) Complete graph: G = Kn(n>2) 
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(5) Complete bipartite graph: G = Kw,b 
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(6) Bipartite graph: ),( EWBGG   
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For a bipartite graph G with Bb   black vertices and Ww   white vertices, b + w 

= n, the b x w matrix C = C(G)  represents the adjacency between the black and white 
vertices in G. In this case the degree matrix is D = (Db, Dw) and  
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  = [ChA(x,G(B))].[ ChA(x,G(W)) ] 
 
where Ib and Iw denote the b x b and w x w unit matrices, respectively while superscript T 
refers to the matrix transpose and G(B) ,G(W) are the two (edge weighted) components 
corresponding to matrix S = S(G). 
If the bipartite graph G=G* has the property that G(B)) = G(W)), than ChA(x,G(B)) = 
ChA(x,G(W)). For such a (symmetric) graph eq. (12) becomes: 
 

22 )]}({det[*),( bbxGxChS DCI     (12*) 

  = [ChA(x,G(B))]2 
 
 

3. EXAMPLES 
 

If )]),(([)]),(([),( 2211 GxsChAGxsChAGxChS  , graph G1/2 have n1/2 vertices(n1 + 

n2 = n), and for i = 1,2,..., n1, j = 1,2,..., n2, xi is an eigenvalue of A(G1) then  xi = s1(x1i) (xj 
= s2(x2j)) and, from this equations, we can calculate the eigenvalue x1i (x2j) of S(G). 
 
 
 G G1 G2 x1i and x2j eq 
1 P5 P 3   P 2 )4/12cos(211  x ; 

)4/22cos(212  x ; 

)4/32cos(213  x ; 

)3/12cos(221  x and 

)3/22cos(222  x  

6 

2 C6 C 3   C 3   )3/12cos(211  x ; x11 = x21 

)3/22cos(212  x ; x12  = x22 

)2cos(213 x ; x13  = x33 

8 

3 S6 K 5   P 1 x11 = 4 , x1i = -1 for i=2,3,4,5, and  x21 = 0 7 
 
 

If G = C is the graph of a cube: 
 

ChS(x,C) = [24ChA(x/2, T = K4]
 2  = 28[ChA(x/2,T)] 2  and for x 1  =  3 = s1(x 11) = x 11 

/2 one obtains x 11  = 6 = x21; for i = 2,3,4 it results xi = -1= s1(x 1i) =  x 1i /2 and x 1i  = -2 = x 

2i. 
 
 
 



The Second Path Matrix of the Graph and Its Characteristic Polynomial 238

4. CORRELATING PROPERTIES 

The half sum of entries in S matrix equals the Gordon-Scantlebury [13] N2 index. 
Platt [14,15] has introduced the total adjacency of edges in a graph, as the F index: 
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In eq. (13) [EA]ij denotes the elements of edge-adjacency matrix. The F index is 
twice the Bertz B1 index [16], defined as the number of edges in the line graph [17] L1(G) 
of G and calculated by a combinatorial formula from the vertex valency vi [18]. Note that 
EA matrix refers to the vertex connectivity in L1(G). 

Despite the summation of all entries in EA and S, respectively, gives the same value 
[19], (no counter example, so far), the two matrices represent different mathematical 
objects, leading to different quantities by matrix manipulation. Applications of the above 
presented topological indices were presented elsewhere [18]. 

In a recent study, our group [20] found a good correlation of the logP in a set of 
polychlorinated biphenyls (PCBs) with an averaged mass descriptor AMD (i.e., the mean 
atomic mass of the vertices at positions 2, 3, and 4 in PCBs, the halogen atom substituent 
included) and the first eigenvalue EV of S, EV_S: 
 

SEVAMDP _741.1654.0790.1log     (14) 

 
n = 14; r = 0.9908; s = 0.185; CV% = 2.99; F = 296.62 

LOO: q = 0.984; Random: r = 0.583 
 

A random mixing of the modeled property shows a significant drop in the correlation 
coefficient value, proving that no chance correlation occurred. The explicit variance is 
higher than 0.98. Prediction ability of the model (eq 14), as given by �leave-one-out� 
LOO procedure, is very good (q = 0.984). In all, this is an excellent result, even the set of 
molecules is rather small (see also the result of multivariate regression, reported by the 
Abraham�s group21). 
 

5. CONCLUSIONS 

The novel matrix S, herein proposed, together with its characteristic polynomial, 
appear as interesting tools in describing the (molecular) graphs. For some particular 
classes of graphs analytical relations were derived from ),( GxChA . The first eigenvalue of 

S(G) showed excellent correlating ability vs. logP on a set of polychlorinated biphenyls. 
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