CARPATHIAN J. MATH. **21** (2005), No. 1 - 2, 1 - 6

R-Preirresolute Functions

C. W. BAKER

ABSTRACT. A strong form of a preirresolute function, called R-preirresolute, is introduced. It is established that R-preirresolute implies strongly preirresolute and that R-preirresolute functions satisfy a strong form of the closed graph property. Also it shown that R-preirresolute functions are closely related to pre-regularity.

1. INTRODUCTION

Several generalizations of preirresoluteness have been developed recently. In 1996 Pal and Bhattacharyya [8] introduced strong preirresoluteness and quasi preirresoluteness and in 2002 Noiri [7] developed θ -preirresoluteness. The purpose of this note is to introduce a form of preirresoluteness stronger than all of these, which we call R-preirresoluteness. This concept is based on the notion of R-continuity developed by Konstadilaki-Savvopoulou and Janković [3] in 1992. Besides developing the basic properties of these functions, we establish that R-preirresolute functions satisfy a strong form of the closed graph property. Also we show that R-preirresoluteness is closely related to pre-regularity. For example, it is shown that the range of an R-preirresolute, M-preopen function is pre-regular and that a space *Y* is pre-regular if and only if every preirresolute function with codomain *Y* is R-preirresolute. In general we establish that R-preirresolute functions are related to pre-regular spaces in much the same way as R-continuous functions are related to continuous functions and regular spaces.

2. PRELIMINARIES

Throughout this paper X, Y, and Z represent topological spaces with no separation axioms assumed unless explicitly stated. All sets are assumed to be subsets of topological spaces. For a set A the closure and interior of A are denoted by Cl(A) and Int(A), respectively. A set A is pre-open [5] if $A \subseteq Int(Cl(A))$. The collection of preopen subsets of a space X is denoted by PO(X) and the collection of all preopen subsets of X containing a fixed point x of X is denoted by PO(X, x). A set is preclosed provided its complement is preopen. The intersection of all preclosed sets containing a set A is called the preclosure [2] of A and is signified by PCl(A). The preinterior of A, denoted by PInt(A), is the union of all preopen sets contained in A. A set A is semi-open [4] provided there is an open set U such that $U \subseteq A \subseteq Cl(U)$ or equivalently $A \subseteq Cl(Int(A))$. The collection

Received: 08.06.2005; In revised form: 01.09.5005

²⁰⁰⁰ Mathematics Subject Classification: 54C10.

Key words and phrases: Preirresolute, strongly preirresolute, R-preirresolute, pre-regular, M-preclosed, M-preopen.

C. W. Baker

of semi-open subsets of a space *X* is denoted by SO(X) and the collection of all semi-open subsets of *X* containing a fixed point *x* of *X* is denoted by SO(X, x).

Definition 2.1. A function $f : X \to Y$ is said to be R-continuous (Konstadilaki-Savvopoulou and Janković [3]) provided that for every $x \in X$ and every open subset V of Y containing f(x), there is an open subset U of X containing x for which $Cl(f(U)) \subseteq V$.

Definition 2.2. A function $f : X \to Y$ is said to be preirresolute (Reilly and Vamanamurthy [9]) provided that $f^{-1}(V) \in PO(X)$ for every $V \in PO(Y)$.

Definition 2.3. A function $f : X \to Y$ is said to be strongly preirresolute (resp. quasi preirresolute) (Pal and Bhattacharyya [8]) if for every $x \in X$ and every $V \in PO(Y, f(x))$, there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subseteq V$ (resp. $f(U) \subseteq pCl(V)$).

Definition 2.4. A function $f : X \to Y$ is said to be θ -preirresolute (Noiri [7]) if for every $x \in X$ and every $V \in PO(Y, f(x))$, there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subseteq pCl(V)$.

Definition 2.5. A function $f : X \to Y$ is said to be M-preopen (Mashhour et al. [6]) (M-preclosed) provided that for every preopen (preclosed) subset A of X, f(A) is preopen (preclosed) in Y.

3. **R-preirresolute Functions**

We define a function $f : X \to Y$ to be R-preirresolute provided that for every $x \in X$ and every $V \in PO(Y, f(x))$ there exists $U \in PO(X, x)$ such that $pCl(f(U)) \subseteq V$. Obviously an R-preirresolute function is preirresolute.

Theorem 3.1. For a function $f : X \to Y$ the following statements are equivalent:

- (a) f is R-preirresolute.
- (b) For every $x \in X$ and every $V \in PO(Y, f(x))$ there exists $U \in PO(X, x)$ such that $pCl(f(pCl(U))) \subseteq V$.
- (c) For every $x \in X$ and every preclosed subset F of Y with $f(x) \notin F$, there exist sets $U \in PO(X, x)$ and $V \in PO(Y)$ with $F \subseteq V$ for which $f(pCl(U)) \cap V = \emptyset$.
- (d) For every $x \in X$ and every preclosed subset F of Y with $f(x) \notin F$, there exist sets $U \in PO(X, x)$ and $V \in PO(Y)$ with $F \subseteq V$ for which $f(U) \cap V = \emptyset$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and let $V \in \text{PO}(Y, f(x))$. Then there exists $U \in \text{PO}(X, x)$ such that $\text{pCl}(f(U)) \subseteq V$. Since f is also preirresolute, $f(\text{pCl}(U)) \subseteq \text{pCl}(f(U))$ and therefore $\text{pCl}(f(\text{pCl}(U))) \subseteq \text{pCl}(f(U)) \subseteq V$.

(b) \Rightarrow (c). Let $x \in X$ and let F be a preclosed subset of Y with $f(x) \notin F$. Then $f(x) \in Y - F$ which is preopen. Hence there exists $U \in PO(X, x)$ for which $pCl(f(pCl(U))) \subseteq Y - F$. Then for V = Y - pCl(f(pCl(U))) we have $F \subseteq V$ and, since pCl(f(pCl(U))) is preclosed, V is preopen. Also $f(pCl(U)) \cap V = \emptyset$.

(c) \Rightarrow (d). Clear.

(d) \Rightarrow (a). Let $x \in X$ and let $V \in \text{PO}(Y, f(x))$. Then Y - V is preclosed and $f(x) \notin Y - V$. Therefore there exist sets $U \in \text{PO}(X, x)$ and $W \in \text{PO}(Y)$ with $Y - V \subseteq W$ for which $f(U) \cap W = \emptyset$. Since $f(U) \subseteq Y - W$ which is preclosed, it follows that $\text{pCl}(f(U)) \subseteq Y - W \subseteq V$ which proves that f is R-preirresolute. \Box

2

R-Preirresolute Functions

The next result is an immediate consequence of Theorem 3.1(b).

Theorem 3.2. If $f : X \to Y$ is *R*-preirresolute, then f is strongly preirresolute.

The following example shows that strongly preirresolute is not equivalent to R-preirresolute.

Example 3.1. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$, and σ be the discrete topology on X. The identity mapping $f : (X, \sigma) \to (X, \tau)$ is strongly preirresolute, but not R-preirresolute.

Combining Theorem 3.2, Example 3.1 and Remark 2.2 in Noiri [7], yields the following implications, none of which are reversible: R-preirresolute \implies strongly preirresolute \implies preirresolute \implies quasi preirresolute

Definition 3.6. A function $f : X \to Y$ is said to be weakly M-preclosed provided that for every $U \in PO(X)$, $pCl(f(U)) \subseteq f(pCl(U))$.

Obviously M-preclosed implies weakly M-preclosed. The following example shows that the converse implication does not hold.

Example 3.2. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{X, \emptyset, \{a\}\}$. Then the function $f : X \to X$ given by f(a) = b and f(b) = a is weakly M-preclosed but not M-preclosed.

Theorem 3.3. If $f : X \to Y$ is strongly preirresolute and weakly *M*-preclosed, then *f* is *R*-preirresolute.

Proof. Let $x \in X$ and $V \in PO(Y, f(x))$. Since f is strongly preirresolute, there exists a set $U \in PO(X, x)$ for which $f(pCl(U)) \subseteq V$. Because f is weakly M-preclosed, $pCl(f(U)) \subseteq f(pCl(U)) \subseteq V$, which proves that f is R-preirresolute.

The function in Example 3.2 is weakly M-preclosed but not R-preirresolute. Hence weakly M-preclosed alone does not imply R-preirresolute.

Definition 3.7. A function $f : X \to Y$ is said to be contra M-preopen provided that for every $U \in PO(X)$, f(U) is preclosed.

Theorem 3.4. If $f : X \to Y$ is preirresolute and contra M-preopen, then f is R-preirresolute.

Proof. Let $x \in X$ and $V \in PO(Y, f(x))$. Then $f^{-1}(V) \in PO(X, x)$ and, since $f(f^{-1}(V))$ is preclosed, $pCl(f(f^{-1}(V))) = f(f^{-1}(V)) \subseteq V$.

4. PROPERTIES RELATED TO PRE-REGULARITY

Definition 4.8. A space X is said to be pre-regular (Pal and Bhattacharyya [8]) if for every preclosed set A and every $x \in X - A$ there exist disjoint sets $U, V \in PO(X)$ with $x \in U$ and $A \subseteq V$.

Remark 4.1. It is also observed in [8] that a space X is pre-regular if and only if for every $x \in X$ and every $U \in PO(X, x)$ there exists $V \in PO(X, x)$ such that $x \in V \subseteq pCl(V) \subseteq U$.

C. W. Baker

Theorem 4.5. If $f : X \to Y$ is preirresolute and Y is pre-regular, then f is R-preirresolute.

Proof. Let $x \in X$ and $V \in PO(Y, f(x))$. Since Y is pre-regular, there exists $W \in PO(Y, f(x))$ such that $f(x) \in W \subseteq pCl(W) \subseteq V$. Since f is preirresolute, there exists $U \in PO(X, x)$ such that $f(U) \subseteq W$. Then $pCl(f(U)) \subseteq pCl(W) \subseteq V$, which proves that f is R-preirresolute.

The following result is a slightly generalized version of Theorem 4.5.

Theorem 4.6. For a space Y the following statements are equivalent:

(a) Y is pre-regular.

(b) The identity mapping $i: Y \to Y$ is *R*-preirresolute.

(c) For every space X every preirresolute function $f : X \to Y$ is R-preirresolute.

Proof. (b) \Rightarrow (a) Clear.

(a) \Rightarrow (c) Follows from Theorem 4.5.

(c) \Rightarrow (b) Since the identity mapping is obviously preirresolute, the result follows immediately. $\hfill \Box$

Theorem 4.7. If $f : X \to Y$ is an *R*-preirresolute, *M*-preopen, surjection, then *Y* is pre-regular.

Proof. Let $y \in Y$ and $V \in PO(Y, y)$. Then let $x \in X$ for which y = f(x). Since f is R-preirresolute, there exists $U \in PO(X, x)$ such that $pCl(f(U)) \subseteq V$. Then, since $f(U) \in PO(Y)$ and $y \in f(U) \subseteq pCl(f(U)) \subseteq V$, we see that Y is pre-regular. \Box

Remark 4.2. Theorem 4.3 can also be proved by replacing the requirement that f be M-preopen with the apparent weaker requirement that $f(U) \subseteq pInt(pCl(f(U)))$ for every $U \in PO(X)$. However, it can be shown this condition is equivalent to M-preopenness.

Combining Theorems 4.5 and 4.7 yields the following result.

Theorem 4.8. Let $f : X \to Y$ be an preirresolute, *M*-preopen surjection. Then *f* is *R*-preirresolute if and only if *Y* is pre-regular.

Next we establish conditions under which pre-regularity is preserved. The following result from Pal and Bhattacharyya [8] will be required.

Lemma 4.1. (Pal and Bhattacharyya [8]) If $f : X \to Y$ is a function and X is preregular, then f is preirresolute if and only if f is strongly preirresolute.

Theorem 4.9. If $f : X \to Y$ is a preirresolute, *M*-preopen, weakly *M*-preclosed surjection and *X* is pre-regular, then *Y* is pre-regular

Proof. Since *f* is preirresolute and *X* is pre-regular it follows from Lemma 4.1 that *f* is strongly preirresolute. Then, because *f* is strongly preirresolute and weakly M-preclosed, Theorem 3.3 implies that *f* is R-preirresolute. Finally, since *f* is R-preirresolute, M-preopen, and surjective, it follows from Theorem 4.7 that *Y* is pre-regular. \Box

4

5. ADDITIONAL PROPERTIES

For a function $f : X \to Y$ the graph of f, G(f), is the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$.

Definition 5.9. The graph of a function $f : X \to Y$, G(f), is said to be strongly preclosed with respect to X provided that for every $(x, y) \notin G(f)$ there exist $U \in PO(X, x)$ and $V \in PO(Y, y)$ such that $(pCl(U) \times V) \cap G(f) = \emptyset$.

Definition 5.10. A space *X* is said to be pre- T_1 provided that for every pair of distinct points *x* and *y* in *X* there exist sets $U \in PO(X, x)$ and $V \in PO(X, y)$ such that $y \notin U$ and $x \notin V$.

Theorem 5.10. If $f : X \to Y$ is *R*-preirresolute and *Y* is pre-*T*₁, then *G*(*f*) is strongly preclosed with respect to *X*.

Proof. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Since *Y* is pre-*T*₁, there exists *V* ∈ PO(*Y*, *f*(*x*)) such that $y \notin V$. Since *f* is R-preirresolute, there exists *U* ∈ PO(*X*, *x*) such that pCl(*f*(*U*)) ⊆ *V*. Since $y \notin V$, obviously $y \notin pCl(f(U))$. Thus $(x, y) \in pCl(U) \times (Y - pCl(f(U)))$. Finally, because *f* is preirresolute, $f(pCl(U)) \subseteq pCl(f(U))$. It then follows that pCl(*U*) × (*Y* - pCl(*f*(*U*))) ⊆ *X* × *Y* - *G*(*f*), which proves that *G*(*f*) is strongly preclosed with respect to *X*.

Definition 5.11. A space *X* is said to be pre- R_0 provided that for every $x \in X$ and every $U \in PO(X, x)$, $pCl(\{x\}) \subseteq U$.

Theorem 5.11. If $f : X \to Y$ is *R*-preirresolute and surjective, then *Y* is pre- R_0 .

Proof. Let $y \in Y$ and let $V \in PO(Y, y)$. Then let $x \in X$ for which y = f(x). Since f is R-preirresolute, there exists $U \in PO(X, x)$ for which $pCl(f(U)) \subseteq V$. Then we see that $pCl(\{y\}) = pCl(\{f(x)\}) \subseteq pCl(f(U)) \subseteq V$ and hence Y is pre- R_0 . \Box

We conclude this note with several results concerning the composition and restriction of R-preirresolute functions. The proof of the next result is straightforward and is omitted.

Theorem 5.12. If $f : X \to Y$ is preirresolute and $g : Y \to Z$ is *R*-preirresolute, then $g \circ f : X \to Z$ is *R*-preirresolute.

Corollary 5.1. If $f : X \to Y$ is *R*-preirresolute and $g : Y \to Z$ is *R*-preirresolute, then $g \circ f : X \to Z$ is *R*-preirresolute.

Theorem 5.13. If $f : X \to Y$ is *R*-preirresolute and $g : Y \to Z$ is preirresolute and *M*-preclosed, then $g \circ f : X \to Z$ is *R*-preirresolute.

Proof. Let $x \in X$ and $V \in PO(Z, g(f(x)))$. Since g is preirresolute, $g^{-1}(V) \in PO(Y, f(x))$ and, since f is R-preirresolute, there exists $W \in PO(X, x)$ such that $pCl(f(W)) \subseteq g^{-1}(V)$ or $g(pCl(f(W))) \subseteq V$. Because g is M-preclosed, g(pCl(f(W))) is preclosed. Therefore we have $pCl(g(f(W))) \subseteq pCl(g(pCl(f(W)))) = g(pCl(f(W))) \subseteq V$ which proves that $g \circ f$ is R-preirresolute. □

In the next result we modify the hypothesis of Theorem 5.13 by weakening the requirement on g and strengthening the requirement on f.

C. W. Baker

Theorem 5.14. If $f : X \to Y$ is *R*-preirresolute and *M*-preopen and $g : Y \to Z$ is preirresolute and weakly *M*-preclosed, then $g \circ f : X \to Z$ is *R*-preirresolute.

Proof. Let $x \in X$ and $V \in PO(Z, g(f(x)))$. Since g is preirresolute, $g^{-1}(V) \in PO(Y, f(x))$. Because f is R-preirresolute, there exists $W \in PO(X, x)$ for which $pCl(f(W)) \subseteq g^{-1}(V)$ or $g(pCl(f(W))) \subseteq V$. Then, using the M-preopenness of f and the weakly M-preclosedness of g, we have $pCl(g(f(W))) \subseteq g(pCl(f(W))) \subseteq V$, which proves that $g \circ f$ is R-preirresolute.

Theorem 5.15. Let $f : X \to Y$ and $g : Y \to Z$ be functions. If $g \circ f : X \to Z$ is *R*-preirresolute and *f* is a *M*-preopen surjection, then *g* is *R*-preirresolute.

Proof. Let $y \in Y$ and $V \in PO(Z, g(y))$. Since f is surjective, there exists $x \in X$ for which f(x) = y. Because $g \circ f$ is R-preirresolute, we have $W \in PO(X, x)$ such that $pCl(g(f(W))) \subseteq V$. Since f is M-preopen, $f(W) \in PO(Y, y)$ and hence g is R-preirresolute.

The following lemma will be useful.

Lemma 5.2. (Császár [1]) If $A \in SO(X)$ and $B \in PO(X)$, then $A \cap B \in PO(A)$.

Theorem 5.16. If $f : X \to Y$ is *R*-preirresolute and $A \in SO(X)$, then $f|_A : A \to Y$ is *R*-preirresolute.

Proof. Let $x \in A$ and $V \in PO(Y, f(x))$. Then there exists $U \in PO(X, x)$ such that $pCl(f(U)) \subseteq V$. Since $A \in SO(X)$, $U \cap A \in PO(A, x)$. Then we see that $pCl(f|_A(U \cap A)) = pCl(f(U \cap A)) \subseteq pCl(f(U)) \subseteq V$ which proves that $f|_A : A \to Y$ is R-preirresolute.

REFERENCES

- [1] Császár, Á., Generalized open sets, Acta Math. Hungar., 75 (1997), 65-87
- [2] El Deeb, N., Hasanein, I. A., Mashhour, A. S. and Noiri, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (1983), 311–315
- [3] Konstadilaki-Savvopoulou, Ch. and Janković, D., *R-continuous functions*, Internat. J. Math. Math. Sci., 15 (1992), 57–64
- [4] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41
- [5] Mashhour, A. S., Abd El-Monsef, and S. N. El-Deeb, S. N., On Precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53
- [6] Mashhour, Abd El Monsef, M. E. and Hasanein, I. A., On pretopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 28 (1984), 39–45
- [7] Noiri, T., On θ -preirresolute functions, Acta Math. Hungar., 95 (2002), 287–298
- [8] Pal, M. C. and Bhattacharyya, P., Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc., 19 (1996), 63–75
- [9] Reilly, I. L. and Vamanamurthy, M. K., On α-continuity in topological spaces, Acta Math. Hungar., 45 (1985), 27–32

DEPARTMENT OF MATHEMATICS INDIANA UNIVERSITY SOUTHEAST NEW ALBANY, IN 47150 USA *E-mail address*: cbaker@ius.edu