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On the Schurer-Stancu approximation formula

DAN BĂRBOSU

ABSTRACT. Let p ≥ 0 be a given integer and let α, β ∈ R be parameters satisfying the conditions
0 ≤ α ≤ β. In [1] was introduced the Schurer-Stancu operator S̃

(α,β)
m,p : C([0, 1 + p]) → C([0, 1])

defined for any m ∈ N and any f ∈ C([0, 1 + p]) by (1.1). Considering the Schurer-Stancu approxi-
mation formula (1.3), one studies its remainder term. As particular cases follow the remainder terms
of Schurer, Stancu and respectively Bernstein approximation formulas.

1. PRELIMINARIES

Let p ≥ 0 be a given integer and let α, β be real parameters satisfying 0 ≤ α ≤
β. The Schurer-Stancu operator (see [1]) S̃

(α,β)
m,p : C([0, 1+p]) → C([0, 1]) is defined

for any m ∈ N and any f ∈ C([0, 1 + p]) by

(1.1)
(
S̃(α,β)

m,p f
)

(x) =
m+p∑
k=0

p̃m,k(x)f
(

k + α

m + β

)
,

where

(1.2) p̃m,k(x) =
(

m + p

k

)
xk(1 − x)m+p−k,

are the fundamental Schurer polynomials (see [7]).
Note that S̃

(0,0)
m,p is the operator introduced by F. Schurer in 1962 (see [7]), S̃

(α,β)
m,0

is the operator introduced and studied by D.D. Stancu in 1968 (see [11]) and S̃
(0,0)
m,0

is the classical Bernstein operator (see [4]).
Some approximation properties of operator (1.1) were studied in our earlier

papers [1], [2], [3], [4].
In what follows, we consider the Schurer-Stancu approximation formula

(1.3) f = S̃(α,β)
m,p f + R̃(α,β)

m,p f,

and we are dealing with the expression of remainder R̃
(α,β)
m,p f using the first and

second order divided differences of approximated function.
The brackets denote divided differences. We recall that if I ⊆ R is an interval,

x1, x2 ∈ I , x1 �= x2 and f : I → R is bounded on I , the first order divided
differences of f is defined by:

(1.4) [x1, x2; f ] =
f(x2) − f(x1)

x2 − x1
.
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The divided difference of n-th order is defined by the recurrence relation:

(1.5) [x0, x1, . . . , xn; f ] =
[x1, . . . , xn; f ] − [x0, . . . , xn−1; f ]

xn − x0
.

The function f : I → R, bounded on I , is convex (concave) of n-th order on I if
and only if for any distinct points x0, x1, . . . , xn+1 ∈ I , the following

(1.6) [x0, x1, . . . , xn+1; f ] >
(<)

0

holds.
Clearly, a convex function of first order is monotonous increasing on I , a con-

vex function of second order is convex in usually sense on I , etc.
The notion of convexity of n-th order was introduced by the great Romanian

mathematician T. Popoviciu.
Let us to recall another important result due to T. Popoviciu.

Theorem 1.1. [6] If the linear functional A ∈ C[a, b] satisfies the conditions:
(i) A(e1) = A(e2) = · · · = A(en) = 0, A(en+1) �= 0;
(ii) for any f ∈ C([a, b]) convex of n-th order on [a, b], A(f) �= 0,

then, for any f ∈ C([a, b]) there exist the points a ≤ ξ1 < ξ2 < · · · < ξn+2 ≤ b such
that the following

(1.7) A(f) = A (en+1) [ξ1, . . . , ξn+2; f ]

holds.

2. MAIN RESULTS

We shall prove

Theorem 2.2. For any f ∈ C([0, 1 + p]) the remainder term of Schurer-Stancu approx-
imation formula (1.3) can be expressed under the form

(
R̃(α,β)

m,p f
)

(x) =
1

m + β
{(β − p)x − α}

m+p∑
k=0

p̃m,k(x)
[
x,

k + α

m + β
; f

]
−(2.8)

− m + p

(m + β)2
x(1 − x)

m+p−1∑
k=0

p̃m−1,k(x)
[
x,

k + α

m + β
,
k + α + 1

m + β
; f

]
.

Proof. From (1.1) and (1.3) follows:

(2.9)
(
R̃(α,β)

m,p f
)

(x) =
1

m + β

m+p∑
k=0

{(m + β)x − (k + α)}
[
x,

k + α

m + β
; f

]
.

But

(2.10) (m + β)x − (k + α) = (m + p − k)x + (β − p)x − α − k(1 − x)
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Taking the simple identity (2.10) into account, from (2.9) yields:(
R̃(α,β)

m,p f
)

(x) =
(β − p)x − α

m + β

m+p∑
k=0

p̃m,k(x)
[
x,

k + α

m + β
; f

]
+(2.11)

+
x

m + β

m+p−1∑
k=0

(m + p − k)p̃m,k(x)
[
x,

k + α

m + β
f

]
−

− 1 − x

m + β

m+p∑
k=1

k p̃m,k(x)
[
x,

k + α

m + β
; f

]
After some elementary transformations, (2.11) can be expressed under the form:(

R̃(α,β)
m,p f

)
(x) =

1
m + β

{(β − p)x − α}
m+p∑
k=0

p̃m,k(x)
[
x,

k + α

m + β
; f

]
+(2.12)

+
m+p

m+β
x(1−x)

m+p−1∑
k=0

p̃m−1,k(x)
{[

x,
k+α

m+β
f

]
−

[
x,

k+α+1
m+β

; f
]}

.

Applying (1.5) for n = 2, x0 = x, x1 =
k + α

m + β
, x2 =

k + α + 1
m + β

follows:[
x,

k + α

m + β
; f

]
−

[
x,

k + α + 1
m + β

; f
]

=(2.13)

= − 1
m + β

[
x,

k + α

m + β
,
k + α + 1

m + β
; f

]
.

Using (2.13), from (2.12) we get:(
R̃(α,β)

m,p f
)

(x) =
1

m + β
{(β − p)x − α}

m+p∑
k=0

p̃m,k(x)
[
x,

k + α

m + β
; f

]
−

− m + p

(m + β)2
x(1 − x)

m+p−1∑
k=0

p̃m−1,k(x)
[
x,

k + α

m + β
,
k + α + 1

m + β
; f

]
,

which is the desired result (2.8). �

Lemma 2.1. For any f ∈ C([0, 1 + p]) and any x ∈ [0, 1] there exist the points ξ1,
ξ2 ∈ [0, 1] so that

(2.14)
m+p∑
k=0

p̃m,k(x)
[
x,

k + α

m + β
; f

]
= [ξ1, ξ2; f ] .

Proof. Let x0 ∈ [0, 1] be arbitrary given. We define the linear functional
A ∈ C#[0, 1] by

(2.15) A(f) =
m+p∑
k=0

p̃m,k(x0)
[
x0,

k + α

m + β
; f

]
.
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Because

[
x0,

k + α

m + β
; 1

]
= 0,

[
x0,

k + α

m + β
; x

]
= 1, follows that A(e0) = 0, A(e1) =

1 �= 0.

For any monotonous increasing function f ∈ C([0, 1])

[
x0,

k + α

m + β
; f

]
> 0.

Also, for any x ∈ [0, 1], p̃m,k(x) ≥ 0.
Follows A(f) > 0 for any f ∈ C([0, 1]), monotonous increasing on [0, 1].
We can then apply the Popoviciu’s theorem and we get that there exist the

distinct points ξ1, ξ2 ∈ [0, 1] such that
m+p∑
k=0

p̃m,k(x0)
[
x0,

k + α

m + β
; f

]
= [ξ1, ξ2; f ] ,

which is in fact the desired identity (2.14), because x0 ∈ [0, 1] is arbitrary chosen.
�

Lemma 2.2. For any f ∈ C([0, 1 + p]) and any x ∈ [0, 1] there exist the points
η1, η2, η3 ∈ [0, 1], so that:

(2.16)
m+p−1∑

k=0

p̃m−1,k(x)
[
x,

k + α

m + β
,

k + α + 1
m + β + 1

f

]
= [η1, η2, η3; f ] .

Proof. Let x0 ∈ [0, 1] be fixed and let A ∈ C#([0, 1]) be defined by

A(f) =
m+p−1∑

k=0

p̃m−1,k(η)
[
x0,

k + α

m + β
,

k + α + 1
m + β + 1

; f
]

.

Because A(e0) = 0, A(e1) = 0 (⇐ follows from (2.12)) and

A(e2) =
m+p−1∑

k=0

p̃m−1,k(η)
[
x0,

k + α

m + β
,

k + α + 1
m + β + 1

; x2

]
=

=
m+p−1∑

k=0

pm−1,k(x0) = 1 �= 0,

and A(f) > 0 for any convex function of first order f ∈ C([0, 1]), we can apply
the Popoviciu’s theorem and we get that there exist the distinct points η1, η2,
η3 ∈ [0, 1] such that

A(f) = [η1, η2, η3; f ]A
(
x2

0

)
= [η1, η2, η3; f ]

and the proof ends. �
Theorem 2.3. For any f ∈ C ([0, 1 + p]) and any x ∈ [0, 1], the remainder term of
Schurer-Stancu approximation formula (1.3) can be represented under the form:(

R̃(α,β)
m,p f

)
(x) =

1
m + β

{(β − p)x − α} [ξ1, ξ2; f ]−(2.17)

− m + p

(m + β)2
x(1 − x) [η1, η2, η3; f ]

for any m ≥ 2.
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Proof. One applies Theorem 1.2, Lemma 2.1 and Lemma 2.2. �
Corollary 2.1. The remainder term of Schurer approximation formula can be represented
under the form

(2.18)
(
R̃(0,0)

m,p f
)

(x) =
−px

m
[ξ1, ξ2; f ] − m + p

m2
x(1 − x) [η1, η2, η3; f ]

for any f ∈ C([0, 1 + p]) and any x ∈ [0, 1], where ξ1, ξ2, η1, η2, η3 are distinct points
from [0, 1].

Proof. In Theorem 2.2 one makes α = β = 0. �
Corollary 2.2. The remainder term of Stancu approximation formula can be represented
under the form:

(2.19)
(
R̃

(α,β)
m,0 f

)
(x) =

1
m + β

(βx−α) [ξ1, ξ2; f ]− m

(m + β)2
x(1−x) [η1, η2, η3; f ] .

Proof. One applies Theorem 2.2 for p = 0. �
Corollary 2.3. The remainder term of Bernstein approximation formula can be repre-
sented under the form:(

R̃
(0,0)
m,0 f

)
(x) = − 1

m
x(1 − x) [η1, η2, η3; f ] .

Proof. In Theorem 2.2 one makes α = β = p = 0. �
Corollary 2.4. For any f ∈ C2([0, 1 + p]) and any x ∈ [0, 1] there exist the points
ξ, η ∈ [0, 1] such that

(2.20)
(
R̃(α,β)

m,p f
)

(x) =
1

m + β
{(β − p)x − α} f ′(ξ) − m + p

2(m + β)2
x(1 − x)f ′′(η).

Proof. One applies Theorem 2.2 and the mean theorem for divided differences
(see [15]). �
Corollary 2.5. For any f ∈ C2([0, 1 + p]) and any x ∈ [0, 1] there exist the points
ξ, η ∈ [0, 1] such that

(2.21)
(
R̃(0,0)

m,p f
)

(x) = − p

m
xf ′(ξ) − m + p

2m2
x(1 − x)f ′′(η).

Proof. One applies Corollary 2.4 for α = β = 0. �
Corollary 2.6. For any f ∈ C2([0, 1]) and any x ∈ [0, 1] there exist the points ξ, η ∈
[0, 1] such that(

R̃
(α,β)
m,0 f

)
(x) =

1
m + β

(βx − α)f ′(ξ) − m

2(m + β)2
x(1 − x)f ′′(η).

Proof. In Corollary 2.4 we make p = 0. �
Corollary 2.7. For any f ∈ C2([0, 1]) and any x ∈ [0, 1] there exists the point η ∈ [0, 1]
such that

(2.22)
(
R̃

(0,0)
m,0 f

)
(x) = − 1

m
x(1 − x)f ′′(η).

Proof. One applies Corollary 2.4 for α = β = p = 0. �
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[1] Bărbosu, D., Schurer-Stancu type operators, Studia Univ. ”Babeş-Bolyai”, XLVIII (2003), No. 3, 31-
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