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On the Schurer-Stancu approximation formula

DAN BARBOSU

ABSTRACT. Letp > 0be agiven integer and let o, 3 € R be parameters satisfying the conditions

0 < o < B. In[1] was introduced the Schurer-Stancu operator §,(,‘if) : C([0,1+ p]) — C([0,1])
defined for any m € Nand any f € C([0,1 + p]) by (1.1). Considering the Schurer-Stancu approxi-
mation formula (1.3), one studies its remainder term. As particular cases follow the remainder terms
of Schurer, Stancu and respectively Bernstein approximation formulas.

1. PRELIMINARIES

Let p > 0 be a given integer and let «, 3 be real parameters satisfying 0 < a <

3. The Schurer-Stancu operator (see [1]) §,(,ifff) : C([0, 1+p]) — C([0,1]) is defined
forany m € Nand any f € C(]0,1 + p]) by

3(e) 55 bt
@) (SE27) @) =3 Bmala)f (m — ﬂ) :
k=0

where

02 Fnate) = (" P )1 = e,

are the fundamental Schurer polynomials (see [7]).
Note that S0 is the operator introduced by F. Schurer in 1962 (see [7]), S.%”

m,0
is the operator introduced and studied by D.D. Stancu in 1968 (see [11]) and 5.
is the classical Bernstein operator (see [4]). '
Some approximation properties of operator (1.1) were studied in our earlier
papers [1], [2], [3], [4].
In what follows, we consider the Schurer-Stancu approximation formula

13) f= g(o"ﬂ)f + E(a-ﬂ)f,

m,p m,p

and we are dealing with the expression of remainder figﬁf)f using the first and

second order divided differences of approximated function.

The brackets denote divided differences. We recall that if I C R is an interval,
r1,29 € I, 21 # 29 and f : I — R is bounded on I, the first order divided
differences of f is defined by:

fla2) = fla)

(1.4)  [zr1,205 f] =
T2 —I1
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The divided difference of n-th order is defined by the recurrence relation:

[Zl,...,l'n;f] — [I(),...,$n,1;f] '

(1.5  [xo,z1,.. ., 70 f] =
Tn — T

The function f : I — R, bounded on I, is convex (concave) of n-th order on I if
and only if for any distinct points xg, x1, ..., z,4+1 € I, the following

(1.6) [wo,21,... s Tny15f] > 0
(<)

holds.

Clearly, a convex function of first order is monotonous increasing on I, a con-
vex function of second order is convex in usually sense on I, etc.

The notion of convexity of n-th order was introduced by the great Romanian
mathematician T. Popoviciu.

Let us to recall another important result due to T. Popoviciu.

Theorem 1.1. [6] If the linear functional A € C|a, b] satisfies the conditions:

(i) A(er) = A(e2) = -+ = A(en) = 0, A(e™™) £ 0;

() for any f € C([a, b]) convex of n-th order on [a, b], A(f) # 0,
then, for any f € C([a, b]) there exist the points a < &1 < & < -+ < &,42 < bsuch
that the following

1.7 A(f) =A(ent1) &1y, &nt2; f]
holds.

2. MAIN RESULTS

We shall prove

Theorem 2.2. Forany f € C([0, 1+ p]) the remainder term of Schurer-Stancu approx-
imation formula (1.3) can be expressed under the form

- mtp kE+a
(2.8) (Rmfp f)(m)—erﬂ{(ﬁ px—a}ZPmk [ Jrﬁ,f]
m+p—1
m+p k+a k+a+1
RGP R {‘T’mw’ m+ 8 ’f}

Proof. From (1.1) and (1.3) follows:

m-+p
(2.9) (Eﬁf)f) (z) = miﬁ Z {(m+B)z — (k+ o)} { :11(; ;f}
k=0

But

(210) (m+p)zr—(k+a)=m+p—klz+(B—-prz—a—k(l—-2x)



On the Schurer-Stancu approximation formula 9

Taking the simple identity (2.10) into account, from (2.9) yields:

m-+p
@) (Raps) () = Uopa—aNms ) { k+a ’f}

m+p = m+f
+ miw mgl(m +p = k)P k(@) [x :110;3 f] -
m+ﬁmz+:pkpmk [ ki%f]
After some elementary transformations, (2.11) can be expressed under the form;
@12) (BG)7) @) = — 5 (8~ p)e —a} lijpm al [:c . i‘; ,f}
g 3 maeto {5 [ S55
Applying (1.5)forn =2, 20 =, z1; = ::r(; ZTo = %follows‘:

_ 1 [x E+a k—i—a-i—l.f}
 omH+8 | m+B8 m+8 7|
Using (2.13), from (2.12) we get:

(ﬁﬁfi"mf) (x) = (B—p) x*a}nippmk [:c ta ,f}
" m+ ﬁ k=0 + ﬁ
m+p—1
m-+p k+a k+a+1
- 1 - m— 9 5
(m+ B)? ?) Z Pm-14(@ [ m+8" m+p f]
which is the desired result (2.8). O

Lemma 2.1. For any f € C([0,1 + p]) and any = € [0, 1] there exist the points {1,
& € [0, 1] so that

m—i—p~ k+a
(2.14) kz::()pm,k(m) [337 m+ B 74 = [€1,62; f]-

Proof. Let zyp € [0,1] be arbitrary given. We define the linear functional
A€ C#[0,1] by

m—+p
@18 A(f)= 3 Pnslan) [

zo, k.+o;37f:| .
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k+a k+a
Because lmo,—J] =0, lxo,—

;x| =1, foll hat A(eg) = 0, A(e) =
mis m+ﬂ’x , follows that A(eg) = 0, A(e1)

140.

. . . k+ «a
For any monotonous increasing function f € C([0,1]) [xo,m—w;f] > 0.
Also, for any z € [0, 1], p k(x) > 0.
Follows A(f) > 0 forany f € C([0,1]), monotonous increasing on [0, 1].
We can then apply the Popoviciu’s theorem and we get that there exist the

distinct points &, & € [0, 1] such that

Z+p~ (m)[x ’”—“-f]—[e &: f]
k:op’m,k 0 O,m‘i‘ﬁ’ = [S1,Q2; )

which is in fact the desired identity (2.14), because z( € [0, 1] is arbitrary chosen.
O

Lemma 2.2. For any f € C([0,1 + p]) and any = € [0,1] there exist the points
m,n2,M3 € [0, 1], so that:

et [ k+a k+a+1
i

(2.16) ;} P k(2) |0 e

f] = [1n1,m2,m3; f].

Proof. Letz € [0, 1] be fixed and let A € C#([0, 1]) be defined by

m+p—1~ k k 1
AR = 3 Boasln) [ro, 2 EEEE .

k=0
Because A(eg) = 0, A(e1) = 0 («= follows from (2.12)) and

m+p—1
~ k+a k+a-+1 2]
Aleg) = e o, , st | =
(e2) kz=op 1,k(ﬁ)[()m+ﬂ Ml

m+p—1

= Z Pm—1,k(x0) =1 # 0,

k=0
and A(f) > 0 for any convex function of first order f € C([0, 1]), we can apply
the Popoviciu’s theorem and we get that there exist the distinct points 7, 72,
n3 € [0, 1] such that
A(f) = [ m2ymss f1 A (28) = [, 12, a3 f]

and the proof ends. |

Theorem 2.3. Forany f € C([0,1+ p]) and any = € [0, 1], the remainder term of
Schurer-Stancu approximation formula (1.3) can be represented under the form:

@1n) (RSf) (@) = = (8= p)o — o} fer. i -
- ﬁx(l - 33) [771)7727773;f]

forany m > 2.
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Proof. One applies Theorem 1.2, Lemma 2.1 and Lemma 2.2. O
Corollary 2.1. The remainder term of Schurer approximation formula can be represented
under the form
~ —px m+p
218) (RODf) (@) = =25 1,605 f] = L (1 = 2) [, oo ]

forany f € C([0,1 + p]) and any x € [0, 1], where &1, &2, 11, 2, 13 are distinct points
from [0, 1].

Proof. In Theorem 2.2 one makes o = 3 = 0. O

Corollary 2.2. The remainder term of Stancu approximation formula can be represented
under the form:

@19) (BS)T) () = ooy (A=) [, €0t )= (P (1) s .

Proof. One applies Theorem 2.2 for p = 0. O

Corollary 2.3. The remainder term of Bernstein approximation formula can be repre-
sented under the form:

=~ 1
(RO @) = == 20 = 2) e s 1.
Proof. In Theorem 2.2 one makesa = 3 =p = 0. O

Corollary 2.4. Forany f € C?([0,1 + p]) and any = € [0,1] there exist the points

&,m € 10,1] such that
(2.20) (Rﬁ,‘i‘f)f) (a:) = m+ 3 {(ﬁ —p)x — 04} fl(g) - W z(1 — x)f”(n),

Proof. One applies Theorem 2.2 and the mean theorem for divided differences
(see [15]). O

Corollary 2.5. For any f € C*([0,1 + p]) and any = € [0, 1] there exist the points
&,m € 10,1] such that

1 m—+p

~ m +
@21 (R9Df) @ =-Lap(e) - L —a) 1 ).
Proof. One applies Corollary 2.4fora =06 =0. d

Corollary 2.6. For any f € C?(]0,1]) and any = € [0, 1] there exist the points &, €
[0, 1] such that

p(a,B) _ 1 o) F(E) — m (1 — ) "
(B'7) @) = 1 (B = @) = 5T w1 = ) (),

Proof. In Corollary 2.4 we make p = 0. O

Corollary 2.7. Forany f € C?([0,1]) and any = € [0, 1] there exists the point 5 € [0, 1]
such that

@22 (RO9F) (@)= a1~ a)f"(n).

Proof. One applies Corollary 24fora=0=p=0. O
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