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The fastest Krasnoselskij iteration for approximating
fixed points of strictly pseudo-contractive mappings

VASILE BERINDE and MĂDĂLINA BERINDE

ABSTRACT. Let X be a Banach space, K a nonempty closed convex subset of X and T : K → K
a Lipschitzian strictly pseudo-contractive mapping. We show that, in order to approximate the fixed
point of T , instead of the Mann iteration, usually considered by many authors, we may use a simpler
method, i.e., the Krasnoselskij iterative process, for which, in addition, it is also possible to find the
fastest iteration to compute the fixed point. Subsidiary, it is also pointed out that an assumption
like lim

n→∞ αn = 0, involved in most convergence theorems for Mann iteration existing in literature,

appears to be artificial and not necessary.

1. INTRODUCTION

Let X be a Banach space and T : X → X a mapping. It is known, by the
classical Banach contraction mapping principle, that if T is a L-contraction, i.e., a
mapping for which there exists 0 < L < 1 such that

(1.1) ‖Tx − Ty‖ ≤ L ‖x − y‖ for allx, y ∈ X,

then T has a unique fixed point p ∈ X , which can be obtained by means of Picard
iteration, that is, the sequence of successive approximations {xn} defined by

(1.2) xn+1 = Txn, n ≥ 0,

converges to p, as n → ∞, for any initial approximation x0 ∈ X.
If in (1.1) we have L ≥ 1, then the above result is no more valid. In the case T

is nonexpansive, i.e. L = 1, X is uniformly convex, and K is a nonempty closed
convex and bounded subset of X , then the Browder-Göhde-Kirk fixed point the-
orem (see [6], [15], [17]) still ensure the existence of a fixed point of T : K → K .
But, unlike in the case of the Banach contraction principle, trivial examples, see
[1], for instance, show that the sequence of successive approximations (1.2) may
fail to converge to the fixed point even in the case when T has a unique fixed
point.

To remove these difficulties, Krasnoselskij [18] observed that the averaged
mapping

T1/2 =
1
2
(I + T ), I = the identity map,

which is also nonexpansive, possesses the same fixed points as T , and has a better
asymptotic behavior than T itself and, therefore, can be used as an iteration func-
tion to approximate fixed points of T . Briefly, he proved that if X and K are as
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above and T is nonexpansive and compact, then the successive approximations
defined by the iteration mapping T1/2, i.e. the sequence

(1.3) xn+1 =
1
2
(xn + Txn), n ≥ 0,

converges strongly to a fixed point of T .
Schaefer [27] extended the previous result, by using the more general iteration

(1.4) xn+1 = (1 − λ)xn + λTxn, n ≥ 0 and λ ∈ [0, 1],

usually called Krasnoselskij iteration and which corresponds to the averaged map-
ping

(1.5) Tλ = (1 − λ)I + λT, λ ∈ [0, 1].

The most general iterative scheme now intensively studied for approximating
fixed points of nonexpansive mappings is the Mann iteration {xn}, see [22], de-
fined by x0 ∈ K and

(1.6) xn+1 = (1 − αn)xn + αnTxn, n ≥ 0,

where {αn} ∈ [0, 1] is a sequence of real numbers satisfying appropriate condi-
tions. One such kind of condition is

(1.7)
∞∑

n=0

αn = ∞.

It is clear that if we take αn ≡ λ(const.), λ ∈ (0, 1], (1.7) is satisfied and so (1.6)
reduces to the Krasnoselskij iteration (1.4), which in turn gives Picard iteration
(1.2) for λ ≡ 1.

There are a lot of recent papers concerning the convergence of the Mann iter-
ation, see [7]-[14], [16], [18]-[26], [28] and references therein, and especially [1],
for a comprehensive bibliography, but the great majority of them are obtained by
imposing the following condition on the sequence {αn}:

(1.8) lim
n→∞ αn = 0.

As pointed out in [1, Chapter 9, Example 9.2] and also shown by Example 2, in
most cases condition (1.8) is not necessary for the convergence of Mann iteration
and appears to be an artificial assumption, being tributary to the technique of
proof used by the authors.

In this context, we remark that unless the case of Mann iteration, in the case of
Halpern’s fixed point iterative method, conditions (1.8) and (i) in this paper are
known to be necessary for the convergence of that method, see [11]. Remind that
Halpern’s iteration [29] is defined by x0 ∈ K and

xn+1 = αnu + (1 − αn)Txn, n ≥ 0,

where {αn} is a sequence of real numbers in [0, 1], T : K → K is a given self-
operator and u ∈ K is arbitrary.

Example 1.1. ([1]) Let X = R with the usual norm, K =
[
1
2
, 2

]
and T : K → K

be a function given by Tx =
1
x

, for all x in K . Then:
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(a) T is Lipschitzian with constant L = 4;
(b) T is strictly pseudocontractive, i.e., for t > 1

‖x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖
which is equivalent to

|x − y| ≤ |x − y| ·
∣∣∣∣1 + r +

rt

xy

∣∣∣∣ ,
obviously true for all x, y ∈ K , and r > 0;

(c) F (T ) = {1}, where F (T ) = {x ∈ K| Tx = x};
(d) The Picard iteration associated to T does not converge to the fixed point of

T , for any x0 ∈ K \ {1};
(e) The Krasnoselskij iteration associated to T converges to 1 for any x0 ∈ K

and λ ∈ (0, 1/16);
(f) The Mann iteration associated to T with αn =

n

2n + 1
, n ≥ 0 and x0 = 2

converges to 1, the unique fixed point of T : x1 = 2; x2 = 1.5; x3 = 1.166, x4 =
1.034; x5 = 1.0042; x6 = 1.00397; x7 = 1.000031;

x8 = 1.000002 and x9 = 1; However, αn ↗ 1
2

as n → ∞ and so condition (1.8) is
not satisfied.

But, from a computational point of view, when two or more iterative methods
are available in order to approximate fixed points of a mappings in a certain class,
it is natural to choose the simpler method, when known, in order to avoid com-
plicated computations. On the other hand, it is clear that Krasnoselkij iteration
method (1.4) is computationally simpler than the Mann iteration procedure (1.6).

Starting from the fact that many papers published in the last decade are de-
voted to the approximation of fixed points of several classes of mappings that
include nonexpansive mappings, in this paper we show that, in the case of Lips-
chitzian strictly pseudo-contractive operators, the Krasnoselskij iteration suffices
to approximate fixed points. Moreover, we also show that amongst all Krasnosel-
skij iterations that converge to the fixed point of such operators, we may select
the fastest iteration, in some sense. This is indeed a very important achievement
in view of concrete applications of fixed point iteration procedures.

The results in this paper open a new important direction of investigation: to
analyze all convergence theorems for Mann iteration, Mann-type iteration etc.,
based on condition (1.8), in order to decide whether or not this assumption is in-
deed necessary for the convergence of that iteration and, secondly, to investigate
if Krasnoselskij iteration could really replace Mann iteration for these classes of
operators.

2. CONVERGENCE THEOREMS FOR MANN ITERATION

Let X be a normed linear space. A mapping T : D(T ) ⊂ X → X is said to be
strongly (or strictly) pseudo-contractive if there exists t > 1 such that

(2.9) ‖x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖
holds for all x, y ∈ D(T ) and r > 0.
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If t = 1, then T is said to be pseudo-contractive. A mapping T is strongly pseu-
docontractive if and only if I −T is a strongly accretive mapping, which is equiv-
alent to the fact that the inequality

(2.10) ‖ x − y‖ ≤ ‖x − y + r [ (I − T − kI)x − (I − T − kI) y ]‖

holds for any x, y ∈ K and any r > 0 (where k =
t − 1

t
).

In the following, the set of fixed points of T will be denoted by F (T ); the
Lipschitzian constant of T will be denoted by L(≥ 1), while by k we denote the
constant of strictly pseudo-contractiveness of T .

The main result in Liu [20] is the next theorem.

Theorem 2.1. Let X be a Banach space and K a nonempty closed convex and bounded
subset of X . Let T : K → K be a Lipschitzian strongly pseudocontractive mapping. If
the fixed point set of T , F (T ), is nonempty, then the Mann iteration {xn} ⊂ K generated
by (1.6) with x1 ∈ K and the sequence {αn} ⊂ (0, 1], with {αn} satisfying (1.8) and

(i)
∞∑

n=1

αn = ∞,

converges strongly to q ∈ F (T ) and F (T ) is a single set.

Sastry and Babu [26] noticed that the boundedness of K was not actually used
in proving Theorem 1 and hence, exploiting this, they proved a more general
result (Theorem 2.2 in the present paper) which, in addition, considered Mann
iterations without condition (1.8).

Theorem 2.2. Let X be a Banach space and K a nonempty closed convex subset of X . If
T : K → K is a Lipschitzian (with constant L) and strongly pseudo-contractive operator
(with constant k) such that the fixed point set of T , F (T ), is nonempty, then the Mann
iteration {xn} ⊂ K generated by (1.6) with x1 ∈ K and the sequence {αn} ⊂ (0, 1],
with {αn} satisfying (i) and

αn ≤ k − η

(L + 1)(L + 2 − k)
,

for some η ∈ (0, k), converges strongly to the unique fixed point p ofT .
Moreover, there exists {βn}n≥0, a sequence in (0, 1) with βn ≥ (η/(1 + k))αn, such

that for all n ∈ N, the following estimate holds

‖xn+1 − p‖ ≤
n∏

j=1

(1 − βj) ‖x1 − p‖ .

3. THE FASTEST KRASNOSELSKIJ ITERATION

Due to the fact that condition (1.8) is not assumed, by Theorem 2.2 we can ob-
tain, in particular, a convergence theorem for Krasnoselkij iteration in the class
of Lipschitzian and strongly pseudo-contractive operators. This result can, how-
ever, be proved independently.
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Corollary 3.1. Let X, K, T, L, k, p be as in Theorem 2.2. Then the Krasnoselskij itera-
tion {xn} ⊂ K generated by x1 ∈ K and (1.4), with λ ∈ (0, a), where

a =
k

(L + 1)(L + 2 − k)
,

converges strongly to the (unique) fixed point p of T . Moreover, the following estimate
holds

‖xn+1 − p‖ ≤ qn ‖x1 − p‖ ,

where

q =
1 + (1 − k)λ + (L + 1)(L + 2 − k)λ2

1 + λ
.

Proof. Take αn ≡ λ in Theorem 2.2. �

By the previous Corollary we practically obtain a family {xλ
n}, λ ∈ (0, a) of

Krasnoselskij iterative processes such that each of them could be used to approx-
imate the fixed point p of T .

A natural question then arises: which Krasnoselskij iteration from the above
family, i.e., which λ, would be more suitable to be considered in order to obtain
the better method, if any ?

The answer is given by Theorem 3. To state it, we need the following concept
of rate of convergence also used in [1]-[5].

Remind that, in order to compare two fixed point iteration procedures {un}∞n=0

and {vn}∞n=0 that converge to a certain fixed point p of a given operator T , Rhoades
[23] considered that {un} is better than {vn} if

‖un − p‖ ≤ ‖vn − p‖ , for all n .

The terminology from our papers [1]-[5], which is slightly different from that of
Rhoades, is more suitable for our purposes here.

Definition 3.1. Let {an}∞n=0, {bn}∞n=0 be two sequences of real numbers that con-
verge to a and b, respectively, and assume there exists

l = lim
n→∞

|an − a|
|bn − b| .

a) If l = 0, then we say that {an}∞n=0 converges faster to a than {bn}∞n=0 to b;
b) If 0 < l < ∞, then we say that {an}∞n=0 and {bn}∞n=0 have the same rate of

convergence.

Remarks.
1) In the case a) we use the notation an − a = o(bn − b);
2) If l = ∞, then the sequence {bn}∞n=0 converges faster than {an}∞n=0, that is

bn − b = o(an − a) .

Suppose that for two fixed point iteration procedures {un}∞n=0 and {vn}∞n=0, both
converging to the same fixed point p, the error estimates

(3.11) ‖un − p‖ ≤ an , n = 0, 1, 2, . . .

and

(3.12) ‖vn − p‖ ≤ bn , n = 0, 1, 2, . . .
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are available, where {an}∞n=0 and {bn}∞n=0 are two sequences of positive numbers
(converging to zero).
Then, in view of Definition 3.1, we introduce the following concept.

Definition 3.2. Let {un}∞n=0 and {vn}∞n=0 be two fixed point iteration procedures
that converge to the same fixed point p and satisfy (11) and (12), respectively. If
{an}∞n=0 converges faster than {bn}∞n=0, then we shall say that {un}∞n=0 converges
faster than {vn}∞n=0 to p.

Example 3.2. If we take p = 0, un =
1

n + 1
, vn =

1
n

, n ≥ 1, then {un} is better

than {vn}, in the sense of Rhoades [23], but {un} does not converge faster than
{vn}. Indeed, we have

lim
n→∞

un

vn
= 1,

and hence in view of Definition 2, {un} and {vn} have the same rate of conver-
gence. This shows that our Definition 3.2 introduces a sharper concept of rate of
convergence than the one considered by Rhoades [23].

The main result of this paper is given by Theorem 3.3.

Theorem 3.3. Let X be a Banach space and K a nonempty closed convex subset of X .
If T : K → K is a Lipschitzian (with constant L) and strongly pseudo-contractive
operator (with constant k) such that the fixed point set of T , F (T ), is nonempty, then
the Krasnoselskij iteration {xn} ⊂ K generated by x1 ∈ K and (1.4), with λ ∈ (0, a),
where

(3.13) a =
k

(L + 1)(L + 2 − k)
,

converges strongly to the (unique) fixed point p of T .
Moreover, among all above Krasnoselskij iterations, there exists one which is the fastest
one. It is obtained for

λ0 = −1 +
√

1 + a,

where a is given by (3.13).

Proof. The first part of the proof follows by Theorem 2.2. The second part is ele-
mentary: we have to find λ for which the function

q(λ) =
1 + (1 − k)λ + (L + 1)(L + 2 − k)λ2

1 + λ

attains its minimum value when λ ∈ (0, a), if any. Since q′(λ) = 0 is equivalent
to λ2 + 2λ − a = 0, we find that λ0 = −1 +

√
1 + a ∈ (0, a) is the required

value of λ. Then, for any λ ∈ (0, a), λ �= λ0, we have
q(λ0)
q(λ)

< 1 and hence

lim
n→∞

(
q(λ0)
q(λ)

)n

= 0, which in view of Definition 3.2, shows that {xλ0
n } converges

faster than {xλ
n} to the unique fixed point of T . �
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4. CONCLUSIONS AND OPEN PROBLEMS

Theorem 3.3 shows that, to efficiently approximate fixed points of Lipschitzian
and strictly pseudo-contractive operators, one should always use Krasnoselskij
iteration (1.4) and, more specifically, the one obtained for λ0 = −1 +

√
1 + a.

It is a current tendency in this field of research to consider more and more
complicated fixed point iteration procedures: Ishikawa iteration, Ishikawa itera-
tion with errors, modified Ishikawa iteration etc., see [1], even in the cases when
it is known that simpler iteration procedures, like Krasnoselkij’s or Mann’s are
convergent to the fixed point(s) of T . Except for some isolated cases, like Lip-
schitzian pseudo-contractive operators, see [16], when it is indeed necessary to
consider Ishikawa iteration (see the example of Chidume and Mutangadura [13]
and also [11], for more details), the use of these complicated iterations is not moti-
vated from a numerical point of view and is not suitable for concrete applications.
At most a weak theoretical interest could motivate the numerous papers devoted
to this direction of research that appeared in the last decade.

Concluding our note, at least three problems arise:
1. Give an example of operator T , if any, for which some Mann iteration con-

verges and no Krasnoselkij iteration converges to the fixed point(s) of T ;
2. Try to transpose known convergence results for Mann iteration based on

condition (1.8), to Krasnoselskij iteration, whatever possible;
3. There exists recent papers, we quote here [24], [25], which prove that, for

several classes of mappings, Mann iteration is actually equivalent to the more
complicated Ishikawa iteration, in the sense that, under certain circumstances,
Mann iteration converges (to the fixed point) if and only if Ishikawa converges
as well. The challenging problem is then: are Krasnoselskij iteration and Mann
iteration equivalent in this sense, for enough large classes of mappings?
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