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Coincidence theorems for subadditive and
superadditive functions

PÁL BURAI and ÁRPÁD SZÁZ

ABSTRACT. We give some necessary and sufficient conditions in order that a quasi-subadditive
function should coincide with a quasi-superadditive one. Thus, we can easily prove a straightforward
extension of a theorem of Marek Kuczma on the linearity of a subadditive function majorized by a
differentiable one.

1. INTRODUCTION

The following theorem has been proved by Kuczma in [3, p. 409].

Theorem 1.1. Let f : RN → R be subadditive, and let g : RN → R be a function such
that g(0) = 0 and g has the Stolz differential at 0.

If f(x) ≤ g(x) for all x ∈ RN , then there exists a c ∈ RN such that f(x) = cx for all
x ∈ RN . In particular, f is of class C1 in RN .

Remark 1.1. The f = g and N = 1 particular case of this theorem was already
observed by Hille [2, p. 144].

Moreover, an extension of the N = 1 particular case of the above theorem
to functions defined only on a open interval about 0 was already established by
Wetzel [6, p. 1068].

In the present paper, by using the reasonings of Kuczma, we shall prove the
following coincidence theorem.

Theorem 1.2. If p is a quasi-subadditive and q is a quasi-superadditive function of a
vector space X over Q such that

lim
n→∞

n

(
p

(
1
n

x

)
− q

(
1
n

x

))
≤ 0,

for all x ∈ X , then p = q. Thus, in particular p is quasi-additive.

Remark 1.2. Because of the basic homogeneity properties of subadditive func-
tions [3, p. 401], a real-valued function p of a group X will be called here quasi-
subadditive if −p (x) ≤ p (−x) and p (nx) ≤ np (x) for all x ∈ X and n ∈ N.
While, if the inequalities are reversed, then p will be called quasi-superadditive.

By using Theorem 1.2, we shall easily prove the following straightforward
generalization of Theorem 1.1.
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Theorem 1.3. If p is a quasi-subadditive and g is a real-valued function of a normed
space X over R such that p ≤ g, and moreover g(0) = 0 and g is differentiable at 0, then
p = g′(0). Thus, in particular p is linear and continuous.

Remark 1.3. Now, as an important particular case of this theorem, we can also
state that if p is a quasi-subbadditive function of a normed space X such that
p (0) = 0 and p is differentiable at 0, then p = p′(0). Thus, in particular p is linear
and continuous.

2. SUBADDITIVE AND SUPERADDITIVE FUNCTIONS

According Hille [2, p. 131] and Rosenbaum [5, p. 227], we may naturally have
the following

Definition 2.1. A real-valued function p of a group X is called subadditive if

p (x + y) ≤ p (x) + p (y) ,

for all x, y ∈ X . While, if the inequality is reversed, then p is called superadditive.

Remark 2.4. Note that thus p may be called additive if it is both subadditive and
superadditive.

Moreover, p is superadditive if and only if −p is subadditive. Therefore, su-
peradditive functions need not be studied separately.

By using the arguments of Kuczma [3, p. 401], one can easily prove the follow-
ing

Theorem 2.4. If p is a subadditive function of a group X and x ∈ X , then

(2.1) −p (x) ≤ p (−x) ;

(2.2) p (nx) ≤ np (x) for all n ∈ N.

Remark 2.5. Note that if p is superadditive, then just the opposite inequalities
hold. Therefore, if in particular pis additive, then the corresponding equalities
are also true.

Because of Definition 2.1 and Theorem 2.4, we may naturally introduce the
following

Definition 2.2. A real-valued function p of a group X will be called subodd if

p (−x) ≤ −p (x)

for all x ∈ X . While, if the inequality is reversed, then p will be called superodd.

Remark 2.6. Note that thus p may be called odd if it is both subodd and
superodd.

Moreover, p is superodd if and only if −p is subodd. Therefore, superodd
functions need not be studied separately.

However, because of Theorem 2.4, it is now more convenient to state the fol-
lowing obvious properties of superodd functions.
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Proposition 2.1. If p is a superodd function of a group X , then

(2.3) 0 ≤ p (0) ;

(2.4) −p (−x) ≤ p (x) for all x ∈ X.

Remark 2.7. Note that if p is subodd, then just the opposite inequalities hold.
Therefore, if in particular p is odd, then the corresponding equalities are also
true.

Analogously to Definition 2.2, we may also naturally introduce the following

Definition 2.3. A real-valued function p of a group X will be called
N–subhomogeneous if

p (nx) ≤ np (x) ,

for all n ∈ N and x ∈ X . While, if the inequality is reversed, then p will be called
N–superhomogeneous.

Remark 2.8. Note that thus p may be called N–homogeneous if it is both
N–subhomogeneous and N–superhomogeneous.

Moreover, p is N–superhomogeneous if and only if −p is N–subhomogeneous.
Therefore, N–superhomogeneous functions need not be studied separately.

Concerning N–subhomogeneous functions, we shall only quote here the fol-
lowing theorem of [1].

Theorem 2.5. If p is an N–subhomogeneous function of a vector space X over Q, and
moreover x ∈ X and l ∈ Z, then

(2.5)
1
k

p (lx) ≤ p

(
l

k
x

)
for all 0 < k ∈ Z;

(2.6) − 1
k

p (−lx) ≤ p

(
l

k
x

)
for all 0 > k ∈ Z.

Now, by using Definitions 2.2 and 2.3, we may also naturally introduce the
following

Definition 2.4. A real-valued function p of a group X will be called quasi-sub-
additive if it is superodd and N–subhomogeneous.

Moreover, the function p will be called quasi-superadditive if it is subodd and
N–superhomogeneous.

Remark 2.9. Note that thus p may be called quasi-additive if it is both quasi-
subadditive and quasi-superadditive.

Moreover, p is quasi-superadditive if and only if −p is quasi-subadditive.
Therefore, quasi-superadditive functions need not be studied separately.

Concerning quasi-subadditive functions, we shall only quote the following
theorem of [1].

Theorem 2.6. If p is a quasi-subadditive function of a vector space X over Q, and
moreover x ∈ X and 0 �= k ∈ Z, then

(2.7)
1
k

p (lx) ≤ p

(
l

k
x

)
for all l ∈ Z;
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(2.8) p

(
l

k
x

)
≤ lp

(
1
k

x

)
≥ l

k
p (x) for all 0 < l ∈ Z;

(2.9) p

(
l

k
x

)
≥ lp

(
1
k

x

)
≤ l

k
p (x) for all 0 > l ∈ Z.

Remark 2.10. Note that if p is quasi-superadditive, then just the opposite inequal-
ities hold. Therefore, if in particular p is quasi-additive, then the corresponding
equalities are also true.

3. COINCIDENCE OF SUBADDITIVE AND SUPERADDITIVE FUCTIONS

Theorem 3.7. If p is a superodd and q is a subodd function of a group X such that p ≤ q,
then p = q. Thus, in particular p is odd.

Proof. Now, by Remark 2.6,−q is superodd. Moreover, we have −q ≤ −p. Hence,
by Definition 2.2 and Proposition 2.1, it is clear that

q(x) = −(−q)(x) ≤ (−q)(−x) ≤ (−p)(−x) = −p(−x) ≤ p(x),

for all x ∈ X . Therefore, q ≤ p, and thus p = q is also true. �
Hence, it is clear that in particular we also have

Corollary 3.1. If p is a superodd function of a group X such that p ≤ c for some c ≤ 0,
then p = 0.

Proof. Define q(x) = c for all x ∈ X . Then, q is a subodd function of X such that
p ≤ q. Therefore, by Theorem 3.7, we have p = q. Hence, by Proposition 2.1, it is
clear that 0 ≤ p (0) = q (0) = c ≤ 0, and thus c = 0. Therefore, q = 0, and thus
p = 0 also holds. �
Remark 3.11. Concerning the above statements, note that if for instance
p (x) = |x| and q (x) = 0 (resp. q (x) = x) for all x ∈ R, then p is a subaddi-
tive and q is an additive function of R such that q ≤ p, but q �= p.

Moreover, by using Theorem 3.7, we can also prove the following

Theorem 3.8. If p is a quasi-subadditive and q is a quasi-superadditive function of a
vector space X over Q such that

lim
n→∞

n

(
p

(
1
n

x

)
− q

(
1
n

x

))
≤ 0

for all x ∈ X , then p = q. Thus, in particular p is quasi-additive.

Proof. If x ∈ X , then by the l = 1 particular case of Theorem 2.6 (2.7) and Remark
2.9 we have

p (x) − q (x) = p (x) + (−q)(x)

≤ np

(
1
n

x

)
+ n(−q)

(
1
n

x

)
= n

(
p

(
1
n

x

)
− q

(
1
n

x

))
.

Hence, by the assumption of the theorem, it is already clear that

p (x) − q (x) ≤ lim
n→∞

n

(
p

(
1
n

x

)
− q

(
1
n

x

))
≤ 0,

and thus p (x) ≤ q (x).Therefore, p ≤ q, and thus, by Theorem 3.7, p = q. �
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Now, analogously to Corollary 3.1, we can also prove the following

Corollary 3.2. If p is a quasi-subadditive function of a vector space X over Q such that

lim
n→∞

n

(
p

(
1
n

x

)
− c

)
≤ 0

for some c ≤ 0 and all x ∈ X , then p = 0.

However, it is now more important to note that by using Theorem 3.8 we can
also prove the following

Theorem 3.9. If p is a quasi-subbadditive and q is a quasi-superadditive function of a
normed space X over R such that p (0) ≤ q (0) and

lim
x→0

1
‖x‖ (p (x) − q (x)) ≤ 0,

then p = q. Thus, in particular p is quasi-additive.

Proof. By using the corresponding properties of upper limits and the norm, we
can see that

lim
n→∞

n

(
p

(
1
n

x

)
−q

(
1
n

x

))
≤ lim

n→∞n

(
p

(
1
n

x

)
− q

(
1
n

x

))

= lim
n→∞ ‖x‖ 1∥∥ 1

n x
∥∥

(
p

(
1
n

x

)
− q

(
1
n

))

= ‖x‖ lim
n→∞

1∥∥ 1
n

∥∥
(

p

(
1
n

x

)
− q

(
1
n

x

))

≤ ‖x‖ lim
y→0

1
‖y‖ (p (y) − q (y)) ≤ 0,

for all 0 �= x ∈ X . Moreover, since (0) ≤ q (0), we can also see that

lim
n→∞

n

(
p

(
1
n

0
)
− q

(
1
n

0
))

lim
n→∞

n (p (0) − q (0)) ≤ 0.

Therefore, by Theorem 3.8, we necessarily have p = q. �

Now, by using the above theorem, we can easily prove the following straight-
forward generalization of Kuczma’s Theorem 1.1.

Theorem 3.10. If p is a quasi-subbadditive and g is a real-valued function of a normed
space X over R such that p ≤ g, and moreover g (0) = 0 and g is differentiable at 0, then
p = g′(0). Thus, in particular p is linear and continuous.

Proof. Since g is differentiable at 0, there exists a continuous linear function q of
X into R such that

lim
x→0

1
‖x‖ (g (x) − g (0) − q (x)) = 0.

Hence, since g (0) = 0, we can also state that

lim
x→0

1
‖x‖ (p (x) − q (x)) = lim

x→0

1
‖x‖ (p (x) − q (x)) = 0.
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Therefore, by Theorem 3.9, we necessarily have p = q. Hence, since q = g ′(0), it
is clear that p = g′(0) is also true. �

Now, as an important particular case of the above theorem we can also state

Corollary 3.3. If p is a quasi-subbadditive function of a normed space X over R such
that p (0) = 0 and p is differentiable at 0, then p = p′(0). Thus, in particular p is linear
and continuous.

Remark 3.12. In [3, Example 1, p. 401], it is also shown that if

p (x) = 1 for x ≤ 0 and p (x) = e−x2
for x > 0,

then p is a nonlinear, differentiable subadditive function of R. Therefore, the extra
condition in Corollary 3.3 is indispensable.
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