CARPATHIAN J. MATH. **21** (2005), No. 1 - 2, 21 - 26

Coincidence theorems for subadditive and superadditive functions

PÁL BURAI and ÁRPÁD SZÁZ

ABSTRACT. We give some necessary and sufficient conditions in order that a quasi-subadditive function should coincide with a quasi-superadditive one. Thus, we can easily prove a straightforward extension of a theorem of Marek Kuczma on the linearity of a subadditive function majorized by a differentiable one.

1. INTRODUCTION

The following theorem has been proved by Kuczma in [3, p. 409].

Theorem 1.1. Let $f : \mathbb{R}^N \to \mathbb{R}$ be subadditive, and let $g : \mathbb{R}^N \to \mathbb{R}$ be a function such that g(0) = 0 and g has the Stolz differential at 0.

If $f(x) \leq g(x)$ for all $x \in \mathbb{R}^N$, then there exists a $c \in \mathbb{R}^N$ such that f(x) = cx for all $x \in \mathbb{R}^N$. In particular, f is of class C^1 in \mathbb{R}^N .

Remark 1.1. The f = g and N = 1 particular case of this theorem was already observed by Hille [2, p. 144].

Moreover, an extension of the N = 1 particular case of the above theorem to functions defined only on a open interval about 0 was already established by Wetzel [6, p. 1068].

In the present paper, by using the reasonings of Kuczma, we shall prove the following coincidence theorem.

Theorem 1.2. If p is a quasi-subadditive and q is a quasi-superadditive function of a vector space X over \mathbb{Q} such that

$$\lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right) \le 0,$$

for all $x \in X$, then p = q. Thus, in particular p is quasi-additive.

Remark 1.2. Because of the basic homogeneity properties of subadditive functions [3, p. 401], a real-valued function p of a group X will be called here quasi-subadditive if $-p(x) \le p(-x)$ and $p(nx) \le np(x)$ for all $x \in X$ and $n \in \mathbb{N}$. While, if the inequalities are reversed, then p will be called quasi-superadditive.

By using Theorem 1.2, we shall easily prove the following straightforward generalization of Theorem 1.1.

Received: 15.11.2004; In revised form: 05.05.2005

²⁰⁰⁰ Mathematics Subject Classification: 39B72, 26A24.

Key words and phrases: Subadditive and superadditive functions.

Pál Burai and Árpád Száz

Theorem 1.3. If p is a quasi-subadditive and g is a real-valued function of a normed space X over \mathbb{R} such that $p \leq g$, and moreover g(0) = 0 and g is differentiable at 0, then p = g'(0). Thus, in particular p is linear and continuous.

Remark 1.3. Now, as an important particular case of this theorem, we can also state that if p is a quasi-subbadditive function of a normed space X such that p(0) = 0 and p is differentiable at 0, then p = p'(0). Thus, in particular p is linear and continuous.

2. SUBADDITIVE AND SUPERADDITIVE FUNCTIONS

According Hille [2, p. 131] and Rosenbaum [5, p. 227], we may naturally have the following

Definition 2.1. A real-valued function *p* of a group *X* is called subadditive if

$$p(x+y) \le p(x) + p(y)$$

for all $x, y \in X$. While, if the inequality is reversed, then p is called superadditive.

Remark 2.4. Note that thus *p* may be called additive if it is both subadditive and superadditive.

Moreover, p is superadditive if and only if -p is subadditive. Therefore, superadditive functions need not be studied separately.

By using the arguments of Kuczma [3, p. 401], one can easily prove the following

Theorem 2.4. If p is a subadditive function of a group X and $x \in X$, then

(2.1)
$$-p(x) \le p(-x);$$

(2.2) $p(nx) \le np(x)$ for all $n \in \mathbb{N}$.

Remark 2.5. Note that if p is superadditive, then just the opposite inequalities hold. Therefore, if in particular p is additive, then the corresponding equalities are also true.

Because of Definition 2.1 and Theorem 2.4, we may naturally introduce the following

Definition 2.2. A real-valued function *p* of a group *X* will be called subodd if

$$p\left(-x\right) \le -p\left(x\right)$$

for all $x \in X$. While, if the inequality is reversed, then p will be called superodd.

Remark 2.6. Note that thus p may be called odd if it is both subodd and superodd.

Moreover, p is superodd if and only if -p is subodd. Therefore, superodd functions need not be studied separately.

However, because of Theorem 2.4, it is now more convenient to state the following obvious properties of superodd functions.

22

Proposition 2.1. If p is a superodd function of a group X, then

 $(2.3) \quad 0 \le p(0);$

(2.4) $-p(-x) \le p(x)$ for all $x \in X$.

Remark 2.7. Note that if p is subodd, then just the opposite inequalities hold. Therefore, if in particular p is odd, then the corresponding equalities are also true.

Analogously to Definition 2.2, we may also naturally introduce the following

Definition 2.3. A real-valued function p of a group X will be called \mathbb{N} -subhomogeneous if

$$p\left(nx\right) \le np\left(x\right),$$

for all $n \in \mathbb{N}$ and $x \in X$. While, if the inequality is reversed, then p will be called \mathbb{N} -superhomogeneous.

Remark 2.8. Note that thus p may be called \mathbb{N} -homogeneous if it is both \mathbb{N} -subhomogeneous and \mathbb{N} -superhomogeneous.

Moreover, p is \mathbb{N} -superhomogeneous if and only if -p is \mathbb{N} -subhomogeneous. Therefore, \mathbb{N} -superhomogeneous functions need not be studied separately.

Concerning \mathbb{N} -subhomogeneous functions, we shall only quote here the following theorem of [1].

Theorem 2.5. If p is an \mathbb{N} -subhomogeneous function of a vector space X over \mathbb{Q} , and moreover $x \in X$ and $l \in \mathbb{Z}$, then

(2.5)
$$\frac{1}{k} p(lx) \le p\left(\frac{l}{k}x\right) \text{ for all } 0 < k \in \mathbb{Z};$$

(2.6)
$$-\frac{1}{k}p(-lx) \le p\left(\frac{l}{k}x\right) \text{ for all } 0 > k \in \mathbb{Z}$$

Now, by using Definitions 2.2 and 2.3, we may also naturally introduce the following

Definition 2.4. A real-valued function p of a group X will be called quasi-sub-additive if it is superodd and \mathbb{N} -subhomogeneous.

Moreover, the function p will be called quasi-superadditive if it is subodd and \mathbb{N} -superhomogeneous.

Remark 2.9. Note that thus p may be called quasi-additive if it is both quasi-subadditive and quasi-superadditive.

Moreover, p is quasi-superadditive if and only if -p is quasi-subadditive. Therefore, quasi-superadditive functions need not be studied separately.

Concerning quasi-subadditive functions, we shall only quote the following theorem of [1].

Theorem 2.6. If p is a quasi-subadditive function of a vector space X over \mathbb{Q} , and moreover $x \in X$ and $0 \neq k \in \mathbb{Z}$, then

(2.7)
$$\frac{1}{k} p(lx) \le p\left(\frac{l}{k}x\right)$$
 for all $l \in \mathbb{Z};$

Pál Burai and Árpád Száz

(2.8)
$$p\left(\frac{l}{k}x\right) \le lp\left(\frac{1}{k}x\right) \ge \frac{l}{k}p(x)$$
 for all $0 < l \in \mathbb{Z}$;
(2.9) $p\left(\frac{l}{k}x\right) \ge lp\left(\frac{1}{k}x\right) \le \frac{l}{k}p(x)$ for all $0 > l \in \mathbb{Z}$.

Remark 2.10. Note that if p is quasi-superadditive, then just the opposite inequalities hold. Therefore, if in particular p is quasi-additive, then the corresponding equalities are also true.

3. COINCIDENCE OF SUBADDITIVE AND SUPERADDITIVE FUCTIONS

Theorem 3.7. If p is a superodd and q is a subodd function of a group X such that $p \le q$, then p = q. Thus, in particular p is odd.

Proof. Now, by Remark 2.6, -q is superodd. Moreover, we have $-q \leq -p$. Hence, by Definition 2.2 and Proposition 2.1, it is clear that

$$q(x) = -(-q)(x) \le (-q)(-x) \le (-p)(-x) = -p(-x) \le p(x),$$

for all $x \in X$. Therefore, $q \leq p$, and thus p = q is also true.

 \square

Hence, it is clear that in particular we also have

Corollary 3.1. If p is a superodd function of a group X such that $p \le c$ for some $c \le 0$, then p = 0.

Proof. Define q(x) = c for all $x \in X$. Then, q is a subodd function of X such that $p \leq q$. Therefore, by Theorem 3.7, we have p = q. Hence, by Proposition 2.1, it is clear that $0 \leq p(0) = q(0) = c \leq 0$, and thus c = 0. Therefore, q = 0, and thus p = 0 also holds.

Remark 3.11. Concerning the above statements, note that if for instance p(x) = |x| and q(x) = 0 (resp. q(x) = x) for all $x \in \mathbb{R}$, then p is a subadditive and q is an additive function of \mathbb{R} such that $q \leq p$, but $q \neq p$.

Moreover, by using Theorem 3.7, we can also prove the following

Theorem 3.8. If p is a quasi-subadditive and q is a quasi-superadditive function of a vector space X over \mathbb{Q} such that

$$\lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right) \le 0$$

for all $x \in X$, then p = q. Thus, in particular p is quasi-additive.

Proof. If $x \in X$, then by the l = 1 particular case of Theorem 2.6 (2.7) and Remark 2.9 we have

$$p(x) - q(x) = p(x) + (-q)(x)$$

$$\leq np\left(\frac{1}{n}x\right) + n(-q)\left(\frac{1}{n}x\right) = n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right)$$

Hence, by the assumption of the theorem, it is already clear that

$$p(x) - q(x) \le \lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right) \le 0,$$

and thus $p(x) \leq q(x)$. Therefore, $p \leq q$, and thus, by Theorem 3.7, p = q.

24

Now, analogously to Corollary 3.1, we can also prove the following

Corollary 3.2. If p is a quasi-subadditive function of a vector space X over \mathbb{Q} such that

$$\lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - c\right) \le 0$$

for some $c \leq 0$ and all $x \in X$, then p = 0.

However, it is now more important to note that by using Theorem 3.8 we can also prove the following

Theorem 3.9. If p is a quasi-subbadditive and q is a quasi-superadditive function of a normed space X over \mathbb{R} such that $p(0) \le q(0)$ and

$$\overline{\lim_{x \to 0}} \frac{1}{\|x\|} (p(x) - q(x)) \le 0,$$

then p = q. Thus, in particular p is quasi-additive.

Proof. By using the corresponding properties of upper limits and the norm, we can see that

$$\underbrace{\lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right)}_{n \to \infty} \leq \underbrace{\lim_{n \to \infty} n\left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right)}_{n \to \infty} = \underbrace{\lim_{n \to \infty} \|x\| \frac{1}{\|\frac{1}{n}x\|} \left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right)}_{n \to \infty} = \|x\| \underbrace{\lim_{n \to \infty} \frac{1}{\|\frac{1}{n}\|} \left(p\left(\frac{1}{n}x\right) - q\left(\frac{1}{n}x\right)\right)}_{\leq \|x\| \underbrace{\lim_{y \to 0} \frac{1}{\|y\|} (p(y) - q(y))}_{\leq 0,}$$

for all $0 \neq x \in X$. Moreover, since $(0) \leq q(0)$, we can also see that

$$\lim_{n \to \infty} n\left(p\left(\frac{1}{n}\,0\right) - q\left(\frac{1}{n}\,0\right)\right) \lim_{n \to \infty} n\left(p\left(0\right) - q\left(0\right)\right) \le 0.$$

Therefore, by Theorem 3.8, we necessarily have p = q.

Now, by using the above theorem, we can easily prove the following straightforward generalization of Kuczma's Theorem 1.1.

Theorem 3.10. If p is a quasi-subbadditive and g is a real-valued function of a normed space X over \mathbb{R} such that $p \leq g$, and moreover g(0) = 0 and g is differentiable at 0, then p = g'(0). Thus, in particular p is linear and continuous.

Proof. Since g is differentiable at 0, there exists a continuous linear function q of X into \mathbb{R} such that

$$\lim_{x \to 0} \frac{1}{\|x\|} (g(x) - g(0) - q(x)) = 0.$$

Hence, since g(0) = 0, we can also state that

$$\overline{\lim_{x \to 0}} \frac{1}{\|x\|} (p(x) - q(x)) = \lim_{x \to 0} \frac{1}{\|x\|} (p(x) - q(x)) = 0.$$

Pál Burai and Árpád Száz

Therefore, by Theorem 3.9, we necessarily have p = q. Hence, since q = g'(0), it is clear that p = g'(0) is also true.

Now, as an important particular case of the above theorem we can also state

Corollary 3.3. If p is a quasi-subbadditive function of a normed space X over \mathbb{R} such that p(0) = 0 and p is differentiable at 0, then p = p'(0). Thus, in particular p is linear and continuous.

Remark 3.12. In [3, Example 1, p. 401], it is also shown that if

$$p(x) = 1$$
 for $x \le 0$ and $p(x) = e^{-x^2}$ for $x > 0$,

then p is a nonlinear, differentiable subadditive function of \mathbb{R} . Therefore, the extra condition in Corollary 3.3 is indispensable.

REFERENCES

- Burai, P. and Száz, Á., Homogeneity properties of subadditive and superadditive functions, Tech. Rep., Inst. Math., Univ. Debrecen, 10 (2004), 1–15
- [2] Hille, E., Functional analysis and Semi-Groups, Amer. Math. Soc. Coll. Publ. 31, New York, 1948
- [3] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Warszawa, 1985
- [4] Matkowski, J., On subadditive functions and ψ -additive mappings, Central European J. Math., 4 (2003), 435-440
- [5] Rosenbaum, R. A., Sub-additive functions, Duke Math. J., 17 (1950), 227-247
- [6] Wetzel, J. E., On the functional inequality $f(x+y) \geq f(x)f(y),$ Amer. Math. Monthly, 74 (1967), 1065–1068

INSTITUTE OF MATHEMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, PF. 12, HUNGARY *E-mail address*: buraip@math.klte.hu *E-mail address*: szaz@math.klte.hu

26