CARPATHIAN J. MATH. **21** (2005), No. 1 - 2, 27 - 38

Multivalued version of Radon-Nikodym theorem

ANCA CROITORU

ABSTRACT. We defined in [7] a set-valued integral for multifunctions with respect to a multimeasure, where both the multifunctions and the multimeasure take values in $\mathcal{P}_{kc}(X)$, the family of nonempty compact convex subsets of a locally convex algebra X. But the construction of the integral and all the results remain valid if the multifunctions and the multimeasure take values in $\mathcal{P}_k(X)$, the family of nonempty compact subsets of X.

In this paper we establish a Radon-Nikodym theorem (for the integral described in [7], but using the family $\mathcal{P}_k(X)$ instead of $\mathcal{P}_{kc}(X)$) which bases on a construction of Maynard type [14], using the notion of exhaustion.

1. TERMINOLOGY AND NOTATIONS

Let *S* be a nonempty set, A an algebra of subsets of *S*. Let *X* be a Hausdorff locally convex vector space and let *Q* be a filtering family of seminorms which defines the topology of *X*. We consider $(x, y) \mapsto xy$ having the following properties for every $x, y, z \in X$, $\alpha, \beta \in \mathbb{R}$, $p \in Q$:

(i) x(yz) = (xy)z, (ii) xy = yx, (iii) x(y + z) = xy + xz, (iv) $(\alpha x)(\beta y) = (\alpha \beta)(xy)$, (v) $p(x, y) \le p(x)p(y)$.

Examples 1.1.

(a) $X = \{f : T \to \mathbb{R} | f \text{ is bounded}\}$ with $(fg)(t) = f(t)g(t), \forall t \in T$, where *T* is a topological space. Let $\mathcal{K} = \{K \subset T | K \text{ is compact}\}$ and $Q = \{p_K | K \in \mathcal{K}\}$ where $p_K(f) = \sup_{t \in \mathcal{K}} |f(t)|, \forall f \in X$.

(b) $X = \{f : T \to \mathbb{R}\}$ with $(fg)(t) = f(t)g(t), \forall t \in T$, where *T* is a nonempty set and $Q = \{p_t | t \in T\}, p_t(f) = |f(t)|, \forall f \in X.$

We denote by $\mathcal{P}_k(X) = \mathcal{P}_k$ the family of all nonempty compact subsets of X. If $A, B \in \mathcal{P}_k, \alpha \in \mathbb{R}$,

$$A + B = \{x + y \mid x \in A, y \in B\},$$
$$\alpha A = \{\alpha x \mid x \in A\},$$
$$A \cdot B = \{xy \mid x \in A, y \in B\}.$$

For every $p \in Q, A, B \in \mathcal{P}_k$, let $e_p(A, B) = \sup_{x \in A} \inf_{y \in B} p(x - y)$ and $h_p(A, B) = \max\{e_p(A, B), e_p(B, A)\}$ - the Hausdorff - Pompeiu semimetric defined by p on

Received: 15.11.2004; In revised form: 10.10.2005

²⁰⁰⁰ Mathematics Subject Classification: 28B20.

Key words and phrases: Multimeasure, integrable multifunctions, Radon-Nikodym type theorem for multimeasures.

 \mathcal{P}_k . We define $||A||_p = h_p(A, O) = \sup_{x \in A} p(x)$, $\forall A \in \mathcal{P}_k$, where $O = \{0\}$. Then $\{h_p\}_{p \in Q}$ is a filtering family of semimetrics on \mathcal{P}_k which defines a Hausdorff topology on \mathcal{P}_k .

Let $Y \subset \mathcal{P}_k$ satisfying the conditions:

- (*y*₁) *Y* is complete with respect to $\{h_p\}_{p \in Q}$,
- $(y_2) \quad O \in Y,$
- $(y_3) \quad \forall A, B \in Y \Rightarrow A + B, A \cdot B \in Y,$
- (y₄) $A \cdot (B + C) = A \cdot B + A \cdot C$ for every $A, B, C \in Y$.

Examples 1.2.

- (a) $Y = \{\{x\} | x \in X\}$ for X like in (a) and (b) of examples 1.1.
- (b) $Y = \{[a, b] \mid a, b \in \mathbb{R}, 0 \le a \le b\}$ for $X = \mathbb{R}$.

(c) For X like in example 1.1-b), let $Y = \{[f,g] | f, g \in X, 0 \le f \le g\}$, where $[f,g] = \{u \in X | f \le u \le g\}, \forall f, g \in X$.

Definition 1.1. $\varphi : \mathcal{A} \to \mathcal{P}_k$ is said to be a multimeasure if:

(i) $\varphi(\emptyset) = O$, (ii) $\varphi(A \cup B) = \varphi(A) + \varphi(B), \forall A, B \in \mathcal{A}, A \cap B = \emptyset$.

Definition 1.2. Let $\varphi : \mathcal{A} \to \mathcal{P}_k$. For every $p \in Q$, the *p*-variation of φ is the non-negative (possibly infinite) set function $v_p(\varphi, \cdot)$ defined on \mathcal{A} as follows:

$$v_p(\varphi, A) = \sup\left\{\sum_{i=1}^n \|\varphi(E_i)\|_p; (E_i)_{i=1}^n \subset \mathcal{A}, E_i \cap E_j = \emptyset \text{ for } i \neq j, \\ \bigcup_{i=1}^n E_i = A, n \in \mathbb{N}^*\right\}, \forall A \in \mathcal{A}.$$

We denote $v_p(\varphi, \cdot)$ by ν_p if there is no ambiguity.

Remark 1.1. If $\varphi : \mathcal{A} \to \mathcal{P}_k$ is a multimeasure, then ν_p is finitely additive for every $p \in Q$.

Throughout this paper, $\varphi : \mathcal{A} \to Y$ will be a multimeasure and suppose there is $E \in \mathcal{A}$ such that $\varphi(E) \neq O$. We shall assume that $\nu_p(S) < +\infty$ and (S, \mathcal{A}, ν_p) is complete for every $p \in Q$.

2. Set-valued integral [7]

Definition 2.3. A multifunction $F : S \to Y$ is said to be a simple multifunction if $F = \sum_{i=1}^{n} C_i \cdot \mathcal{X}_{A_i}$, where $C_i \in Y$, $A_i \in \mathcal{A}, i \in \{1, 2, ..., n\}$, $A_i \cap A_j = \emptyset$ for $i \neq j$, $\bigcup_{i=1}^{n} A_i = S$ and \mathcal{X}_{A_i} is the characteristic function of A_i .

The integral of *F* over $E \in \mathcal{A}$ is:

$$\int_{E} F d\varphi = \sum_{i=1}^{n} C_{i} \cdot \varphi(A_{i} \cap E) \in Y.$$

Definition 2.4. $F: S \to Y$ is said to be φ -totally measurable if there is a sequence $(F_n)_n$ of simple multifunctions $F_n: S \to Y$ satisfying the following condition for every $p \in Q$:

(i)
$$h_p(F_n, F) \xrightarrow{\nu_p} 0$$
 (cf. Dunford - Schwartz [10] - III.2.6).
Remarks 2.1.

(a) Every simple multifunction is φ -totally measurable.

(b) If $F : S \to Y$ is φ -totally measurable and $(F_n)_n$ is a sequence of simple multifunctions $F_n: S \to Y$ such that

$$h_p(F_n, F) \xrightarrow{\nu_p} 0, \ \forall p \in Q,$$

then for every $n \in \mathbb{N}$ and $p \in Q$, $h_p(F_n, F)$ and $||F||_p$ are ν_p -measurable (cf. Dunford-Schwartz [10] - III.2.10).

Theorem 2.1. Let $F, G : S \to Y$ be φ -totally measurable multifunctions and let $\alpha \in \mathbb{R}$. Then it follows:

(i) $h_p(F, G)$ is ν_p -measurable, $\forall p \in Q$; (*ii*) αF and F + G are φ -totally measurable.

Definition 2.5. Let $F : S \to Y$ be a φ -totally measurable multifunction. *F* is said to be φ -integrable (over *S*) if there is a sequence $(F_n)_n$ of simple multifunctions $F_n: S \to Y$ such that, for every $p \in Q$:

(i) $h_p(F_n, F) \xrightarrow{\nu_p} 0$,

(i) $\lim_{n,m\to\infty} \int_{S} h_p(F_n, F_m) d\nu_p = 0.$ The sequence $(F_n)_n$ is said to be a defining sequence for F. The integral of Fover $E \in \mathcal{A}$ is $\int_E F d\varphi = \lim_{n \to \infty} \left(\int_E F_n d\varphi \right) \in Y.$

Particularly, every simple multifunction is φ -integrable.

Theorem 2.2. Let $F, G : S \to Y$ be φ -integrable multifunctions, $\alpha \in \mathbb{R}$ and $\Gamma(E) =$ $\int_E F d\varphi, \forall E \in \mathcal{A}$. Then we have:

- (i) h_p(∫_E Fdφ, ∫_E Gdφ) ≤ ∫_E h_p(F,G)dν_p, ∀ E ∈ A, p ∈ Q;
 (ii) || ∫_E Fdφ||_p ≤ ∫_E ||F||_pdν_p, ∀ E ∈ A, p ∈ Q;
 (iii) Γ is a multimeasure;

- (iv) $v_p(\Gamma, E) = \int_E ||F||_p d\nu_p, \quad \forall E \in \mathcal{A}, p \in Q;$
- (v) $\Gamma \ll \nu_p, \forall p \in Q$ (i.e. $\forall p \in Q, \forall \varepsilon > 0, \exists \delta(p, \varepsilon) = \delta > 0$ such that $v_p(\Gamma, E) < \varepsilon$ for all $E \in \mathcal{A}$ with $\nu_p(E) < \delta$;
- (vi) αF is φ -integrable and $\int_E (\alpha F) d\varphi = \alpha \int_E F d\varphi$, $\forall E \in \mathcal{A}$;
- (vii) F + G is φ -integrable and $\int_E (F + G) d\varphi = \int_E F d\varphi + \int_E G d\varphi, \forall E \in \mathcal{A}.$

Definition 2.6. $F: S \to Y$ is said to be strong φ -integrable if there is a sequence $(F_n)_n$ of simple multifunctions such that uniformly in $p \in Q$:

- (i) $h_p(F_n, F) \xrightarrow{\nu_p} 0$,
- (ii) $\lim_{n,m\to\infty}\int_S h_p(F_n,F_m)d\nu_p=0.$

Definition 2.7. A finite or countable family of pairwise disjoint sets $(E_i)_i \subset \mathcal{A}$ will be called an uniformly exhaustion of S if $\nu_p(E_i) > 0$ for every $i \in I, p \in Q$ and for each $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\nu_p\left(S \setminus \bigcup_{i=1}^{n_0} E_i\right) < \varepsilon, \forall p \in Q$.

Theorem 2.3. Let $(E_n)_{n \in \mathbb{N}^*} \subset \mathcal{A}$ an uniformly exhaustion of S such that $S = \begin{bmatrix} \infty \\ -\infty \end{bmatrix} E_n$.

Let $F: S \to Y$ be defined by $F(s) = C_n \in Y$ for every $s \in E_n$, $n \in \mathbb{N}^*$ (we denote $F = \sum_{n=1}^{\infty} C_n \cdot \mathcal{X}_{E_n}$).

(i) If for every $p \in Q$, there is $r_p > 0$ such that $||C_n||_p \le r_p$ for every $n \in \mathbb{N}^*$, then F is φ -integrable.

(*ii*) If there exists r > 0 such that $||C_n||_p \le r$ for every $n \in \mathbb{N}^*$ and $p \in Q$, then F is strong φ -integrable.

Theorem 2.4. (Vitali)

Let $F : S \to Y$ be a multifunction, let $(F_n)_n$ be a sequence of strong φ -integrable multifunctions $F_n : S \to Y$ and $\Gamma_n(E) = \int_E F_n d\varphi$, $E \in \mathcal{A}, n \in \mathbb{N}$ such that, for every $p \in Q$ we have: (i) $h_1(E - E) \xrightarrow{\nu_p} 0$

(i) $h_p(F_n, F) \xrightarrow{\nu_p} 0$, (ii) $\Gamma_n \ll \nu_p$ uniformly in $n \in \mathbb{N}$. Then F is φ -integrable and $\int_E F d\varphi = \lim_{n \to \infty} \int_E F_n d\varphi$, $\forall E \in \mathcal{A}$.

Theorem 2.5. Let $(F_n)_n$ be a sequence of strong φ -integrable multifunctions that converges to F uniformly with respect to $s \in S$ and $p \in Q$. Then F is strong φ -integrable and $\int_E F d\varphi = \lim_{n \to \infty} \int_E F_n d\varphi$, $\forall E \in A$. Remarks 2.2.

(a) If $X = \mathbb{R}, Y = \{\{x\} | x \in \mathbb{R}\}, F = \{f\}$ (*f* is a function), $\varphi = \{\mu\}$ (μ is finitely additive) and *F* is φ -integrable, then $\int_E F d\varphi = \{(D) \int_E f d\mu\}, E \in \mathcal{A}$, where

 $(D)\int_{E} fd\mu$ is the Dunford integral [10].

(b) If $X = \mathbb{R}$, $Y = \{\{x\} | x \in \mathbb{R}\}$, $F = \{f\}$ (*f* is a function) and *F* is φ -integrable, then *f* is Brooks - integrable with respect to φ and $\int_E F d\varphi = (B) \int_E f d\varphi$, $E \in \mathcal{A}$, where $(B) \int_E f d\varphi$ is the Brooks integral [3].

(c) If $X = \mathbb{R}$ and $\varphi = \{\mu\}$ (μ is finitely additive), then we get the integral defined by Martellotti - Sambucini [13] for *F* with respect to μ .

(d) If *X* is a real Banach algebra, then we obtain the integral defined in [5].

3. A MULTIVALUED VERSION OF RADON - NIKODYM THEOREM

Definition 3.8. Let $T \neq \emptyset$. A multifunction $U : T \rightarrow \mathcal{P}_k$ is called uniformly bounded if there exists r > 0 such that $||U(t)||_p \leq r$, for every $t \in T, p \in Q$.

Definition 3.9. For a multifunction $\Gamma : \mathcal{A} \to Y$, $p \in Q$, $\varepsilon > 0$ and $E \in \mathcal{A}$, let:

$$\begin{split} D_p(\Gamma, E, \varepsilon) &= \{ C \in Y \mid h_p(\Gamma(B), \nu_p(B)C) \le \varepsilon \nu_p(B), \forall B \in \mathcal{A}, B \subset E \}, \\ \widetilde{D}_p(\Gamma, E, \varepsilon) &= \{ C \in Y \mid h_p(\Gamma(B), \varphi(B) \cdot C) \le \varepsilon \nu_p(B), \forall B \in \mathcal{A}, B \subset E \}, \\ D(\Gamma, E, \varepsilon) &= \bigcap_{p \in Q} D_p(\Gamma, E, \varepsilon), \widetilde{D}(\Gamma, E, \varepsilon) = \bigcap_{p \in Q} \widetilde{D}_p(\Gamma, E, \varepsilon). \end{split}$$

Definition 3.10.

(a) A set property *P* is said to be uniformly exhaustive on $E \in A$ if there exists an uniformly exhaustion $(E_i)_i$ of *E*, such that every E_i has *P*.

(b) A set property *P* is called uniformly null difference (shortly, UND) if whenever $A, B \in \mathcal{A}$ with $\nu_p(A) > 0$ and $\nu_p(B) > 0$ for every $p \in Q$, from $\nu_p(A\Delta B) = 0, \forall p \in Q$, it follows that either *A* and *B* both have *P* or neither does.

Theorem 3.6. Let $\Gamma : \mathcal{A} \to Y$ be an uniformly bounded multimeasure such that

 $\Gamma \ll \nu_p$, uniformly in $p \in Q$. Then, for every $\gamma > 0$, the properties: (i) $D(\Gamma, E, \gamma) \neq \emptyset$,

 $\begin{array}{ccc} (i) & D(1, D, \gamma) \neq \emptyset, \\ (ii) & \widetilde{D}(D, D, \gamma) \neq \emptyset, \end{array}$

 $(ii) \ D(\Gamma, E, \gamma) \neq \emptyset,$

(*iii*) $D(\Gamma, E, \gamma) \cap D(\Gamma, E, \gamma) \neq \emptyset$ are uniformly null difference.

Proof. (i) Let $\gamma > 0$. Since $\Gamma \ll \nu_p$ uniformly in $p \in Q$, we have: $\forall \varepsilon > 0, \exists \delta(\varepsilon) = \delta > 0$ such that $\forall E \in \mathcal{A}$ with $\nu_p(E) < \delta$, it follows

(3.1) $\|\Gamma(E)\|_p \le v_p(\Gamma, E) < \varepsilon, \ \forall p \in Q.$

Let $A, B \in \mathcal{A}$ with $\nu_p(A) > 0$, $\nu_p(B) > 0$, $\nu_p(A \triangle B) = 0$, $\forall p \in Q$. We shall prove that $D(\Gamma, A, \gamma) = D(\Gamma, B, \gamma)$.

First, we show that $D(\Gamma, A, \gamma) \subset D(\Gamma, B, \gamma)$. Let $C \in D(\Gamma, A, \gamma)$ and let $H \in A, H \subset B$. Since $B \setminus A \subset A \triangle B$, we have $0 \leq \nu_p(B \setminus A) \leq \nu_p(A \triangle B) = 0$, $\forall p \in Q$, so

 $(3.2) \quad \nu_p(B \setminus A) = 0, \ \forall p \in Q.$

From (3.2) it results:

 $\nu_p(H) = \nu_p(H \cap A) + \nu_p(H \setminus A) \le \nu_p(H \cap A) + \nu_p(B \setminus A) = \nu_p(H \cap A) \le \nu_p(H),$

which implies

(3.3) $\nu_p(H) = \nu_p(H \cap A), \forall p \in Q.$

Since

 $H \subset B \Rightarrow H \setminus A \subset A \triangle B \Rightarrow \nu_p(H \setminus A) \le \nu_p(A \triangle B) = 0 < \delta,$

from (3.1) we have $\|\Gamma(H \setminus A)\|_p < \varepsilon$. Since arbitrary of $\varepsilon > 0$, we obtain $\|\Gamma(H \setminus A)\|_p = 0$, $\forall p \in Q$. So $\Gamma(H \setminus A) = O$, which implies

(3.4) $\Gamma(H) = \Gamma((H \cap A) \cup (H \setminus A)) = \Gamma(H \cap A) + \Gamma(H \setminus A) = \Gamma(H \cap A).$

Since $C \in D(\Gamma, A, \gamma)$ and $H \cap A \in \mathcal{A}, H \cap A \subset A$, it follows

(3.5) $h_p(\Gamma(H \cap A), \nu_p(H \cap A)C) \le \gamma \nu_p(H \cap A).$

Now, from (3.3), (3.4) and (3.5), it results:

 $h_p(\Gamma(H), \nu_p(H)C) = h_p(\Gamma(H \cap A), \nu_p(H \cap A)C) \le \gamma \nu_p(H \cap A) = \gamma \nu_p(H),$

which proves that $C \in D(\Gamma, B, \gamma)$.

The inverse inclusion, $D(\Gamma, B, \gamma) \subset D(\Gamma, A, \gamma)$, results analogously. Thus, $D(\Gamma, A, \gamma) = D(\Gamma, B, \gamma)$ and the assertion (i) is proved.

(ii) We shall prove that $\widetilde{D}(\Gamma, A, \gamma) = \widetilde{D}(\Gamma, B, \gamma)$, by double inclusion.

First, let $C \in D(\Gamma, A, \gamma)$, $H \in A$, $H \subset B$. Like in the proof of (i), we have (3.3) and (3.4). By the relations:

$$H \subset B \Rightarrow H \setminus A \subset A \triangle B \Rightarrow 0 \le \|\varphi(H \setminus A)\|_p \le \nu_p(H \setminus A) \le \nu_p(A \triangle B) = 0,$$

it follows that $\|\varphi(H \setminus A)\|_p = 0, \forall p \in Q$, which implies

 $(3.6) \quad \varphi(H \setminus A) = O.$

From (3.6) it results

$$(3.7) \quad \varphi(H) = \varphi((H \cap A) \cup (H \setminus A)) = \varphi(H \cap A) + \varphi(H \setminus A) = \varphi(H \cap A).$$

Since $C \in \widetilde{D}(\Gamma, A, \gamma)$ and $H \cap A \in \mathcal{A}, H \cap A \subset A$, we have

(3.8) $h_p(\Gamma(H \cap A), \varphi(H \cap A) \cdot C) \leq \gamma \nu_p(H \cap A).$

Finally, from (3.3), (3.4), (3.7) and (3.8), we obtain:

$$h_p(\Gamma(H), \varphi(H) \cdot C) = h_p(\Gamma(H \cap A), \varphi(H \cap A) \cdot C) \le \gamma \nu_p(H \cap A) = \gamma \nu_p(H),$$

that is $C \in \widetilde{D}(\Gamma, B, \gamma)$. The inverse inclusion, $\widetilde{D}(\Gamma, B, \gamma) \subset \widetilde{D}(\Gamma, A, \gamma)$, follows in the same way. So, $\widetilde{D}(\Gamma, A, \gamma) = \widetilde{D}(\Gamma, B, \gamma)$ and the statement is proved.

(iii) It results immediately from (i) and (ii).

Theorem 3.7. Let *P* be an UND property such that *P* is uniformly exhaustive on *S*. Then there exists $(E_i)_i$ an uniformly exhaustion of *S*, such that every E_i has *P* and $S = \bigcup E_i$.

Proof. Since *P* is uniformly exhaustive on *S*, there exists $(E_i)_{i \in I}$ an uniformly exhaustion of *S*, such that every E_i has *P*. Thus, we have

(3.9)
$$\forall \varepsilon > 0, \exists n_0(\varepsilon) = n_0 \in \mathbb{N}^* \text{ such that } \nu_p(S \setminus \bigcup_{i=1}^{n_0} E_i) < \varepsilon, \ \forall p \in Q.$$

Let $E_0 = S \setminus \bigcup_{i \in I} E_i$. By the inclusion $E_0 \subset S \setminus \bigcup_{i=1}^{n_0} E_i$ and from (3.9), it results that $\nu_p(E_0) < \varepsilon, \forall \varepsilon > 0$. So, $\nu_p(E_0) = 0, \forall p \in Q$, which implies that $E_0 \in A$.

Let $(B_i)_{i \in I}$ be the family of sets defined by: $B_1 = E_0 \cup E_1 \in \mathcal{A}, B_i = E_i \in \mathcal{A}$ for $i \ge 2$. We have $\nu_p(B_1) \ge \nu_p(E_1) > 0$ and $\nu_p(B_i) = \nu_p(E_i) > 0, \forall i \ge 2, p \in Q$. Evidently, $S = \bigcup_{i \in I} B_i$.

Let $\varepsilon > 0$. For n_0 of (3.9) we have $\bigcup_{i=1}^{n_0} B_i = E_0 \cup \bigcup_{i=1}^{n_0} E_i$.

By the inclusion
$$S \setminus \bigcup_{i=1}^{n_0} B_i \subset S \setminus \bigcup_{i=1}^{n_0} E_i$$
 and from (3.9), it follows

$$\nu_p\left(S \setminus \bigcup_{i=1}^{n_0} B_i\right) \le \nu_p\left(S \setminus \bigcup_{i=1}^{n_0} E_i\right) < \varepsilon, \ \forall \, p \in Q$$

which assures the fact that $(B_i)_{i \in I}$ is an uniformly exhaustion of S. Now, for every $i \geq 2, B_i = E_i$ has P. So, we have only to prove that B_1 has P. By the relations

$$B_1 \triangle E_1 = (E_0 \cup E_1) \triangle E_1 = E_0 \setminus E_1 \subset E_0 \Rightarrow$$

$$\Rightarrow 0 \le \nu_p(B_1 \triangle E_1) \le \nu_p(E_0) = 0, \ \forall p \in Q,$$

it follows that $\nu_p(B_1 \triangle E_1) = 0, \forall p \in Q$. Since *P* is UND and E_1 has *P*, we obtain that B_1 has *P*.

Theorem 3.8. Let $F : S \to Y$ be an uniformly bounded φ -integrable multifunction which is the limit, uniformly with respect to $s \in S$ and $p \in Q$, of strong φ -integrable multifunctions $F_n : S \to Y$, $n \in \mathbb{N}$ and let $\Gamma(E) = \int_E F d\varphi$, $\forall E \in \mathcal{A}$. Then we have:

(i) there exists r > 0 such that

$$\frac{1}{\nu_p(E)} \|\Gamma(E)\|_p \le r, \quad \forall E \in \mathcal{A} \text{ with } \nu_p(E) > 0, \quad \forall p \in Q;$$

(*ii*) for every $p \in Q, \varepsilon > 0$ and $E \in \mathcal{A}$ with $\nu_p(E) > 0$, there exists $B \in \mathcal{A}$, $B \subset E$ with $\nu_p(B) > 0$ such that $\widetilde{D}_p(\Gamma, B, \varepsilon) \neq \emptyset$.

Proof. (i) Since *F* is uniformly bounded, we have:

(3.10) $\exists r > 0$ such that $\|F(s)\|_p \le r, \forall s \in S, p \in Q$.

From (3.10) and Theorem 2.2 - (ii), it follows for every $E \in A$ with $\nu_p(E) > 0$, $\forall p \in Q$:

$$\frac{1}{\nu_p(E)} \|\Gamma(E)\|_p = \frac{1}{\nu_p(E)} \left\| \int_E F d\varphi \right\|_p \le \frac{1}{\nu_p(E)} \int_E \|F\|_p d\nu_p \le \frac{1}{\nu_p(E)} \int_E r d\nu_p = \frac{1}{\nu_p(E)} \cdot r\nu_p(E) = r.$$

This proves (i).

(ii) Let $p \in Q$ and $\varepsilon > 0$. Since $\lim_{n \to \infty} F_n(s) = F(s)$ uniformly in $s \in S$ and $p \in Q$, there exists $n_0(\varepsilon) = n_0 \in \mathbb{N}$ such that for every natural $n \ge n_0$,

(3.11)
$$h_p(F_n(s), F(s)) < \varepsilon, \quad \forall s \in S, p \in Q.$$

Let $F_{n_0} = \sum_{i=1}^k C_i \cdot \mathcal{X}_{A_i}$ and let $E \in \mathcal{A}$ with $\nu_p(E) > 0$. Thus, $0 < \nu_p(E) = \nu_p(E \cap S) = \nu_p\left(E \cap \bigcup_{i=1}^k A_i\right) = \sum_{i=1}^k \nu_p(E \cap A_i)$

and so, there is $j_0 \in \{1, 2, ..., k\}$ such that $\nu_p(E \cap A_{j_0}) > \frac{1}{2k}\nu_p(E) > 0$. Let $B = E \cap A_{j_0}$. So $B \in \mathcal{A}$ and $\nu_p(B) > 0$. Let $H \in \mathcal{A}, H \subset B$. From Theorem 2.2-(i) and (3.11) we have:

$$h_{p}(\Gamma(H),\varphi(H)\cdot C_{j_{0}}) = h_{p}\left(\int_{H} Fd\varphi, \int_{H} F_{n_{0}}d\varphi\right) \leq \int_{H} h_{p}(F,F_{n_{0}})d\nu_{p} \leq \int_{H} \varepsilon d\nu_{p} = \varepsilon \nu_{p}(H),$$

which shows that $C_j \in D_p(\Gamma, B, \varepsilon)$.

Theorem 3.9. (Radon-Nikodym)

Let $\Gamma : \mathcal{A} \to Y$ be an uniformly bounded multimeasure such that: (*i*) $\Gamma \ll \nu_p$, uniformly in $p \in Q$,

$$(ii) \exists r > 0 \text{ such that } \frac{1}{\nu_p(E)} \| \Gamma(E) \|_p \le r, \ \forall E \in \mathcal{A} \text{ with } \nu_p(E) > 0 \text{ for each } p \in Q,$$

(*iii*) for every $\varepsilon > 0$, the set property $D(\Gamma, E, \varepsilon) \cap D(\Gamma, E, \varepsilon) \neq \emptyset$ is uniformly exhaustive on every $E \in \mathcal{A}$ with $\nu_p(E) > 0$ for each $p \in Q$.

Then there exists a strong φ -integrable uniformly bounded multifunction $F: S \to Y$ such that $\Gamma(E) = \int_E F d\varphi, \forall E \in \mathcal{A}$.

Proof. Since (iii), Theorem 3.6 - (iii) and Theorem 3.7, there exists $(E_i)_{i \in I}$ an uniformly exhaustion of each $E \in \mathcal{A}$ with $\nu_p(E) > 0$ for every $p \in Q$, such that $E = \bigcup_{i \in I} E_i$ and $D(\Gamma, E_i, \varepsilon) \cap \widetilde{D}(\Gamma, E_i, \varepsilon) \neq \emptyset, \forall i \in I$. Following the same way as in

[12], we can obtain a sequence $(E^n_\alpha)_n, \alpha \in \mathbb{N}^n$, of uniformly exhaustions of S such that:

- (3.12) $D(\Gamma, E_{\alpha}^{n}, 2^{-n}) \cap \widetilde{D}(\Gamma, E_{\alpha}^{n}, 2^{-n}) \neq \emptyset, \ \forall \alpha \in \mathbb{N}^{n}, n \in \mathbb{N},$
- (3.13) $E_{\alpha}^{n} = \bigcup_{i} E_{\alpha,i}^{n+1}$, where $(E_{\alpha,i}^{n+1})_{i}$

is an uniformly exhaustion of $E_{\alpha}^{n}, \forall \alpha \in \mathbb{N}^{n}, n \in \mathbb{N},$

(3.14) for every $n \in \mathbb{N}$, we have $S = \bigcup_{\alpha} E_{\alpha}^{n}$ and $(E_{\alpha}^{n})_{\alpha}$

is an uniformly exhaustion of S.

Let $F_n = \sum_{\alpha} C_{\alpha}^n \cdot \mathcal{X}_{E_{\alpha}^n}$, where $C_{\alpha}^n \in D(\Gamma, E_{\alpha}^n, 2^{-n}) \cap \widetilde{D}(\Gamma, E_{\alpha}^n, 2^{-n}), \forall \alpha \in \mathbb{N}^n$, $n \in \mathbb{N}$.

Since $C^n_{\alpha} \in D(\Gamma, E^n_{\alpha}, 2^{-n})$, it results:

(3.15) $h_p(\Gamma(B), \nu_p(B)C_{\alpha}^n) \leq \frac{1}{2^n}\nu_p(B), \quad \forall B \in \mathcal{A}, \ B \subset E_{\alpha}^n, \ p \in Q.$ From (3.15) and (ii), it follows:

$$\begin{aligned} \|C_{\alpha}^{n}\|_{p} &= h_{p}(0, C_{\alpha}^{n}) = \frac{1}{\nu_{p}(E_{\alpha}^{n})} h_{p}(0, \nu_{p}(E_{\alpha}^{n})C_{\alpha}^{n}) \leq \\ &\leq \frac{1}{\nu_{p}(E_{\alpha}^{n})} \left[\|\Gamma(E_{\alpha}^{n})\|_{p} + h_{p}(\Gamma(E_{\alpha}^{n}), \nu_{p}(E_{\alpha}^{n})C_{\alpha}^{n}) \right] \leq r + 2^{-n} \leq r \end{aligned}$$

34

+1.

So,

$$(3.16) \quad \|C_{\alpha}^n\|_p \le r+1, \quad \forall \alpha \in \mathbb{N}^n, n \in \mathbb{N}, p \in Q$$

and by Theorem 2.3 - (ii), F_n is strong φ -integrable for every $n \in \mathbb{N}$. Let $m, n \in \mathbb{N}$, m < n. Following the same way as in [12], we can write $F_n = \sum_{(\alpha,\beta)} C^m_{\alpha,\beta} \cdot \mathcal{X}_{E^m_{\alpha,\beta}}$ and $F_n = \sum_{(\alpha,\beta)} C^n_{\alpha,\beta} \cdot \mathcal{X}_{E^n_{\alpha,\beta}}, \forall \alpha \in \mathbb{N}^m, \beta \in \mathbb{N}^{n-m}$. Since $(E^n_{\alpha,\beta})_\beta$ is an uniformly exhaustion of E^n_α , we have:

(3.17) $C^m_{\alpha}, C^n_{\alpha,\beta} \in D(\Gamma, E^m_{\alpha,\beta}, 2^{-m}).$

Thus, from (3.9) it results:

$$\begin{split} h_p(C^m_{\alpha}, C^n_{\alpha,\beta}) &\leq \frac{1}{\nu_p(E^n_{\alpha})} \bigg[h_p(\Gamma(E^n_{\alpha}), \nu_p(E^n_{\alpha})C^m_{\alpha}) + h_p(\Gamma(E^n_{\alpha}), \nu_p(E^n_{\alpha})C^n_{\alpha,\beta}) \bigg] \leq \\ &\leq 2^{-m} + 2^{-m} = 2^{1-m} \text{ and} \\ h_p(F_m, F_n) &= h_p \bigg(\sum_{(\alpha,\beta)} C^m_{\alpha,\beta} \cdot \mathcal{X}_{E^m_{\alpha,\beta}}, \sum_{(\alpha,\beta)} C^n_{\alpha,\beta} \cdot \mathcal{X}_{E^n_{\alpha,\beta}} \bigg) \leq \\ &\leq \sum_{(\alpha,\beta)} h_p(C^m_{\alpha,\beta}, C^n_{\alpha,\beta}) \cdot \mathcal{X}_{E^m_{\alpha,\beta}} \leq 2^{1-m}. \end{split}$$

So, for every $\varepsilon > 0$, there exists $n_0(\varepsilon) = n_0 \in \mathbb{N}$ such that

$$h_p(F_m(s),F_n(s)) \le 2^{1-m} < \varepsilon, \ \forall m,n \ge n_0, s \in S, p \in Q,$$

which shows that the sequence $(F_n(s))_n$ is Cauchy in Y, uniformly in $s \in S$ and $p \in Q$. Since Y is complete, there exists the limit $F(s) = \lim_{n \to \infty} F_n(s), \forall s \in S$.

From (3.16) and the definition of *F* it results:

$$||F(s)||_p = h_p(F(s), 0) \le h_p(F(s), F_n(s)) + h_p(F_n(s), 0) \le r + 2, \ \forall s \in S, p \in Q,$$

thus *F* is uniformly bounded. Since Theorem 2.5, *F* is strong φ -integrable and

(3.18)
$$\lim_{n \to \infty} h_p \left(\int_E F_n d\varphi, \int_E F d\varphi \right) = 0, \quad \forall p \in Q, E \in \mathcal{A}.$$

Now we prove that $h_p(\Gamma(E), \int_E F d\varphi) = 0$, $\forall p \in Q, E \in A$. Let $E \in A, p \in Q$, $\varepsilon > 0$. From (i), there is $\delta\left(\frac{\varepsilon}{4}\right) = \delta > 0$, such that for every $A \in A$ with $\nu_p(A) < \delta$, we have

(3.19)
$$\|\Gamma(A)\|_p \leq v_p(\Gamma, A) < \frac{\varepsilon}{4}.$$

Since the family $(E \cap E_{\alpha}^n)_{\alpha \in \mathbb{N}^n}$ is an uniformly exhaustion of E, for $\delta > 0$, there is $q \in \mathbb{N}$ such that

(3.20)
$$\nu_p\left(E \setminus \bigcup_{\alpha \in \mathbb{N}^n, \ \alpha < \underbrace{(q, \ldots, q)}_n} (E \cap E_\alpha^n)\right) < \delta.$$

From (3.18), there is $n_1 \in \mathbb{N}$ such that for each $n \ge n_1$,

(3.21)
$$h_p\left(\int_E F_n d\varphi, \int_E F d\varphi\right) < \frac{\varepsilon}{4}.$$

Because $F_n = \sum_{\alpha} C_{\alpha}^n \cdot \mathcal{X}_{E_{\alpha}^n}$, we obtain

$$\int_{E} F_n d\varphi = \lim_{l \to \infty} \sum_{\alpha < (\underline{l, \dots, l}) \atop n} C_{\alpha}^n \cdot \varphi(E \cap E_{\alpha}^n)$$

and thus, for $n \ge n_1$, we have:

(3.22)
$$h_p\left(\sum_{\alpha<(\underline{q},\ldots,\underline{q})\atop n}C_{\alpha}^n\cdot\varphi(E\cap E_{\alpha}^n),\int_EF_nd\varphi\right)<\frac{\varepsilon}{4}.$$

Let us denote $\beta = (\underbrace{q, \dots, q}_{n})$ and let $n \ge n_1$. From (3.22) and (3.21) it follows:

$$(3.23) \quad h_p \bigg(\Gamma(E), \int_E F d\varphi \bigg) \le h_p \left(\Gamma(E), \Gamma\bigg(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \bigg) \bigg) + \\ + h_p \left(\Gamma\bigg(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \bigg), \sum_{\alpha < \beta} C_{\alpha}^n \cdot \varphi(E \cap E_{\alpha}^n) \bigg) + \\ + h_p \bigg(\sum_{\alpha < \beta} C_{\alpha}^n \cdot \varphi(E \cap E_{\alpha}^n), \int_E F_n d\varphi \bigg) + h_p \bigg(\int_E F_n d\varphi, \int_E F d\varphi \bigg) = \\ = T_1 + T_2 + h_p \bigg(\sum_{\alpha < \beta} C_{\alpha}^n \cdot \varphi(E \cap E_{\alpha}^n), \int_E F_n d\varphi \bigg) + \\ + h_p \bigg(\int_E F_n d\varphi, \int_E F d\varphi \bigg) < T_1 + T_2 + \frac{\varepsilon}{4} + \frac{\varepsilon}{4},$$

where we denoted $T_1 = h_p \left(\Gamma(E), \Gamma(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n)) \right)$ and

$$T_2 = h_p \bigg(\Gamma(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n)), \sum_{\alpha < \beta} C_{\alpha}^n \cdot \varphi(E \cap E_{\alpha}^n) \bigg).$$

Now, from (3.19) and (3.20) we obtain

$$(3.24) \quad T_1 = h_p \left(\Gamma \left(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \right) + \Gamma \left(E \setminus \bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \right), \Gamma \left(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \right) \right) \leq \\ \leq \left\| \Gamma \left(E \setminus \bigcup_{\alpha < \beta} (E \cap E_{\alpha}^n) \right) \right\|_p < \frac{\varepsilon}{4}.$$

Since the sets $(E \cap E_{\alpha}^{n})_{\alpha}$ are pairwise disjoint and $C_{\alpha}^{n} \in \widetilde{D}(\Gamma, E_{\alpha}^{n}, 2^{-n})$, we have:

$$(3.25) \quad T_{2} = h_{p} \left(\sum_{\alpha < \beta} \Gamma(E \cap E_{\alpha}^{n}), \sum_{\alpha < \beta} \varphi(E \cap E_{\alpha}^{n}) \cdot C_{\alpha}^{n} \right) \leq \\ \leq \sum_{\alpha < \beta} h_{p} (\Gamma(E \cap E_{\alpha}^{n}), \varphi(E \cap E_{\alpha}^{n}) \cdot C_{\alpha}^{n}) \leq \sum_{\alpha < \beta} 2^{-n} \cdot \nu_{p} (E \cap E_{\alpha}^{n}) = \\ = 2^{-n} \cdot \nu_{p} \left(\bigcup_{\alpha < \beta} (E \cap E_{\alpha}^{n}) \right) \leq 2^{-n} \cdot \nu_{p} (E) < \frac{\varepsilon}{4},$$

for *n* suitable large.

From (3.23), (3.24) and (3.25) it results:

$$h_p(\Gamma(E), \int_E F d\varphi) < \varepsilon, \quad \forall \, \varepsilon > 0,$$

which implies $h_p(\Gamma(E), \int_E F d\varphi) = 0, \forall p \in Q$. So, $\Gamma(E) = \int_E F d\varphi$ for every $E \in \mathcal{A}$.

Acknowledgements. The author is grateful to Prof. dr. Anca-Maria Precupanu and Prof. dr. Christiane Godet-Thobie for helpful ideas and interesting conversations during the preparation of this article.

REFERENCES

- [1] Blondia, C., Integration in locally convex spaces, Simon Stevin, 55(3), 1981, 81-102
- [2] Brink, H. E., Maritz, P., Integration of multifunctions with respect to a multimeasure, Glasnik Matematicki, 35(55), 2000, 313-334
- [3] Brooks, J. K., An integration theory for set-valued measures I, II, Bull. Soc. Roy. Sciences de Liège, no. 37, 1968, 312-319, 375-380
- [4] Chițescu, I., The indefinite integral as an integral, Atti Sem. Mat. Fis. Univ. Moderna, 41 (1993), 349-366
- [5] Croitoru, A., A set-valued integral, Anal. Şt. Univ. "Al. I. Cuza" Iaşi, 44 (1998), 101-112
- [6] Croitoru, A., A Radon-Nikodym theorem for multimeasures, Anal. Şt. Univ. "Al. I. Cuza" Iaşi, 44 (1998), 395–402
- [7] Croitoru, A., An integral for multifunctions with respect to a multimeasure, Anal. Şt. Univ. "Al. I. Cuza" Iaşi, 49 (2003), 95–106
- [8] Croitoru, A., On a set-valued integral, Carpath. J. Math., 19 (2003), nr. 1, 41-50
- [9] Diestel, J., Uhl, J. J., Vector measures, Mat. Surveys 15, Amer. Math. Soc., Providence, 1977
- [10] Dunford, N., Schwartz, J., Linear Operators I. General Theory, Interscience, New York, 1958
- [11] Godet-Thobie, C., Multimesures et multimesures de transition, Thèse de Doctorat d'Etat de Sciences Mathématiques, Montpellier, 1975

- [12] Hagood, J. W., A Radon Nikodym theorem and L_p completeness for finitely additive vector measure, J. Math. Anal. Appl., **113** (1986), 266-279
- [13] Martellotti, A., Sambucini, A. R., A Radon Nikodym theorem for multimeasures, Atti Sem. Mat. Fis. Univ. Modena, 42 (1994), 579-599
- [14] Maynard, H. B., A Radon Nikodym theorem for finitely additive bounded measures, Pac. Math., 83 (1979), 401-413
- [15] Precupanu, A. M., A Brooks type integral with respect to a set-valued measure, J. Math. Sci. Univ. Tokyo, No. 3 3, 1996, 533-546

"AL. I. CUZA" UNIVERSITY OF IASI FACULTY OF MATHEMATICS 700506 IASI, ROMANIA *E-mail address*: croitoru@uaic.ro