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Multivalued version of Radon-Nikodym theorem

ANCA CROITORU

ABSTRACT. We defined in [7] a set-valued integral for multifunctions with respect to a multi-
measure, where both the multifunctions and the multimeasure take values in Py.(X), the family of
nonempty compact convex subsets of a locally convex algebra X. But the construction of the integral
and all the results remain valid if the multifunctions and the multimeasure take values in Py (X), the
family of nonempty compact subsets of X.

In this paper we establish a Radon-Nikodym theorem (for the integral described in [7], but using
the family P, (X) instead of P (X)) which bases on a construction of Maynard type [14], using the
notion of exhaustion.

1. TERMINOLOGY AND NOTATIONS

Let S be a nonempty set, A an algebra of subsets of S. Let X be a Hausdorff
locally convex vector space and let @ be a filtering family of seminorms which de-
fines the topology of X. We consider (z, y) — xy having the following properties
foreveryz,y,z€ X,a,06€R, p € Q:

() 2(yz) = (wy)z,

(i) zy = ya,

(i) z(y + 2) = zy + z2,

(iv) (ax)(By) = (aB)(zy),

V) p(z,y) < p(x)p(y).

Examples 1.1.

@) X ={f:T — R|f isbounded} with (fg)(t) = f(¢t)g(t), Vt € T, where T is
a topological space. Let K = { K C T|K is compact} and Q = {px|K € K} where
pr(f) = sup f@.VfeX.

(b) X ={f: T — R} with (fg)(t) = f(t)g(t), Vt € T, where T is a nonempty
setand Q = {p: [t € T}, p:e(f) = [f(D),V f € X.

We denote by Pr(X) = P, the family of all nonempty compact subsets of X.
If A,B € Py,a €R,
A+B={xz+y|xz e Aye B},

aA ={ax|z € A},
A-B={ay|zecAyec B}
For everyp € Q,A,B € Py, let e (A, B) = sup injf}p(:c —y) and h,(A,B) =
rCAYE
max{e,(A, B),e,(B, A)} - the Hausdorff - Pompeiu semimetric defined by p on
Received: 15.11.2004; In revised form: 10.10.2005
2000 Mathematics Subject Classification: 28B20.

Key words and phrases: Multimeasure, integrable multifunctions, Radon-Nikodym type theorem for
multimeasures.

27



28 Anca Croitoru

Pr. We define ||A], = hp(A,0) = supp(z), VA € Py, where O = {0}. Then
€A
{hp}peq is a filtering family of semimetrics on P, which defines a Hausdorff

topology on P.

Let Y C Py satisfying the conditions:

(y1) Y is complete with respect to {h,},c0.

(y2) O€Y,

(y3) VAL BeY=A+BA-BeY,

(ya)) A-(B+C)=A-B+ A-Cforevery A,B,C €Y.
Examples 1.2.

@ Y ={{z}|x € X} for X like in (a) and (b) of examples 1.1.

() Y ={a,b]]|abeR0<a<b}forX =R

(c) For X like in example 1.1-b), let Y = {[f, g]|f,9 € X,0 < f < g}, where
[fgl={ue X|f <u<g})VfgeX.

Definition 1.1. ¢ : A — Py is said to be a multimeasure if:

) »(0) =0,
(i) ©(AUB)=(A)+¢(B),YABc A ANB=.

Definition 1.2. Let ¢ : A — Pj. For every p € @, the p-variation of ¢ is the
non-negative (possibly infinite) set function v, (¢, -) defined on A as follows:

bUP{Z”SD H;D’ =1 - Ain mEj = @ fOf' Z%]v

UEZ- —Ane N*},VA €A

=1
We denote v, (¢, -) by v, if there is no ambiguity.

Remark 1.1. If ¢ : A — P}, isamultimeasure, then v, is finitely additive for every
PeEQ.

Throughout this paper, ¢ : A — Y will be a multimeasure and suppose there
is E € Asuch that p(E) # O. We shall assume that v,(S) < +oo and (S, A, v,) is
complete for every p € Q.

2. SET-VALUED INTEGRAL [7]

Definition 2.3. A multifunction F' : S — Y is said to be a simple multifunction

if F = ZCi - Xa,Where C; € Y, A; € Aji € {1,2,....,n}, A; N A; = O fori # j,
i=1

n

UAZ- = S and X4, is the characteristic function of A;.

=1
The integral of F over E € A is:

/Fd<p Zc (A,NE)eY.
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Definition2.4. F : S — Y is said to be o-totally measurable if there is a sequence
(Fy)n of simple multifunctions F,, : S — Y satisfying the following condition for

everyp € Q:

() hp(Fn, F) =20 (cf. Dunford - Schwartz [10] - 111.2.6).
Remarks 2.1.

(a) Every simple multifunction is ¢-totally measurable.

(b) If F : S — Y is o-totally measurable and (F,,),, is a sequence of simple
multifunctions F,, : S — Y such that

hP(FnﬂF> i)(), vper

then for every n € Nand p € @, h,(F,,F) and || F||, are v,-measurable (cf.
Dunford-Schwartz [10] - 111.2.10).

Theorem 2.1. Let )G : S — Y be (-totally measurable multifunctions and let o € R.
Then it follows:

() hyp(F, Q) is vp-measurable, Vp € Q;

(#9) aF and F' + G are o-totally measurable.

Definition 2.5. Let F': S — Y be a p-totally measurable multifunction. F' is said
to be p-integrable (over S) if there is a sequence (F,,),, of simple multifunctions
F, : S — Y such that, forevery p € Q:

(i) hp(Fn, F) 20,

(i) lim /hp(Fn,Fm)dI/p =0.
s

n,m— oo

The sequence (F, ), is said to be a defining sequence for F. The integral of F
overE € Ais | Fdy = lim (/ Fnd@) eyY.
E E

n—oo
Particularly, every simple multifunction is ¢-integrable.

Theorem 2.2. Let F,G : S — Y be ¢-integrable multifunctions, « € Rand I'(E) =
[ Fde, YE € A. Then we have:
(i) hp([, Fde, [, Gdp) < [ hy(F,G)dv,, VE € A,p € Q;
(i) || [p Fdolly < [ IFllpdvy, YE € ApeQ;
(iii) I is a multimeasure;
(iv) vp,(T,E) = [, | Fllpdvy, YE € Ape@;
W) Ty, Vpe(ieVpeQ,Ve>0,36(p,e) =4 > 0such that
vp(T, E) < eforall E € Awith v,(E) < 9);
(Vi) aF is g-integrable and [,.(aF)dy = « [, Fdp,VE € A,
(vii) F + Gis p-integrable and [, (F + G)dy = [, Fdp + [, Gdp,VE € A.

Definition 2.6. F': S — Y is said to be strong y-integrable if there is a sequence
(Fy)n of simple multifunctions such that uniformly inp € Q:
(i) hp(Fn, F) 20,

(i) lim /hp(Fn,Fm)dI/p =0.

n,m—oo | g
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Definition 2.7. A finite or countable family of pairwise disjoint sets (E;); C A
will be called an uniformly exhaustion of S if v,(E;) > 0 foreveryi € I,p € Q

no

and for each ¢ > 0, there is ny € N such that v, <S\ UE) <eVpeqQ.

i=1

Theorem 2.3. Let (E,)nen+ C A an uniformly exhaustion of S such that

1

Let:F : S — Y be defined by F(s) = C,, € Y forevery s € E,,, n € N* (we denote
F=Y) Cp-Xg,).

n=1
(i) If for every p € @, there is r, > 0 such that |C,, ||, < r,, for every n € N*, then F’
is p—integrable.
(23) If there exists r > 0 such that ||C,||, < r for every n € N*and p € @, then F'is
strong p—integrable.

Theorem 2.4. (Vitali)
Let F : S — Y be a multifunction, let (F,),, be a sequence of strong ¢ —integrable

multifunctions £, : S — Y and I',,(E) :/ F,dp, E € A,n € Nsuch that, for every
E

p € @ we have:
() hy(Fo, F) =2 0,
(17) '), << v, uniformly inn € N.
Then F' is p—integrable and/ Fdp = lim [ F,dp,VE € A.
E E

n—oo

Theorem 2.5. Let (F),),, be a sequence of strong w—integrable multifunctions that con-
verges to F' uniformly with respect to s € S and p € Q. Then F'is strong p—integrable

and/ Fdp = lim [ F,dp,VE € A.

Remgrks 2.2. e
@IfX =R,Y ={{z}|z e R}, F = {f} (fisafunction), ¢ = {u} (uis finitely

additive) and F is p—integrable, then / Fdp = {(D)/ fdu}, E € A, where
E E

(D)/ fdu is the Dunford integral [10].
E
O IfX =R, Y = {{z}|zr € R}, F = {f} (f isafunction) and F'is p—integrable,
then f is Brooks - integrable with respect to ¢ and/ Fdy = (B)/ fdp, E € A,
E E

where (B)/ fde is the Brooks integral [3].

E
() If X = R and ¢ = {u} (1 is finitely additive), then we get the integral
defined by Martellotti - Sambucini [13] for F' with respect to p.
(d) If X is a real Banach algebra, then we obtain the integral defined in [5].
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3. A MULTIVALUED VERSION OF RADON - NIKODYM THEOREM

Definition 3.8. Let T # (). A multifunction U : T — Py is called uniformly
bounded if there exists r > 0 such that ||U(¢)||, < r, foreveryt € T,p € Q.

Definition 3.9. For a multifunctionT': A - Y,p € Q,e > 0and E € A, let:
D,(T,E,e) = {C €Y | hy(T(B),v,(B)C) < ev,(B),YB € A, B C E},
D,(T,E,e) = {C €Y | hy(T(B), o(B) - C) < ev,(B),YB € A, B C E},
D, E,e) = (| Dp(I, E,e), DT, E,e) = (| Dp(T', E,¢).

PEQ PEQ
Definition 3.10.

(a) A set property P is said to be uniformly exhaustive on E € A if there exists
an uniformly exhaustion (E;); of E, such that every E; has P.

(b) A set property P is called uniformly null difference (shortly, UND) if when-
ever A, B € Awith v,(A) > 0and v,(B) > 0 forevery p € Q, from v,(AAB) =
0,Vp € Q, it follows that either A and B both have P or neither does.

Theorem 3.6. LetI': A — Y be an uniformly bounded multimeasure such that
I' < v, uniformly in p € Q. Then, for every v > 0, the properties:

(i) DI, E,y)#0,

(ii) D(T, E,7) # 0,

(155) DU, E, )N DT, E,~) #0
are uniformly null difference.

Proof. (i) Lety > 0. Since I < v, uniformly in p € @, we have: Ve > 0,3 6(¢) =
d > Osuch thatV E € A with v,(E) < ¢, it follows

(B1) |I(E)|p <v(l,E)<e VpeQ.

Let A, B € Awith v,(A) > 0, v,(B) > 0, v,(AAB) =0,Vp € Q.

We shall prove that D(T', A,v) = D(T', B, ).

First, we show that D(T',A,v) ¢ D({,B,v). Let C € D(T,A,~) and let
H € A H C B.Since B\A C AAB, we have 0 < v,(B\A) < v,(AAB) =0,
VpeQ,so

(32 wvp(B\A)=0, VpeQ.
From (3.2) it results:
vp(H) = vp(H 01 A) + v, (H\A) < v,(H 0 A) + v, (B\A) = v, (H N A) < v, (H),
which implies
(B3) vy (H)=v,(HNA), Vpeq.

Since
HCcB= H\AC AAB = v,(H\A) < 1,(AAB) =0 < ¢,

from (3.1) we have ||I'(H\A)|, < e. Since arbitrary of ¢ > 0, we obtain
IT(H\A)|, =0,Vp € Q. SoT'(H\A) = O, which implies

(34 T(H)=T(HNAUH\A)=THNA) +T(H\A) =T(HNA).
SinceC € D(I'A,v)and HNA e A HN A C A, it follows
(35) hy(T(HNA),vp(HNA)C) <~vp(HNA).
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Now, from (3.3), (3.4) and (3.5), it results:
hp(T(H),vp(H)C) = hp(T(HNA),v,(HNA)C) < yvp(HNA) = vyup(H),

which proves that C € D(T', B, 7).

The inverse inclusion, D(T', B,v) C D(T', A,~), results analogously. Thus,
D, A,v) = D(T', B,~) and the assertion (i) is proved.

(i) We shall prove that D(T', A,~) = D(T', B, ), by double inclusion.

First, let C € E(F,A,’y),H € A, H C B. Like in the proof of (i), we have (3.3)
and (3.4). By the relations:

HCB=H\ACAAB=0<|p(H\A)|, <vpy(H\A) <v,(AAB) =0,

it follows that || o(H\A)||, = 0,Vp € @, which implies
36) ¢(H\A)=0
From (3.6) it results
B7) pH)=p(HNA)UH\A) =pHNA) +pH\A) =¢(HNA).
Since C € D(I', A,y)and HNA € A, HN A C A, we have
(38) hy(T(HNA),p(HNA)-C)<~y,(HNA).
Finally, from (3.3), (3.4), (3.7) and (3.8), we obtain:

hp(D(H), p(H) - C) = hy(P(H N A),o(H N A) - C) < yp(H N A) = yvp(H),
thatis C' € D(T', B, 7). The inverse inclusion, D(T', B,v) C D(T, A,), follows in
the same way. So, D(T', A,~v) = D(T', B, ~) and the statement is proved.

(iii) It results immediately from (i) and (ii). O
Theorem 3.7. Let P be an UND property such that P is uniformly exhaustive on S.

Then there exists (E;); an uniformly exhaustion of S, such that every E; has P and
S =UE;.

Proof. Since P is uniformly exhaustive on S, there exists (E;);c; an uniformly
exhaustion of S, such that every E; has P. Thus, we have

(39) Ve >0,3ng(c) =ng € N* such that 1,(S\ | J E;) <=, Vpe@Q.

i=1

Let Ey = S\ U E;. By the inclusion E; C S\ U E; and from (3.9), it results
el
that v,(Ey) < e,Ve > 0.S0, v,(Ep) =0,Vp € Q, WhICh implies that £y € A.

Let (B;);cr be the family of sets defined by: By = EyUF, € A,B;, =F;, € A
for i > 2. We have v,(B1) > vp(E1) > 0and vp(B;) = vp(E;) > 0,Vi > 2,p € Q.
Evidently, S = | B;.

el
Lete > 0. For ng of (3.9) we have Lj B;, = EyU Lj E;.

i=1 i=1
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m

By the inclusion S\ UO B; C S\ U0 E; and from (3.9), it follows
i=1 =1

1= 1=

VP(S\ OB,-) < l/p(S\ L] Ei) <e VpeQ
i=1 i=1

which assures the fact that (B;);c; is an uniformly exhaustion of S. Now, for
every i > 2. B; = E; has P. So, we have only to prove that B; has P. By the
relations

BiAE, = (E() @] El)AEl = E()\E1 Cc Ey =
=0< l/p(BlﬂEl) < VP(EQ) =0, Vp S Q,

it follows that v,(B1AE;) = 0,Vp € Q. Since P is UND and E,; has P, we obtain
that B; has P. O

Theorem 3.8. Let F' : S — Y be an uniformly bounded ¢-integrable multifunction
which is the limit, uniformly with respect to s € S and p € @, of strong e-integrable
multifunctions F,, : S — Y, n € Nand letT'(E) = / Fdp,VE € A. Then we have:
E
(i) there exists » > 0 such that
1 .
——|IT(E)||, <7, VE € Awith v,(E) >0, VpeQ;
vp(E)

(7) forevery p € Q,e > 0and E € Awith v,(E) > 0, thereexists Be A, BC E
with v, (B) > 0 such that D, (T, B,e) # 0.

Proof. (i) Since F' is uniformly bounded, we have:
(3.10) Ir > Osuchthat ||F(s)||l, <r, Vse S peQ.

From (3.10) and Theorem 2.2 - (ii), it follows for every E € A with v,(E) > 0,

Vpe@:
IOl = | [ Fae] <z [ 1lan, <

vp(E) g v(E) || /e T (E) JE P

1 1
= 0B /Ed A

p

crvp(E) =1

This proves (i).
(i) Letp € @Qand e > 0. Since lim F,(s) = F(s) uniformlyins € Sandp € Q,
n—oo
there exists ng(e) = no € N such that for every natural n > ny,
(311) hp(Fu(s),F(s)) <e, VseS,peq.
k
Let F,, = > C; - X4, and let E € A with v,(E) > 0. Thus,

i=1

k k
0<vp(E)=1,(ENS) =1, (Em U Ai) =Y y(ENA)

i=1 =1
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1
and so, there is jo € {1,2,...,k} such that v,(E N A;,) > Q—kyp(E) > 0. Let

B=EnNA;,.S0B¢c Aandv,(B) > 0.Let H € A,H C B. From Theorem 2.2-(i)
and (3.11) we have:

hp(T(H),o(H)-Cj,) = hp</HFd<p,/HF,,mdgp) < /th(F, Fpy)dy, <

g/ edvy = evp(H),
H
which shows that C; € D, (T, B, ¢). O

Theorem 3.9. (Radon-Nikodym)

LetT': A — Y be an uniformly bounded multimeasure such that:

(1) T < vp, uniformly inp € @,

1
vp(E) _

(i32) for every ¢ > 0, the set property D(T', E,¢) N D(T', E,e) # 0 is uniformly
exhaustive on every E € Awithv,(E) > 0foreachp € Q.

Then there exists a strong -integrable uniformly bounded multifunction
F:S—YsuchthatI'(E) = [, Fdp,YE € A.

Proof. Since (iii), Theorem 3.6 - (iii) and Theorem 3.7, there exists (E;);c; an uni-

formly exhaustion of each £ ¢ A with v,(E) > 0 for every p € @, such that

E=\ E;and D(T', E;,e)ND(T, E;,¢) # 0, Vi € I. Following the same way as in
el

[12], we can obtain a sequence (E}),,, a € N*, of uniformly exhaustions of S such

that:

(3.12) D(I,E",27")ND(,E",27") #0, Ya € N",n €N,

(#4) Ir > 0 such that IT(E)|, <7, YE € Awithy,(E) > 0foreachp € Q,

(313) E; =|JEL" where (BT,

is an uniformly exhaustion of E7}, Va € N*,n € N,
(3.14) forevery n € N, we have S = | JEZ and (E}).
(03

is an uniformly exhaustion of S.
Let F, = > C% - Xpn, where Cf € D(T', E},27™) N E(F,EQ,T"), Va € N,

[e3

n € N.
Since C} € D(T', EZ,27"), it results:
1
(315) hy(D(B).vp(B)CE) < 5y vp(B), VB EA BCEL peqQ.
From (3.15) and (ii), it follows:

||Cg||p - hp((), Cg) =

hp(0, v (ER)CY) <
l/p(Eg) P( p( ) )

1 n mn mn n —n
ITCED Iy + hp(D(ES), vp(EQ)CR) | <7 +27" <r+1.

vp(EL)

[e3
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So,
(316) |ICZ, <r+1, VaeN"'neNpeQ

and by Theorem 2.3 - (ii), F), is strong p-integrable for every n € N. Let m,n € N,
m < n. Following the same way as in [12], we can write F;, = > C['j - XEm

(a,B)
and F,, = (Z;j) Cap-Xen ,,Va e N™, g e N*"™. Since (Ey 5)p is an uniformly
exhaustion of E7, we have:
(317) CI.Crye DI, ETz27™).
Thus, from (3.9) it results:
m n 1 n mn m n mn n
lCIC) < s D), (ERICE Py TR, (EEICE )| <
<27™m o m =2=™ and
hp(Fn, Fn) = h ( Z Cap Xmpr D Cag XEQ,B) =
(a,B)
< Zh W5 Chg) - Xgm <217
(a,3)

So, for every € > 0, there exists ng(¢) = ng € N such that
hy(Fn(s), Fu(s)) <2'7™ <&, ¥m,n >ng,s € S,p € Q,

which shows that the sequence (F,(s)), is Cauchy in Y, uniformly in s € S and
p € Q. Since Y is complete, there exists the limit F(s)= lim F,(s),V s€S.

From (3.16) and the definition of F it results:
| F(s)llp = hp(F(5),0) < hyp(F(s), Fn(s)) + hp(Fn(s),0) <7 +2, Vs € S,peQ,

thus F' is uniformly bounded. Since Theorem 2.5, F' is strong o-integrable and
(3.18) lim hp(/ Fndgo,/ ngo) =0, V/peQ,FE € A

Now we prove that h,(I'(E), [, Fdp) = 0,Vpe Q, E € A LetE € A p € Q,

e > 0. From (i), there is 6(1) =0 > 0, such that for every A € Awith v,(4) <,
we have

(3.19) [IT(A)]l, < vp(T, A) < =

Since the family (E N E?),en- is an uniformly exhaustion of E, for § > 0, there is
q € N such that

(3.20) v, <E\ U (EN E:;)) <.

aeN", a<(q, ey q)
N—_——
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From (3.18), there is ny € N such that for each n > n;,

(3.21) h,,(/ Fnd@,/ Fdap) < £
E E 4

Because I, = ) C;, - Xg», We obtain
(6%

/chp*llggo Y. Ch-9(ENEY)
a<l, ...,
——

and thus, for n > n;, we have:

e n( Y croemnmm. [ Rag) <]
a<(q,...,q)
——

n

Hklm

Let us denote 5 = (q,...,q) and let n > n;. From (3.22) and (3.21) it follows:
——

n

(3.23) h, (F(E),/EFdw) < h, (F(E),r( U (EmEg))) +

a<f

+ hy (r( U(EﬂEQ)),ZCQ-ap(EﬂEQ)) +

a<f a<f

+hp(202~¢(EmE2>,[EFndsa) +hp([EFndsa,/EFdso) -

a<f

:T1+T2+hp<ZC" EﬂE”)/Fndng)—i—

a<f

e €
+hp</ Fndcp,/nga) <Th+To+-+-,

where we denoted ) = h,, (F(E), rcy En E&L))) and
a<pf

Tzhp<r(U (ENEY), Y Ch-g EmE;j)).
a<f a<f

Now, from (3.19) and (3.20) we obtain

(3.24) Ty =h, (r< UJ@®En Eg)) +F<E\ U (EmE:;)),r< U @&En E{;))) <

a<f a<f a<fp

< HF<E\ U (EmEj;))Hp <z

a<f
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Since the sets (E N E"), are pairwise disjoint and C" € D(T', E",27"), we
have:

(325) Th=h, Y T(ENEL),Y @(ENEL)-CI| <
a<p a<f
<> h@(ENEL),@(ENE])-Cl) <> 27"y (ENE}) =
a<f a<f

=2y | JENED | <27 u(E) <
a<f

Y

=~ ™

for n suitable large.
From (3.23), (3.24) and (3.25) it results:

hp(I‘(E),/ Fdp) <e, Ve>0,
E

which implies h,(T'(E), [, Fdp) = 0,¥p € Q. So, T'(E) = /ngo for every
E

EcA
O
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