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Multivalued version of Radon-Nikodym theorem

ANCA CROITORU

ABSTRACT. We defined in [7] a set-valued integral for multifunctions with respect to a multi-
measure, where both the multifunctions and the multimeasure take values in Pkc(X), the family of
nonempty compact convex subsets of a locally convex algebra X. But the construction of the integral
and all the results remain valid if the multifunctions and the multimeasure take values in Pk(X), the
family of nonempty compact subsets of X.

In this paper we establish a Radon-Nikodym theorem (for the integral described in [7], but using
the family Pk(X) instead of Pkc(X)) which bases on a construction of Maynard type [14], using the
notion of exhaustion.

1. TERMINOLOGY AND NOTATIONS

Let S be a nonempty set, A an algebra of subsets of S. Let X be a Hausdorff
locally convex vector space and let Q be a filtering family of seminorms which de-
fines the topology of X . We consider (x, y) �→ xy having the following properties
for every x, y, z ∈ X , α, β ∈ R, p ∈ Q:

(i) x(yz) = (xy)z,
(ii) xy = yx,
(iii) x(y + z) = xy + xz,
(iv) (αx)(βy) = (αβ)(xy),
(v) p(x, y) ≤ p(x)p(y).

Examples 1.1.
(a) X = {f : T → R|f is bounded} with (fg)(t) = f(t)g(t), ∀ t ∈ T , where T is

a topological space. Let K = {K ⊂ T |K is compact} and Q = {pK |K ∈ K} where
pK(f) = sup

t∈K
|f(t)|, ∀ f ∈ X .

(b) X = {f : T → R} with (fg)(t) = f(t)g(t), ∀ t ∈ T , where T is a nonempty
set and Q = {pt | t ∈ T }, pt(f) = |f(t)|, ∀ f ∈ X .

We denote by Pk(X) = Pk the family of all nonempty compact subsets of X .
If A, B ∈ Pk, α ∈ R,

A + B = {x + y |x ∈ A, y ∈ B},
αA = {αx |x ∈ A},

A · B = {xy |x ∈ A, y ∈ B}.
For every p ∈ Q, A, B ∈ Pk, let ep(A, B) = sup

x∈A
inf
y∈B

p(x − y) and hp(A, B) =

max{ep(A, B), ep(B, A)} - the Hausdorff - Pompeiu semimetric defined by p on
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Pk. We define ‖A‖p = hp(A, O) = sup
x∈A

p(x), ∀A ∈ Pk, where O = {0}. Then

{hp}p∈Q is a filtering family of semimetrics on Pk which defines a Hausdorff
topology on Pk.

Let Y ⊂ Pk satisfying the conditions:

(y1) Y is complete with respect to {hp}p∈Q,
(y2) O ∈ Y ,
(y3) ∀A, B ∈ Y ⇒ A + B, A · B ∈ Y ,
(y4) A · (B + C) = A · B + A · C for every A, B, C ∈ Y .

Examples 1.2.
(a) Y = {{x}|x ∈ X} for X like in (a) and (b) of examples 1.1.
(b) Y = {[a, b] | a, b ∈ R, 0 ≤ a ≤ b} for X = R.
(c) For X like in example 1.1-b), let Y = {[f, g]|f, g ∈ X, 0 ≤ f ≤ g}, where

[f, g] = {u ∈ X |f ≤ u ≤ g}, ∀ f, g ∈ X .

Definition 1.1. ϕ : A → Pk is said to be a multimeasure if:
(i) ϕ(∅) = O,
(ii) ϕ(A ∪ B) = ϕ(A) + ϕ(B), ∀A, B ∈ A, A ∩ B = ∅.

Definition 1.2. Let ϕ : A → Pk. For every p ∈ Q, the p-variation of ϕ is the
non-negative (possibly infinite) set function vp(ϕ, ·) defined on A as follows:

vp(ϕ, A) = sup

{
n∑

i=1

‖ϕ(Ei)‖p; (Ei)n
i=1 ⊂ A, Ei ∩ Ej = ∅ for i 
= j,

n⋃
i=1

Ei = A, n ∈ N
∗
}

, ∀A ∈ A.

We denote vp(ϕ, ·) by νp if there is no ambiguity.

Remark 1.1. If ϕ : A → Pk is a multimeasure, then νp is finitely additive for every
p ∈ Q.

Throughout this paper, ϕ : A → Y will be a multimeasure and suppose there
is E ∈ A such that ϕ(E) 
= O. We shall assume that νp(S) < +∞ and (S,A, νp) is
complete for every p ∈ Q.

2. SET-VALUED INTEGRAL [7]

Definition 2.3. A multifunction F : S → Y is said to be a simple multifunction

if F =
n∑

i=1

Ci · XAi , where Ci ∈ Y , Ai ∈ A, i ∈ {1, 2, ..., n}, Ai ∩ Aj = ∅ for i 
= j,

n⋃
i=1

Ai = S and XAi is the characteristic function of Ai.

The integral of F over E ∈ A is:∫
E

Fdϕ =
n∑

i=1

Ci · ϕ(Ai ∩ E) ∈ Y.
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Definition 2.4. F : S → Y is said to be ϕ-totally measurable if there is a sequence
(Fn)n of simple multifunctions Fn : S → Y satisfying the following condition for
every p ∈ Q:

(i) hp(Fn, F )
νp−→ 0 (cf. Dunford - Schwartz [10] - III.2.6).

Remarks 2.1.
(a) Every simple multifunction is ϕ-totally measurable.
(b) If F : S → Y is ϕ-totally measurable and (Fn)n is a sequence of simple

multifunctions Fn : S → Y such that

hp(Fn, F )
νp−→ 0, ∀ p ∈ Q,

then for every n ∈ N and p ∈ Q, hp(Fn, F ) and ‖F‖p are νp-measurable (cf.
Dunford-Schwartz [10] - III.2.10).

Theorem 2.1. Let F, G : S → Y be ϕ-totally measurable multifunctions and let α ∈ R.
Then it follows:

(i) hp(F, G) is νp-measurable, ∀ p ∈ Q;
(ii) αF and F + G are ϕ-totally measurable.

Definition 2.5. Let F : S → Y be a ϕ-totally measurable multifunction. F is said
to be ϕ-integrable (over S) if there is a sequence (Fn)n of simple multifunctions
Fn : S → Y such that, for every p ∈ Q:

(i) hp(Fn, F )
νp−→ 0,

(ii) lim
n,m→∞

∫
S

hp(Fn, Fm)dνp = 0.

The sequence (Fn)n is said to be a defining sequence for F . The integral of F

over E ∈ A is
∫

E

Fdϕ = lim
n→∞

(∫
E

Fndϕ

)
∈ Y .

Particularly, every simple multifunction is ϕ-integrable.

Theorem 2.2. Let F, G : S → Y be ϕ-integrable multifunctions, α ∈ R and Γ(E) =∫
E

Fdϕ, ∀E ∈ A. Then we have:

(i) hp(
∫

E
Fdϕ,

∫
E

Gdϕ) ≤ ∫
E

hp(F, G)dνp, ∀E ∈ A, p ∈ Q;
(ii) ‖ ∫

E
Fdϕ‖p ≤ ∫

E
‖F‖pdνp, ∀E ∈ A, p ∈ Q;

(iii) Γ is a multimeasure;
(iv) vp(Γ, E) =

∫
E
‖F‖pdνp, ∀E ∈ A, p ∈ Q;

(v) Γ � νp, ∀ p ∈ Q (i.e. ∀ p ∈ Q, ∀ ε > 0, ∃ δ(p, ε) = δ > 0 such that
vp(Γ, E) < ε for all E ∈ A with νp(E) < δ);

(vi) αF is ϕ-integrable and
∫

E(αF )dϕ = α
∫

E Fdϕ, ∀E ∈ A;
(vii) F + G is ϕ-integrable and

∫
E

(F + G)dϕ =
∫

E
Fdϕ +

∫
E

Gdϕ, ∀E ∈ A.

Definition 2.6. F : S → Y is said to be strong ϕ-integrable if there is a sequence
(Fn)n of simple multifunctions such that uniformly in p ∈ Q:

(i) hp(Fn, F )
νp−→ 0,

(ii) lim
n,m→∞

∫
S

hp(Fn, Fm)dνp = 0.
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Definition 2.7. A finite or countable family of pairwise disjoint sets (Ei)i ⊂ A
will be called an uniformly exhaustion of S if νp(Ei) > 0 for every i ∈ I, p ∈ Q

and for each ε > 0, there is n0 ∈ N such that νp

(
S \

n0⋃
i=1

Ei

)
< ε, ∀p ∈ Q.

Theorem 2.3. Let (En)n∈N∗ ⊂ A an uniformly exhaustion of S such that

S =
∞⋃

n=1

En.

Let F : S → Y be defined by F (s) = Cn ∈ Y for every s ∈ En, n ∈ N
∗ (we denote

F =
∞∑

n=1

Cn · XEn ).

(i) If for every p ∈ Q, there is rp > 0 such that ‖Cn‖p ≤ rp for every n ∈ N
∗, then F

is ϕ−integrable.
(ii) If there exists r > 0 such that ‖Cn‖p ≤ r for every n ∈ N

∗ and p ∈ Q, then F is
strong ϕ−integrable.

Theorem 2.4. (Vitali)
Let F : S → Y be a multifunction, let (Fn)n be a sequence of strong ϕ−integrable

multifunctions Fn : S → Y and Γn(E) =
∫

E

Fndϕ, E ∈ A, n ∈ N such that, for every

p ∈ Q we have:
(i) hp(Fn, F )

νp−→ 0,
(ii) Γn << νp uniformly in n ∈ N.

Then F is ϕ−integrable and
∫

E

Fdϕ = lim
n→∞

∫
E

Fndϕ, ∀E ∈ A.

Theorem 2.5. Let (Fn)n be a sequence of strong ϕ−integrable multifunctions that con-
verges to F uniformly with respect to s ∈ S and p ∈ Q. Then F is strong ϕ−integrable

and
∫

E

Fdϕ = lim
n→∞

∫
E

Fndϕ, ∀E ∈ A.

Remarks 2.2.
(a) If X = IR, Y = {{x}|x ∈ IR}, F = {f} (f is a function), ϕ = {μ} (μ is finitely

additive) and F is ϕ−integrable, then
∫

E

Fdϕ =
{

(D)
∫

E

fdμ

}
, E ∈ A, where

(D)
∫

E

fdμ is the Dunford integral [10].

(b) If X = IR, Y = {{x}|x ∈ IR}, F = {f} (f is a function) and F is ϕ−integrable,

then f is Brooks - integrable with respect to ϕ and
∫

E

Fdϕ = (B)
∫

E

fdϕ, E ∈ A,

where (B)
∫

E

fdϕ is the Brooks integral [3].

(c) If X = IR and ϕ = {μ} (μ is finitely additive), then we get the integral
defined by Martellotti - Sambucini [13] for F with respect to μ.

(d) If X is a real Banach algebra, then we obtain the integral defined in [5].



A multivalued version of Radon-Nikodym theorem 31

3. A MULTIVALUED VERSION OF RADON - NIKODYM THEOREM

Definition 3.8. Let T 
= ∅. A multifunction U : T → Pk is called uniformly
bounded if there exists r > 0 such that ‖U(t)‖p ≤ r, for every t ∈ T, p ∈ Q.

Definition 3.9. For a multifunction Γ : A → Y , p ∈ Q, ε > 0 and E ∈ A, let:
Dp(Γ, E, ε) = {C ∈ Y | hp(Γ(B), νp(B)C) ≤ ενp(B), ∀B ∈ A, B ⊂ E},
D̃p(Γ, E, ε) = {C ∈ Y | hp(Γ(B), ϕ(B) · C) ≤ ενp(B), ∀B ∈ A, B ⊂ E},
D(Γ, E, ε) =

⋂
p∈Q

Dp(Γ, E, ε), D̃(Γ, E, ε) =
⋂

p∈Q

D̃p(Γ, E, ε).

Definition 3.10.
(a) A set property P is said to be uniformly exhaustive on E ∈ A if there exists

an uniformly exhaustion (Ei)i of E, such that every Ei has P .
(b) A set property P is called uniformly null difference (shortly, UND) if when-

ever A, B ∈ A with νp(A) > 0 and νp(B) > 0 for every p ∈ Q, from νp(AΔB) =
0, ∀p ∈ Q, it follows that either A and B both have P or neither does.

Theorem 3.6. Let Γ : A → Y be an uniformly bounded multimeasure such that
Γ � νp, uniformly in p ∈ Q. Then, for every γ > 0, the properties:

(i) D(Γ, E, γ) 
= ∅,
(ii) D̃(Γ, E, γ) 
= ∅,
(iii) D(Γ, E, γ) ∩ D̃(Γ, E, γ) 
= ∅

are uniformly null difference.

Proof. (i) Let γ > 0. Since Γ � νp uniformly in p ∈ Q, we have: ∀ ε > 0, ∃ δ(ε) =
δ > 0 such that ∀E ∈ A with νp(E) < δ, it follows

(3.1) ‖Γ(E)‖p ≤ vp(Γ, E) < ε, ∀ p ∈ Q.

Let A, B ∈ A with νp(A) > 0, νp(B) > 0, νp(A�B) = 0, ∀ p ∈ Q.
We shall prove that D(Γ, A, γ) = D(Γ, B, γ).
First, we show that D(Γ, A, γ) ⊂ D(Γ, B, γ). Let C ∈ D(Γ, A, γ) and let

H ∈ A, H ⊂ B. Since B\A ⊂ A�B, we have 0 ≤ νp(B\A) ≤ νp(A�B) = 0,
∀ p ∈ Q, so

(3.2) νp(B\A) = 0, ∀ p ∈ Q.

From (3.2) it results:

νp(H) = νp(H ∩ A) + νp(H\A) ≤ νp(H ∩ A) + νp(B\A) = νp(H ∩ A) ≤ νp(H),

which implies

(3.3) νp(H) = νp(H ∩ A), ∀ p ∈ Q.

Since
H ⊂ B ⇒ H\A ⊂ A�B ⇒ νp(H\A) ≤ νp(A�B) = 0 < δ,

from (3.1) we have ‖Γ(H\A)‖p < ε. Since arbitrary of ε > 0, we obtain
‖Γ(H\A)‖p = 0, ∀p ∈ Q. So Γ(H\A) = O, which implies

(3.4) Γ(H) = Γ((H ∩ A) ∪ (H\A)) = Γ(H ∩ A) + Γ(H\A) = Γ(H ∩ A).

Since C ∈ D(Γ, A, γ) and H ∩ A ∈ A, H ∩ A ⊂ A, it follows

(3.5) hp(Γ(H ∩ A), νp(H ∩ A)C) ≤ γνp(H ∩ A).
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Now, from (3.3), (3.4) and (3.5), it results:

hp(Γ(H), νp(H)C) = hp(Γ(H ∩ A), νp(H ∩ A)C) ≤ γνp(H ∩ A) = γνp(H),

which proves that C ∈ D(Γ, B, γ).
The inverse inclusion, D(Γ, B, γ) ⊂ D(Γ, A, γ), results analogously. Thus,

D(Γ, A, γ) = D(Γ, B, γ) and the assertion (i) is proved.

(ii) We shall prove that D̃(Γ, A, γ) = D̃(Γ, B, γ), by double inclusion.
First, let C ∈ D̃(Γ, A, γ), H ∈ A, H ⊂ B. Like in the proof of (i), we have (3.3)

and (3.4). By the relations:

H ⊂ B ⇒ H\A ⊂ A�B ⇒ 0 ≤ ‖ϕ(H\A)‖p ≤ νp(H\A) ≤ νp(A�B) = 0,

it follows that ‖ϕ(H\A)‖p = 0, ∀p ∈ Q, which implies

(3.6) ϕ(H\A) = O.

From (3.6) it results

(3.7) ϕ(H) = ϕ((H ∩ A) ∪ (H\A)) = ϕ(H ∩ A) + ϕ(H\A) = ϕ(H ∩ A).

Since C ∈ D̃(Γ, A, γ) and H ∩ A ∈ A, H ∩ A ⊂ A, we have

(3.8) hp(Γ(H ∩ A), ϕ(H ∩ A) · C) ≤ γνp(H ∩ A).

Finally, from (3.3), (3.4), (3.7) and (3.8), we obtain:

hp(Γ(H), ϕ(H) · C) = hp(Γ(H ∩ A), ϕ(H ∩ A) · C) ≤ γνp(H ∩ A) = γνp(H),

that is C ∈ D̃(Γ, B, γ). The inverse inclusion, D̃(Γ, B, γ) ⊂ D̃(Γ, A, γ), follows in
the same way. So, D̃(Γ, A, γ) = D̃(Γ, B, γ) and the statement is proved.

(iii) It results immediately from (i) and (ii). �

Theorem 3.7. Let P be an UND property such that P is uniformly exhaustive on S.
Then there exists (Ei)i an uniformly exhaustion of S, such that every Ei has P and
S =

⋃
i

Ei.

Proof. Since P is uniformly exhaustive on S, there exists (Ei)i∈I an uniformly
exhaustion of S, such that every Ei has P. Thus, we have

(3.9) ∀ ε > 0, ∃n0(ε) = n0 ∈ N
∗ such that νp(S\

n0⋃
i=1

Ei) < ε, ∀ p ∈ Q.

Let E0 = S\ ⋃
i∈I

Ei. By the inclusion E0 ⊂ S\
n0⋃
i=1

Ei and from (3.9), it results

that νp(E0) < ε, ∀ ε > 0. So, νp(E0) = 0, ∀ p ∈ Q, which implies that E0 ∈ A.
Let (Bi)i∈I be the family of sets defined by: B1 = E0 ∪ E1 ∈ A, Bi = Ei ∈ A

for i ≥ 2. We have νp(B1) ≥ νp(E1) > 0 and νp(Bi) = νp(Ei) > 0, ∀ i ≥ 2, p ∈ Q.
Evidently, S =

⋃
i∈I

Bi.

Let ε > 0. For n0 of (3.9) we have
n0⋃
i=1

Bi = E0 ∪
n0⋃
i=1

Ei.
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By the inclusion S\
n0⋃
i=1

Bi ⊂ S\
n0⋃
i=1

Ei and from (3.9), it follows

νp

(
S\

n0⋃
i=1

Bi

)
≤ νp

(
S\

n0⋃
i=1

Ei

)
< ε, ∀ p ∈ Q

which assures the fact that (Bi)i∈I is an uniformly exhaustion of S. Now, for
every i ≥ 2, Bi = Ei has P . So, we have only to prove that B1 has P. By the
relations

B1�E1 = (E0 ∪ E1)�E1 = E0\E1 ⊂ E0 ⇒
⇒ 0 ≤ νp(B1�E1) ≤ νp(E0) = 0, ∀p ∈ Q,

it follows that νp(B1�E1) = 0, ∀p ∈ Q. Since P is UND and E1 has P , we obtain
that B1 has P . �

Theorem 3.8. Let F : S → Y be an uniformly bounded ϕ-integrable multifunction
which is the limit, uniformly with respect to s ∈ S and p ∈ Q, of strong ϕ-integrable

multifunctions Fn : S → Y , n ∈ N and let Γ(E) =
∫

E

Fdϕ, ∀E ∈ A. Then we have:

(i) there exists r > 0 such that

1
νp(E)

‖Γ(E)‖p ≤ r, ∀E ∈ A with νp(E) > 0, ∀p ∈ Q;

(ii) for every p ∈ Q, ε > 0 and E ∈ A with νp(E) > 0, there exists B ∈ A, B ⊂ E

with νp(B) > 0 such that D̃p(Γ, B, ε) 
= ∅.
Proof. (i) Since F is uniformly bounded, we have:

(3.10) ∃r > 0 such that ‖F (s)‖p ≤ r, ∀ s ∈ S, p ∈ Q.

From (3.10) and Theorem 2.2 - (ii), it follows for every E ∈ A with νp(E) > 0,
∀ p ∈ Q :

1
νp(E)

‖Γ(E)‖p =
1

νp(E)

∥∥∥∥∫
E

Fdϕ

∥∥∥∥
p

≤ 1
νp(E)

∫
E

‖F‖pdνp ≤

≤ 1
νp(E)

∫
E

rdνp =
1

νp(E)
· rνp(E) = r.

This proves (i).
(ii) Let p ∈ Q and ε > 0. Since lim

n→∞Fn(s) = F (s) uniformly in s ∈ S and p ∈ Q,

there exists n0(ε) = n0 ∈ N such that for every natural n ≥ n0,

(3.11) hp(Fn(s), F (s)) < ε, ∀s ∈ S, p ∈ Q.

Let Fn0 =
k∑

i=1

Ci · XAi and let E ∈ A with νp(E) > 0. Thus,

0 < νp(E) = νp(E ∩ S) = νp

(
E ∩

k⋃
i=1

Ai

)
=

k∑
i=1

νp(E ∩ Ai)
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and so, there is j0 ∈ {1, 2, . . . , k} such that νp(E ∩ Aj0) >
1
2k

νp(E) > 0. Let

B = E ∩ Aj0 . So B ∈ A and νp(B) > 0. Let H ∈ A, H ⊂ B. From Theorem 2.2-(i)
and (3.11) we have:

hp(Γ(H), ϕ(H) · Cj0) = hp

(∫
H

Fdϕ,

∫
H

Fn0dϕ

)
≤
∫

H

hp(F, Fn0)dνp ≤

≤
∫

H

εdνp = ενp(H),

which shows that Cj ∈ D̃p(Γ, B, ε). �
Theorem 3.9. (Radon-Nikodym)

Let Γ : A → Y be an uniformly bounded multimeasure such that:
(i) Γ � νp, uniformly in p ∈ Q,

(ii) ∃r > 0 such that
1

νp(E)
‖Γ(E)‖p ≤ r, ∀E ∈ A with νp(E) > 0 for each p ∈ Q,

(iii) for every ε > 0, the set property D(Γ, E, ε) ∩ D̃(Γ, E, ε) 
= ∅ is uniformly
exhaustive on every E ∈ A with νp(E) > 0 for each p ∈ Q.

Then there exists a strong ϕ-integrable uniformly bounded multifunction
F : S → Y such that Γ(E) =

∫
E Fdϕ, ∀E ∈ A.

Proof. Since (iii), Theorem 3.6 - (iii) and Theorem 3.7, there exists (Ei)i∈I an uni-
formly exhaustion of each E ∈ A with νp(E) > 0 for every p ∈ Q, such that
E =

⋃
i∈I

Ei and D(Γ, Ei, ε)∩ D̃(Γ, Ei, ε) 
= ∅, ∀i ∈ I. Following the same way as in

[12], we can obtain a sequence (En
α)n, α ∈ N

n, of uniformly exhaustions of S such
that:

(3.12) D(Γ, En
α , 2−n) ∩ D̃(Γ, En

α, 2−n) 
= ∅, ∀α ∈ N
n, n ∈ N,

En
α =

⋃
i

En+1
α,i , where (En+1

α,i )i(3.13)

is an uniformly exhaustion of En
α, ∀α ∈ N

n, n ∈ N,

for every n ∈ N, we have S =
⋃
α

En
α and (En

α)α(3.14)

is an uniformly exhaustion of S.

Let Fn =
∑
α

Cn
α · XEn

α
, where Cn

α ∈ D(Γ, En
α , 2−n) ∩ D̃(Γ, En

α, 2−n), ∀α ∈ N
n,

n ∈ N.
Since Cn

α ∈ D(Γ, En
α, 2−n), it results:

(3.15) hp(Γ(B), νp(B)Cn
α) ≤ 1

2n
νp(B), ∀B ∈ A, B ⊂ En

α, p ∈ Q.

From (3.15) and (ii), it follows:

‖Cn
α‖p = hp(0, Cn

α) =
1

νp(En
α)

hp(0, νp(En
α)Cn

α) ≤

≤ 1
νp(En

α)

[
‖Γ(En

α)‖p + hp(Γ(En
α), νp(En

α)Cn
α)
]
≤ r + 2−n ≤ r + 1.
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So,

(3.16) ‖Cn
α‖p ≤ r + 1, ∀α ∈ N

n, n ∈ N, p ∈ Q

and by Theorem 2.3 - (ii), Fn is strong ϕ-integrable for every n ∈ N. Let m, n ∈ N,
m < n. Following the same way as in [12], we can write Fn =

∑
(α,β)

Cm
α,β · XEm

α,β

and Fn =
∑

(α,β)

Cn
α,β · XEn

α,β
, ∀α ∈ N

m, β ∈ N
n−m. Since (En

α,β)β is an uniformly

exhaustion of En
α , we have:

(3.17) Cm
α , Cn

α,β ∈ D(Γ, Em
α,β , 2−m).

Thus, from (3.9) it results:

hp(Cm
α , Cn

α,β) ≤ 1
νp(En

α)

[
hp(Γ(En

α), νp(En
α)Cm

α )+hp(Γ(En
α), νp(En

α)Cn
α,β)

]
≤

≤ 2−m + 2−m = 21−m and

hp(Fm, Fn) = hp

( ∑
(α,β)

Cm
α,β · XEm

α,β
,
∑
(α,β)

Cn
α,β · XEn

α,β

)
≤

≤
∑
(α,β)

hp(Cm
α,β , Cn

α,β) · XEm
α,β

≤ 21−m.

So, for every ε > 0, there exists n0(ε) = n0 ∈ N such that

hp(Fm(s), Fn(s)) ≤ 21−m < ε, ∀m, n ≥ n0, s ∈ S, p ∈ Q,

which shows that the sequence (Fn(s))n is Cauchy in Y , uniformly in s ∈ S and
p ∈ Q. Since Y is complete, there exists the limit F (s)= lim

n→∞Fn(s), ∀ s∈S.

From (3.16) and the definition of F it results:

‖F (s)‖p = hp(F (s), 0) ≤ hp(F (s), Fn(s)) + hp(Fn(s), 0) ≤ r + 2, ∀s ∈ S, p ∈ Q,

thus F is uniformly bounded. Since Theorem 2.5, F is strong ϕ-integrable and

(3.18) lim
n→∞ hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
= 0, ∀p ∈ Q, E ∈ A.

Now we prove that hp(Γ(E),
∫

E
Fdϕ) = 0, ∀ p ∈ Q, E ∈ A. Let E ∈ A, p ∈ Q,

ε > 0. From (i), there is δ

(
ε

4

)
= δ > 0, such that for every A ∈ A with νp(A) < δ,

we have

(3.19) ‖Γ(A)‖p ≤ vp(Γ, A) <
ε

4
.

Since the family (E ∩En
α)α∈Nn is an uniformly exhaustion of E, for δ > 0, there is

q ∈ N such that

(3.20) νp

(
E\

⋃
α∈N

n, α<(q, . . . , q)︸ ︷︷ ︸
n

(E ∩ En
α)
)

< δ.
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From (3.18), there is n1 ∈ N such that for each n ≥ n1,

(3.21) hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
<

ε

4
.

Because Fn =
∑
α

Cn
α · XEn

α
, we obtain∫

E

Fndϕ = lim
l→∞

∑
α<(l, . . . , l︸ ︷︷ ︸

n

)

Cn
α · ϕ(E ∩ En

α)

and thus, for n ≥ n1, we have:

(3.22) hp

( ∑
α<(q, . . . , q︸ ︷︷ ︸

n

)

Cn
α · ϕ(E ∩ En

α),
∫

E

Fndϕ

)
<

ε

4
.

Let us denote β = (q, . . . , q︸ ︷︷ ︸
n

) and let n ≥ n1. From (3.22) and (3.21) it follows:

hp

(
Γ(E),

∫
E

Fdϕ

)
≤ hp

⎛⎝Γ(E), Γ
( ⋃

α<β

(E ∩ En
α)
)⎞⎠+(3.23)

+ hp

⎛⎝Γ
( ⋃

α<β

(E ∩ En
α)
)

,
∑
α<β

Cn
α · ϕ(E ∩ En

α)

⎞⎠+

+ hp

(∑
α<β

Cn
α · ϕ(E ∩ En

α),
∫

E

Fndϕ

)
+ hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
=

= T1 + T2 + hp

(∑
α<β

Cn
α · ϕ(E ∩ En

α),
∫

E

Fndϕ

)
+

+ hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
< T1 + T2 +

ε

4
+

ε

4
,

where we denoted T1 = hp

(
Γ(E), Γ(

⋃
α<β

(E ∩ En
α))
)

and

T2 = hp

(
Γ(
⋃

α<β

(E ∩ En
α)),

∑
α<β

Cn
α · ϕ(E ∩ En

α)
)

.

Now, from (3.19) and (3.20) we obtain

T1 =hp

⎛⎝Γ
( ⋃

α<β

(E ∩ En
α)
)

+Γ
(

E\
⋃

α<β

(E ∩ En
α)
)

, Γ
(⋃

α<β

(E ∩ En
α)
)⎞⎠≤(3.24)

≤
∥∥∥∥Γ(E\

⋃
α<β

(E ∩ En
α)
)∥∥∥∥

p

<
ε

4
.
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Since the sets (E ∩ En
α)α are pairwise disjoint and Cn

α ∈ D̃(Γ, En
α, 2−n), we

have:

T2 = hp

⎛⎝∑
α<β

Γ(E ∩ En
α),
∑
α<β

ϕ(E ∩ En
α) · Cn

α

⎞⎠ ≤(3.25)

≤
∑
α<β

hp(Γ(E ∩ En
α), ϕ(E ∩ En

α) · Cn
α) ≤

∑
α<β

2−n · νp(E ∩ En
α) =

= 2−n · νp

⎛⎝⋃
α<β

(E ∩ En
α)

⎞⎠ ≤ 2−n · νp(E) <
ε

4
,

for n suitable large.
From (3.23), (3.24) and (3.25) it results:

hp(Γ(E),
∫

E

Fdϕ) < ε, ∀ ε > 0,

which implies hp(Γ(E),
∫

E
Fdϕ) = 0, ∀p ∈ Q. So, Γ(E) =

∫
E

Fdϕ for every

E ∈ A.
�
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(1998), 395–402
[7] Croitoru, A., An integral for multifunctions with respect to a multimeasure, Anal. Şt. Univ. ”Al. I.
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Mathématiques, Montpellier, 1975



38 Anca Croitoru

[12] Hagood, J. W., A Radon - Nikodym theorem and Lp completeness for finitely additive vector measure, J.
Math. Anal. Appl., 113 (1986), 266-279

[13] Martellotti, A., Sambucini, A. R., A Radon - Nikodym theorem for multimeasures, Atti Sem. Mat. Fis.
Univ. Modena, 42 (1994), 579-599

[14] Maynard, H. B., A Radon - Nikodym theorem for finitely additive bounded measures, Pac. Math., 83
(1979), 401-413

[15] Precupanu, A. M., A Brooks type integral with respect to a set-valued measure, J. Math. Sci. Univ.
Tokyo, No. 3 3, 1996, 533-546

”AL. I. CUZA” UNIVERSITY OF IAŞI
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