A note on partially ordered topological spaces and a special type of lower semicontinuous function

S. GANGULY and S. JANA

ABSTRACT. θ-closed partial order in a topological space has been studied in details. θ^*-lower semicontinuity of a function to a hyperspace has been introduced and such functions are compared to the multifunctions. Lastly the θ^*-lower semicontinuity of some special types of functions is studied.

1. INTRODUCTION

In [1] Ganguly and Bandyopadhyay introduced the concept of θ-closed partial order in a topological space. In the first section of the paper we have tried to examine this special type of order in details. In the next section the concept of θ^*-lower semicontinuous function has been introduced from a topological space X to the hyperspace of a topological space Y along with Vietoris topology and its usual order relation; such functions have been compared to their analogues in the collection of multifunctions. In the last section we use θ-closed partial order of a topological space X to consider the θ^*-lower semicontinuity of some special type of functions on X.

2. PARTIALLY ORDERED TOPOLOGICAL SPACE

Definition 2.1. [2] Let X be a topological space and ‘\leq’ be a partial order in it. For each subset $A \subseteq X$ let,
\[\uparrow A = \{ x \in X : a \leq x, \text{ for some } a \in A \} \] and
\[\downarrow A = \{ x \in X : x \leq a, \text{ for some } a \in A \}. \]

The sets $\uparrow A$ and $\downarrow A$ are called the increasing hull of A and decreasing hull of A respectively.

It is easy to verify that, for any $A, B \subseteq X$,
(i) $A \subseteq \uparrow A, A \subseteq \downarrow A$;
(ii) $A \subseteq B \Rightarrow \uparrow A \subseteq \uparrow B$ and $\downarrow A \subseteq \downarrow B$;
(iii) $\uparrow (A \cup B) = \uparrow A \cup \uparrow B, \downarrow (A \cup B) = \downarrow A \cup \downarrow B$;
(iv) $\uparrow (A \cap B) \subseteq \uparrow A \cap \uparrow B, \downarrow (A \cap B) \subseteq \downarrow A \cap \downarrow B$.

Definition 2.2. [1] A partial order ‘\leq’ on a topological space X is a θ-closed order if its graph $\{(x, y) \in X \times X : x \leq y \}$ is a θ-closed subset of $X \times X$.

Received: 01.06.2004; In revised form: 12.04.2005

2000 Mathematics Subject Classification: 54B20, 54F05.

Key words and phrases: θ-closed partial order, increasing hull, decreasing hull, Vietoris topology, θ^*-lower semicontinuity, multifunctions.
Definition 2.3. A partial order ‘\leq’ on a topological space X is an almost regular order iff for every regularly closed set $A \subseteq X$ and $x \in X$ with $a \nless x, \forall a \in A, \exists$ neighbourhoods (nbds. in short) V and W of A and x respectively in X such that $\uparrow V \cap \downarrow W = \Phi$.

Theorem 2.4. The partial order ‘\leq’ on a topological space X is a θ-closed order iff for every $x, y \in X$ with $x \nless y$, there exists nbds. U, V of x, y respectively in X such that $\uparrow (U) \cap \downarrow (V) = \Phi$.

Proof. Let the partial order ‘\leq’ on X be θ-closed and $x, y \in X$ with $x \nless y$. Then (x, y) does not belong to the graph G (say) of ‘\leq’. Since G is θ-closed, \exists nbds. U of x and V of y in X such that $\overline{U \times V} \cap G = \Phi$ i.e. $\overline{U \times V} \cap G = \Phi$, which means that if $u \in \overline{U}$ and $v \in \overline{V}$ then $u \nless v$. We claim that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. If not, $\exists z \in \downarrow (\overline{U}) \cap \downarrow (\overline{V})$. So, $\exists a \in \overline{U}, b \in \overline{V}$ such that $a \leq z$ and $z \leq b$. Then by transitivity of ‘\leq’, $a \leq b$ which implies $(a, b) \in G$ – a contradiction.

Conversely, let the condition holds. Let $(x, y) \in X \times X \setminus G$. Then $x \nless y$. So by hypothesis, \exists nbds. U of x and V of y in X such that $\uparrow (U) \cap \downarrow (V) = \Phi$. We claim that $\overline{U \times V} \cap G = \Phi$. If not, $\exists (a, b) \in \overline{U \times V} \cap G \Rightarrow a \in U, b \in V$ and $a \leq b$. Thus $b \in \downarrow (\overline{U})$. Also $b \in \downarrow (\overline{V})$ [since $\overline{U} \subseteq \downarrow (\overline{V})$] – contradicts that $\uparrow (\overline{U}) \cap \downarrow (\overline{V}) = \Phi$. This proves that (x, y) is not a θ-contact point [6] of G.

Consequently, G is θ-closed. $
hd$

Corollary 2.5. Let ‘\leq’ be a θ-closed order in a topological space X. Then $\uparrow (a)$ and $\downarrow (a)$ are θ-closed for each $a \in X$.

Proof. Let $a \in X$ and $b \in X \setminus \uparrow (a)$. Then $a \nless b$. Since ‘\leq’ is a θ-closed order, \exists nbds. U, V of a, b respectively in X such that $\uparrow (U) \cap \downarrow (V) = \Phi$, [by theorem 2.4]. Now $\overline{V} \cap \uparrow (a) \subseteq \uparrow (U) \cap \downarrow (V) = \Phi$. Consequently, b cannot be a θ-contact point of $\uparrow (a)$. So $\uparrow (a)$ is θ-closed.

Similarly $\downarrow (a)$ is θ-closed. $
hd$

Corollary 2.6. Every topological space X, equipped with a θ-closed order ‘\leq’ is a Urysohn space.

Proof. Let $a, b \in X$ with $a \neq b$. Then either $a \nless b$ or $b \nless a$. Let us assume that $a \nless b$.

Since ‘\leq’ is a θ-closed order, \exists nbds. U, V of a, b respectively in X such that $\uparrow (U) \cap \downarrow (V) = \Phi$, [by theorem 2.4]. Now $\overline{U} \cap \overline{V} \subseteq \uparrow (U) \cap \downarrow (V) = \Phi$. Therefore, b cannot be a θ-contact point of $\uparrow (a)$. So $\uparrow (a)$ is θ-closed.

Similarly $\downarrow (a)$ is θ-closed. $
hd$

Corollary 2.7. Let X be a topological space equipped with a θ-closed order ‘\leq’. Let $H \subseteq X$ be an H-set [6] in X. Then both $\uparrow H$ and $\downarrow H$ are θ-closed.

Proof. Let $a \in X \setminus \uparrow H$. Then $h \nless a, \forall h \in H$. Since ‘$\leq$’ is θ-closed, for each $h \in H, \exists$ open nbds. U_h, V_h of h and a respectively in X such that $\uparrow (U_h) \cap \downarrow (V_h) = \Phi$. [by theorem 2.4]. Now, $\{U_h : h \in H\}$ is an open cover of H. Since H is an H-set in X, \exists a finite subset $H_0 \subseteq H$ such that $\bigcup_{h \in H_0} \overline{U_h} \supseteq H$. Let $V = \bigcap_{h \in H_0} V_h$. Then V is an open nbd. of a in X. Now $\overline{V} \cap \uparrow H \subseteq \overline{V} \cap \uparrow (\bigcap_{h \in H_0} U_h) \subseteq (\bigcap_{h \in H_0} \overline{V_h}) \cap (\bigcup_{h \in H_0} \uparrow U_h) = \Phi$. [since $\uparrow (U_h) \cap \downarrow (V_h) = \Phi, \forall h \in H_0$] Thus, a is not a
Proposition 3.3. Let \(\mathbb{A} \) be a regular closed set and \(x \in X \) be such that \(y \not\leq x, \forall y \in A \). Then for each \(y \in A \), \(\exists \) open nbds. \(U_y \) and \(V_y \) of \(y \) and \(x \) respectively in \(X \) such that, \(\uparrow (U_y) \cap \uparrow (V_y) = \Phi \). [by theorem 2.4]. \(A \) being a regular closed set in an \(H \)-closed space \(X \), it is an \(H \)-closed subspace [7] and hence an \(H \)-set. Now \(\{U_y : y \in A\} \) is an open cover of \(A \) and \(A \) is an \(H \)-set. So \(\exists \) a finite subset \(A_0 \subseteq A \) such that \(\bigcup_{y \in A_0} U_y \supseteq A \). Let \(V = \bigcap_{y \in A_0} V_y \). Then \(V \) is an open nbhd. of \(x \) in \(X \). Now, \(\downarrow (V) \cap A \subseteq (\bigcup_{y \in A_0} \downarrow V_y) \cap (\bigcup_{y \in A_0} \uparrow V_y) = \Phi \). [since \(\uparrow (U_y) \cap \uparrow (V_y) = \Phi, \forall y \in A \) \(\Rightarrow A \subseteq \downarrow (V) \). Again \(\downarrow (V) \) is \(\theta \)-closed [by corollary 2.7] since, \(\overline{V} \) is an \(H \)-set [7]. So \(X \setminus \overline{V} \) is an open nbhd. of \(A \). We claim that, \(\uparrow (X \setminus \overline{V}) \cap \downarrow V = \Phi \). If not, \(\exists \ z \in X \setminus \overline{V} \cap \downarrow (X \setminus \overline{V}) \). So \(\exists \ w \in X \setminus \overline{V} \) such that \(w \leq z \Rightarrow w \in \overline{V} \) a contradiction. Therefore \(\uparrow (X \setminus \overline{V}) \cap \downarrow V = \Phi \). This completes the proof. \(\square \)

3. Functions into Hyperspaces

In this article we shall discuss about a hyperspace [2] and the functions into a hyperspace.

Let \(X \) be a topological space and \(2^X \) be the collection of all nonempty closed subsets of \(X \). There have been various endeavors to topologize \(2^X \). The most commonly used topology is the Vietoris topology [3]. This topology is constructed as follows:

For each subset \(S \subseteq X \) we denote, \(S^+ = \{ A \in 2^X : A \subseteq S \} \) and \(S^- = \{ A \in 2^X : A \cap S \neq \Phi \} \). The Vietoris topology on \(2^X \) is one generated by the subbase \(\{W^+ : W \text{ is open in } X\} \cup \{W^- : W \text{ is open in } X\} \). Now, the usual inclusion relation \(\subseteq \) induces a partial order on \(2^X \).

Since \(\bigvee V_k^+ \cap \bigvee V_k^- \cap \cdots \cap \bigvee V_n^+ = (V_1 \cap V_2 \cap \cdots \cap V_n)^+ \), a basic open set of the Vietoris topology is of the form, \(V_1^+ \cap \cdots \cap V_n^- \cap V_0^+ \), where \(V_0 \) is open in \(X \) for \(i = 0, 1, \ldots, n \). The space \(2^X \) with the Vietoris topology is usually known as a \(\text{`hyperspace'} \).

Proposition 3.1. \(\uparrow (V_1^+ \cap \cdots \cap V_n^-) = V_1^- \cap \cdots \cap V_n^- \).

Proof. \(A \in \{V_1^- \cap \cdots \cap V_n^-\} \Rightarrow \exists B \in V_1^+ \cap \cdots \cap V_n^- \) such that \(B \subseteq A \).
\(\Rightarrow A \cap V_i \neq \Phi, \forall i = 1, \ldots, n \) [since \(B \cap V_i \neq \Phi, \forall i = 1, \ldots, n \)] \(\Rightarrow A \in V_1^- \cap \cdots \cap V_n^- \). The reverse inclusion follows from definition 2.1. \(\square \)

Proposition 3.2. \(\downarrow (V_1^- \cap \cdots \cap V_n^-) = 2^X \)

Proof. \(A \in 2^X \). Since \(A \subseteq X \) and \(X \in (V_1^- \cap \cdots \cap V_n^-) \) so it follows that \(A \in \downarrow (V_1^- \cap \cdots \cap V_n^-) \). Thus \(2^X \subseteq \downarrow (V_1^- \cap \cdots \cap V_n^-) \). Reverse inclusion is obvious. \(\square \)

Proposition 3.3. If \(X \) be a \(T_1 \)-space and \(V_i \subseteq V_0 \), for \(i = 1, \ldots, n \) then \(\uparrow (V_1^- \cap \cdots \cap V_n^-) = V_1^- \cap \cdots \cap V_n^- \).
Proposition 3.4. Let $V_i \subseteq V$, $i = 1, \ldots, n$ [since $A \cap V_i \neq \emptyset$, $i = 1, \ldots, n$]. Now $\{x_1, \ldots, x_n\} \subseteq A \cap V_0$ [since $V_i \subseteq V_0$, $i = 1, \ldots, n$] and $\{x_1, \ldots, x_n\}$ is closed in X, since X is T_1. Therefore, $\{x_1, \ldots, x_n\} \in V^{-} \cap \cdots \cap V^{-} \cap V^{+}$. Consequently $A \in (V^{-} \cap \cdots \cap V^{-} \cap V^{+})$. Thus $V^{-} \cap \cdots \cap V^{-} \subseteq (V^{-} \cap \cdots \cap V^{-} \cap V^{+})$.

Conversely let $A \subseteq (V^{-} \cap \cdots \cap V^{-} \cap V^{+})$. Then $\exists B \in V^{-} \cap \cdots \cap V^{-} \cap V^{+}$ such that $B \subseteq A$. Therefore $B \cap V_i \neq \emptyset$, $i = 1, \ldots, n$. So $A \cap V_i \neq \emptyset$, $i = 1, \ldots, n$. Consequently $A \subseteq B \subseteq V^{-} \cap \cdots \cap V^{-} \cap V^{+}$. Therefore $\exists (V^{-} \cap \cdots \cap V^{-} \cap V^{+}) \subseteq V^{-} \cap \cdots \cap V^{-} \cap V^{+}$.

\[\square \]

Proposition 3.5. If X be a T_1-space and $V_i \subseteq V_0$, $i = 1, \ldots, n$ then $\exists (V^{-} \cap \cdots \cap V^{-} \cap V^{+}) = V^{+}$.

\[\square \]

Definition 3.5. A topological space X equipped with a θ-closed partial order '<' is said to be a θ-partially ordered space(θ-PO space in short) if \subseteq is θ-open for every θ-open set V of X.

Theorem 3.6. If X is a T_3-space then the space 2^X equipped with the Vietoris topology and the usual set-inclusion as the partial order, is a θ-PO space.

\[\square \]

Definition 3.7. A function $f : X \rightarrow Y$, Y being equipped with a partial order '<', is called θ-lower semicontinuous with respect to '<' at $x \in X$ if for every open nbd V of $f(x)$ in Y, \exists an open nbd U of x in X such that $f(U) \subseteq \subseteq V$.

\[\square \]
\(f \) is \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) iff it is \(\theta^* \)-lower semicontinuous at each point of \(X \).

Theorem 3.8. Let \(Y \) be a \(T_1 \)-space and \(2^Y \) have the Vietoris topology. Then a function \(\Phi : X \to 2^Y \) is \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) iff \(\Phi^{-1}(V^-) \) is \(\theta \)-open in \(X \) whenever \(V \) is an open subset of \(Y \).

Proof. Let \(\Phi \) be \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) and \(V \) be any open subset of \(Y \).

Let \(a \in \Phi^{-1}(V^-) \). Then \(\Phi(a) \in V^- \). Since \(\Phi \) is \(\theta^* \)-lower semicontinuous so \(\exists \) an open \(U \) of \(a \) in \(X \) such that \(\Phi(U) \subseteq \uparrow (V^-) = V^- \) [by proposition 3.1]

\[\Rightarrow a \in U \subseteq U \subseteq \Phi^{-1}(V^-). \]

This shows that \(\Phi^{-1}(V^-) \) is \(\theta \)-open.

Conversely, let the condition holds. Let \(a \in X \) and \(G \) be any open nbd. of \(\Phi(a) \) in \(2^Y \). Then \(\exists \) open sets \(V_0, V_1, \ldots, V_n \) in \(Y \) such that \(\Phi(a) \in V_1^{-} \cap \cdots \cap V_{n+} \cap V_0^- \subseteq G \).

We define, \(U = \Phi^{-1}(V_1^-) \cap \cdots \cap \Phi^{-1}(V_{n+}^-) \).

By hypothesis \(U \) is \(\theta \)-open [since finite intersection of \(\theta \)-open sets is again \(\theta \)-open] and \(a \in U \). So \(\exists \) an open \(nbd. W \) of \(a \) in \(X \) such that \(a \in W \subseteq U \subseteq U \Rightarrow \Phi(a) \in \Phi(W) \subseteq \Phi(U) \subseteq V_1^- \cap \cdots \cap V_{n+}^- = \uparrow (V_1^- \cap \cdots \cap V_{n+}^- \cap V_0^-) \subseteq \uparrow G \) [by proposition 3.3]. This shows that, \(\Phi \) is \(\theta^* \)-lower semicontinuous. \(\square \)

4. Multifunctions

In the previous article, we have studied about functions into a hyperspace. These functions are nothing but set-valued functions or multifunctions. In this article we shall treat them as the ordinary multifunction and compare the two different aspects.

Mukherjee, Raychaudhuri and Sinha introduced lower-\(\theta^* \)-continuous multifunctions in [4]; in the same way the concept of lower-\(\theta^* \)-semicontinuous multifunction can also be introduced.

Definition 4.1. A multifunction \(F : X \to Y \), where \(X,Y \) are topological spaces, is called lower-\(\theta^* \)-semicontinuous function iff for each \(x_0 \in X \) and each open set \(V \in Y \) with \(F(x_0) \cap V \neq \emptyset \), there is an open \(nbd. U \) of \(x_0 \) such that \(F(x) \cap V \neq \emptyset \) for each \(x \in U \).

Definition 4.2. [4] A multifunction \(F : X \to Y \) is called \(\theta^* \)-closed if whenever \(x \in X, y \in Y \) and \(y \notin F(x) \), there exists open nbds. \(U,V \) of \(x,y \) in \(X \) and \(Y \) respectively such that \(p \in U \Rightarrow F(p) \cap V \neq \emptyset \).

Theorem 4.3. [4] If \(F : X \to Y \) be a multifunction which is \(\theta^* \)-closed, then \(F(x) \) is closed in \(Y \), for each \(x \in X \).

Theorem 4.4. Let \(F : X \to Y \) be a multifunction, where \(X,Y \) are topological spaces and \(Y \) is a \(T_1 \)-space. If \(F \) be lower-\(\theta^* \)-semicontinuous and \(\theta^* \)-closed then

\[
\begin{align*}
 f : X & \to 2^Y \\
 x & \mapsto F(x)
\end{align*}
\]

is \(\theta^* \)-lower semicontinuous, when \(2^Y \) is endowed with Vietoris topology.

Proof. The function \(f \) is well-defined by theorem 4.3. Let \(V \) be any open set in \(Y \) and \(a \in f^{-1}(V^-) \). Then \(f(a) \in V^- \) i.e. \(F(a) \cap V \neq \emptyset \).
Theorem 5.2. Proof. (i) Let \(f \) be \(\theta^* \)-lower semicontinuous. Therefore \(\exists \) an open nbd. \(U \) of \(a \) in \(X \) such that
\[
F(x) \cap V \neq \emptyset, \forall x \in U
\]
\[
\Rightarrow f(x) \in V, \forall x \in U
\]
\[
\Rightarrow U \subseteq f^{-1}(V).
\]
Thus \(f^{-1}(V) \) is \(\theta \)-open for each open set \(V \) in \(Y \).
Consequently, \(f \) is \(\theta^* \)-lower semicontinuous [by theorem 3.8].

Theorem 4.5. Let \(X \) be a topological space and \(Y \) be a \(T_1 \)-space. Let \(f : X \to 2^Y \) be a \(\theta^* \)-lower semicontinuous function, where \(2^Y \) is endowed with Vietoris topology. Then the multifunction,
\[
F : X \to Y \quad x \mapsto f(x)
\]
is lower-\(\theta^* \)-semicontinuous.
Proof. Let \(x_0 \in X \) and \(V \) be open in \(Y \) such that \(F(x_0) \cap V \neq \emptyset \) i.e. \(f(x_0) \in V \) i.e. \(x_0 \in f^{-1}(V) \). Since \(f \) is \(\theta^* \)-lower semicontinuous function, \(f^{-1}(V) \) is \(\theta \)-open in \(X \) [by theorem 3.8]. So \(\exists \) an open nbd. \(U \) of \(x_0 \) in \(X \) such that, \(x_0 \in U \subseteq \overline{U} \subseteq f^{-1}(V) \)
\[
\Rightarrow f(U) \subseteq V \quad \text{i.e.} \quad f(x) \in V, \forall x \in U \quad \text{i.e.} \quad F(x) \cap V \neq \emptyset, \forall x \in U.
\]
Thus \(F \) is lower-\(\theta^* \)-semicontinuous.

5. SOME SPECIAL MULTIFUNCTIONS

In this article, we discuss the \(\theta^* \)-lower semicontinuity of a very special type of multifunction. Since the consideration of either a hyperspace or an ordinary space as the codomain of a multifunction is immaterial, as seen from the previous article, we discuss the \(\theta^* \)-lower semicontinuity of the multifunction in the hyperspace-setting.

Definition 5.1. We define a pair of functions \(i, d : X \to 2^X \), where \(X \) is a topological space equipped with a partial order \(\leq' \) which is assumed to be a \(\theta \)-closed order, as follows:
\[
i(x) = \uparrow (x) \quad \text{and} \quad d(x) = \downarrow (x)
\]
Since \(\leq' \) is a \(\theta \)-closed order, \(\uparrow (x) \) & \(\downarrow (x) \) are \(\theta \)-closed [by corollary 2.5]. So the functions \('i ' \) and \('d ' \) are well-defined.

Theorem 5.2. (i) The function \(i : X \to 2^X \) is \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) iff \(\downarrow V \) is \(\theta \)-open in \(X \) for every open set \(V \) of \(X \).
(ii) The function \(d : X \to 2^X \) is \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) iff \(\uparrow V \) is \(\theta \)-open in \(X \) for every open set \(V \) of \(X \).

Proof. (i) Let \(V \) be any open set in \(X \). Now, \(i^{-1}(V) = \{ x \in X : i(x) \in V \} = \{ x \in X : x \leq y, \text{ for some } y \in V \} = \downarrow V \)
It now clearly follows from theorem 3.8 that, \('i ' \) is \(\theta^* \)-lower semicontinuous with respect to \(\leq' \) iff \(\downarrow V \) is \(\theta \)-open in \(X \).
(ii) The result follows from the following fact.
Let \(V \) be any open set in \(X \). Now, \(d^{-1}(V) = \{ x \in X : d(x) \in V^{-} \} = \{ x \in X : \downarrow (x) \cap V \neq \emptyset \} = \{ x \in X : y \leq x, \text{ for some } y \in V \} = \uparrow V. \]
Theorem 5.3. If $F : X \to Y$, Y being equipped with a θ-closed order \leq be a set-valued mapping such that $F(x)$ is an H-set in Y and if F is lower-θ^*-semitopoperatorion and $\downarrow V$ is open for each open V of Y, then

$$f : X \to 2^Y \quad \{ \quad x \mapsto \uparrow F(x) \}$$

is θ^*-lower semicontinuous.

Proof. Since $F(x)$ is an H-set in Y and \leq is a θ-closed order, $\uparrow F(x)$ is θ-closed [by corollary 2.7]. So f is well-defined.

Let V be open in Y. Now, $f^{-1}(V^-) = \{ x \in X : \uparrow F(x) \subseteq V^- \} = \{ x \in X : \uparrow F(x) \cap V \neq \emptyset \} = \{ x \in X : F(x) \cap \downarrow V \neq \emptyset \}$. Let, $x_0 \in f^{-1}(V^-)$. Then $F(x_0) \cap \downarrow V \neq \emptyset$. Since $\downarrow V$ is open [by hypothesis] and F is lower-θ^*-semitopoperatorion exists an open nbd. U of x_0 in X such that $F(x) \cap \downarrow V \neq \emptyset, \forall x \in U \Rightarrow \overline{U} \subseteq f^{-1}(V^-)$ i.e. $x_0 \in U \subseteq \overline{U} \subseteq f^{-1}(V^-)$. Thus $f^{-1}(V^-)$ is θ-open in X. Consequently, f is θ^*-lower semicontinuous [by theorem 3.8].

We can get a similar result if we take $\downarrow F(x)$ instead of $\uparrow F(x)$ in the above theorem with only changing $\downarrow V$ instead of $\uparrow V$ in the hypothesis. \qed

REFERENCES

UNIVERSITY OF CALCUTTA
DEPARTMENT OF PURE MATHEMATICS
35, BALLYGUNGE CIRCULAR ROAD
KOLKATA - 700019, INDIA
E-mail address: ajpm12@yahoo.co.in