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The solution of the thermoelastic equilibrium
problem for cylindrical tubes with big torsion angle

MIRCEA LUPU and FLORIN ISAIA

ABSTRACT. In this paper, the coupled problem of the thermoelastic equilibrium for cylindrical
tubes with big torsion angle is solved. The mathematical model of isotropic elastic cylinders with big
torsion angle is also presented. Using this new mathematical model, we actually solve the thermoe-
lasticity problem for cylindrical tubes.

Consider an isotropic homogeneous cylindrical elastic bar. The lateral sur-
face is external forces free. Body forces are absent. Assume that the region of
section is bounded (simply connected or multiply connected). We take the ori-
gin of coordinates at the centroid of the end section B1 (z = 0), Oz axis parallel
to the generators and Ox, Oy axis arbitrarily directed. The point B2 is obtained
for z = L, where L is the length of the bar (sufficiently long). The ends are
acted on by distributed forces reducing to twisting moments M of opposite sense−→
M0

3 (B1) = −−→
M0

3 (B2) = M
−→
k . This is the classical model of the torsion [1], [4],

[7].
In this paper we investigate the problem of the stationary thermoelasticity of a

cylindrical tube with a big torsion angle, the deformations and the state of stress
being caused by the torsion moment M (which is known) and by the heating of
the boundary or by the change of temperature between the boundary and the
environment (see (I − V ) below).

1. THE MATHEMATICAL MODEL

Here, we present A. Y. Ishlinski’s mathematical model of [3] for the torsion of
a cylindrical bar in the case of elastic materials with a big torsion angle.

Consider now an element of length l situated at a distance r of the Oz axis. Let
α denote the specific torsion angle. After torsion, the generators of the cylindrical
tube take the shape of circular propeller of length

(1.1) ds′ =
√

l2 + r2α2.

If the expression
rα

l
is sufficiently small, the specific elongation is

(1.2)
1
l

(√
l2 + r2α2 − l

) ∼= r2α2

2l2
.

Received: 10.03.2004; In revised form: 04.01.2005
2000 Mathematics Subject Classification: 74B20, 35G15, 74A15, 74F05.
Key words and phrases: Thermoelasticity, elastic tube, torsion angle, state of stress.

77



78 Mircea Lupu and Florin Isaia

For a generator situated at a distance r of the cylindrical axis, we denote by χ
the torsion specific coefficient:

(1.3)
r2α2

2l2
= χr2, where χ =

α2

2l2
.

We take the expression χr2 as a measure of the specific elongation to Oz axis,
therefore it will represent the component εzz of the deformation tensor. In cylin-
drical coordinates (r, ϕ, z), the not zero deformations are [3]

(1.4) εzz = χr2, εrr =
∂u

∂r
, εϕϕ =

u

r
.

In (1.4), ur = u represents the radial displacement. Due to the condition of uni-
form torsion, the tangential displacement uϕ will be constant for any constant
radius r and will not appear in the components of the deformation tensor.

The constitutive equations in the case of the linear isotropic thermoelasticity,
which generalize Cauchy and Hooke equations, are

Tij = λθδij + 2μεij − βTδij,

εij =
1 + ν

E
Tij −

ν

E
Θδij + αTδij,

θ − 3α =
1 − 2ν

E
Θ,

β =
E

1 − 2ν
α

and they are due to Duhamel and Neumann [2], [6]. Here, λ, μ are the Lamé’s
coefficients, E is the Young’s modulus, ν is the Poisson’s coefficient [1], T is
the temperature, α is the coefficient of linear dilatation, θ = ε11 + ε22 + ε33,
Θ = T11 + T22 + T33.

Due to the axial symmetry to the Oz axis and to the conditions which depends
only on r, in cylindrical coordinates we have

(1.5)

Tzz = λ (εzz + εrr + εϕϕ) + 2μεzz − βT (r) ,
Trr = λ (εzz + εrr + εϕϕ) + 2μεrr − βT (r) ,
Tϕϕ = λ (εzz + εrr + εϕϕ) + 2μεϕϕ − βT (r) ,
Trz = Trϕ = Tzϕ = 0.

Substituting (1.4) in the above relations we get

(1.6)

Tzz = (λ + 2μ)χr2 + λ

(
∂u

∂r
+

u

r

)
− βT (r) ,

Trr = (λ + 2μ)
∂u

∂r
+ λ

(
χr2 +

u

r

)
− βT (r) ,

Tϕϕ = (λ + 2μ)
u

r
+ λ

(
χr2 + ∂u

∂r

)− βT (r) .

The equilibrium equation is:

(1.7)
∂Trr

∂r
+

Trr − Tϕϕ

r
= 0.
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Substituting (1.6) into (1.7) we get the linear differential equation of the radial
displacement ur = u (r)

(1.8) u′′ +
1
r
u′ − 1

r2
u = − 2ν

1 − ν
χr +

(1 + ν) (1 − 2ν)
E (1 − ν)

βT ′ (r) .

The torsion problem for the cylinder, respectively for the cylindrical tube, without
heating, are developed in the papers [3] and [5] respectively.

2. THE SOLUTION OF THE THERMOELASTIC EQUILIBRIUM PROBLEM

First, we solve the problem of the temperature distribution T (r) for the crown
a ≤ r ≤ b. Due to the axial symmetry and to the boundary conditions (indepen-
dent on ϕ), the heat equation will be

(2.9)
∂2T

∂r2
+

1
r

∂T

∂r
= 0, a ≤ r ≤ b.

Theorem 2.1. If we attach to equation (2.9) the boundary conditions for T (r) compati-
ble in an exclusive manner, without heat sources, we get the situations (I − V ) with the
corresponding solutions:

I.
{

T (a) = 0
T (b) = T ∗ → T (r) =

T ∗

ln
b

a

ln r − T ∗ ln a

ln
b

a

,

II.
{

T (a) = T ∗

T (b) = 0 → T (r) =
T ∗

ln
a

b

ln r − T ∗ ln b

ln
a

b

,

III.

⎧⎨
⎩

T (a) = 0
∂T

∂r
(b) = T ∗ → T (r) = T ∗b ln r − T ∗b lna ,

IV.

⎧⎨
⎩

∂T

∂r
(a) = T ∗

T (b) = 0
→ T (r) = T ∗a ln r − T ∗a ln b ,

V.
{

T (a) = T1

T (b) = T2
→ T (r) = k ln r + k1,

where k =
T2 − T1

ln(b/a)
, k1 =

T1 ln b − T2 ln a

ln(b/a)
. Moreover, considering the change of tem-

perature between the boundary and the environment, we have the general conditions

VI. miT (ri) + ni

∂T

∂r
(ri) = pi, i = 1, 2,

where r1 = a, r2 = b, with the same type of solution as I − V .

We denote by T (r) = k ln r + k1, the solution of T (r) corresponding to any

case I − V , therefore T ′ (r) =
k

r
in all these cases. Consequently, equation (1.8)
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becomes

r2u′′ + ru′ − u = − 2ν

1 − ν
χr3 +

(1 + ν) (1 − 2ν)
E (1 − ν)

βkr

and its general solution will be

(2.10) u (r) = c1r + c2
1
r
− ν

4 (1 − ν)
χr3 +

(1 + ν) (1 − 2ν)
2E (1 − ν)

βkr ln r.

Theorem 2.2. The solution of the thermoelastic equilibrium problem for cylindrical tubes
with big torsion angle is:

u (r) = − νχ

4 (1 − ν)

[
r3 + (1 − 2ν)

(
a2 + b2

)
r +

a2b2

r

]

+
(1 + ν) (1 − 2ν)

2E
βr

[
1 − 2ν

1 − ν
k

b2 ln b − a2 ln a

b2 − a2
− k + 2k1

]

+
(1 + ν) (1 − 2ν)

2E (1 − ν)
βk

a2b2 (ln b − ln a)
b2 − a2

1
r

+
(1 + ν) (1 − 2ν)

2E (1 − ν)
βkr ln r,

Trr =
Eνχ

4 (1 − ν2)

[
r2 − (a2 + b2

)
+

a2b2

r2

]

+
1 − 2ν

2 (1 − ν)
βk

[
b2 ln b − a2 ln a

b2 − a2
− a2b2 (ln b − ln a)

b2 − a2

1
r2

− ln r

]

Tzz =
Eχ

1 − ν2

[
r2 − a2 + b2

2
ν2

]
− 1 − 2ν

1 − ν
βk ln r

+
ν (1 − 2ν)

1 − ν
βk

b2 ln b − a2 ln a

b2 − a2
− ν (1 − 2ν)

2 (1 − ν)
βk − (1 − 2ν)βk1,

Tϕϕ =
Eνχ

4 (1 − ν2)

[
3r2 − (a2 + b2

)− a2b2

r2

]

+
1 − 2ν

2 (1 − ν)
βk

[
b2 ln b − a2 ln a

b2 − a2
+

a2b2 (ln b − ln a)
b2 − a2

1
r2

− ln r − 1
]

.

Proof. Replacing T (r) = k ln r + k1 and u (r) from (2.10) into Trr from (1.6) and
using the boundary conditions Trr (a) = 0, Trr (b) = 0 (the lateral surface is
stresses free) we can find the constants c1, c2 and afterward the formulas for u (r),
Trr, Tzz , Tϕϕ. �

Remark 2.1. For a given moment M , the constant χ can be found from the rela-
tion below

M =
∫ ∫

D

Tϕϕrdσ, D : a ≤ r ≤ b, 0 ≤ ϕ ≤ 2π.
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We obtain

χ =
1 − ν2

Eν

15
b5 − a5 − 5a2b2 (b − a)

·
{

M

2π
− 1 − 2ν

2 (1 − ν)
βk

[
4a2b2 (ln b − ln a)

3 (a + b)
− 2

(
b3 − a3

)
9

]}
.

Particularly, in absence of heat, the solutions for the cylindrical tube can be
found by making β = 0 [5]:

u (r) = − νχ

4 (1 − ν)

[
r3 + (1 − 2ν)

(
a2 + b2

)
r +

a2b2

r

]
,

Trr =
Eνχ

4 (1 − ν2)

[
r2 − (a2 + b2

)
+

a2b2

r2

]
,

Tzz =
Eχ

1 − ν2

[
r2 − a2 + b2

2
ν2

]
,

Tϕϕ =
Eνχ

4 (1 − ν2)

[
3r2 − (a2 + b2

)− a2b2

r2

]
.

Let us observe that, due to the heat, the deformations, the displacements and
the stresses are different in comparison with the case of a simple torsion (by the
presence of β). Various studies and diagrams can also be done for stresses and
deformations in the thermoelastic case.

In the case of a simple torsion, the new deformed radius of the tube become

a′ = a + u (a) = a
[
1 − νχ

2
(
a2 + b2

)]
,

b′ = b + u (b) = b
[
1 − νχ

2
(
a2 + b2

)]
.

By fixing the distance L between the ends of the tube, the inner radius a and the
outer radius b, then the thickness d = b − a of the tube becomes after torsion

d′ = b′ − a′ = d
[
1 − νχ

2
(
a2 + b2

)]
,

with d′ < d.
In the thermoelastic coupled case, we have

d′ = d

[
1 − νχ

2
(
a2 + b2

)
+

(1 + ν) (1 − 2ν)
2E

β

(
2k

b2 ln b − a2 ln a

b2 − a2
− k + 2k1

)]
.

The variation of the thickness in the thermoelastic coupled case will depend on
the terms with β and on the inequality between T1, T2 (if T (r) is taken from (V )).
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