
CARPATHIAN J. MATH.
21 (2005), No. 1 - 2, 115 - 125

Some pairs of multivalued operators

ALINA SÎNTĂMĂRIAN

ABSTRACT. We study the following problem.
Let (X, d) be a metric space and T1, T2 : X → P (X) two multivalued operators. Determine

metric conditions on the pair of multivalued operators T1 and T2, which imply that, for each x ∈ X,
there exists a sequence of successive approximations for the pair (T1, T2) or for the pair (T2, T1),
starting from x, which converges to a common fixed point or to a common strict fixed point of T1 and
T2 and, for each x ∈ X, there exists a sequence of successive approximations of Ti, starting from x,
which converges to a fixed point or to a strict fixed point of Ti, for each i ∈ {1, 2}.

1. INTRODUCTION

Let X be a nonempty set. We denote by P (X) the set of all nonempty subsets
of X , i. e. P (X) := { Y | ∅ �= Y ⊆ X }. Let T1, T2 : X → P (X) be two
multivalued operators. We denote by FT1 the fixed points set of T1, i. e. FT1 :=
{ x ∈ X | x ∈ T1(x) }, by (SF )T1 the strict fixed points set of T1, i. e. (SF )T1 :=
{ x ∈ X | T1(x) = {x} } and by (CF )T1,T2 the common fixed points set of T1 and
T2, i. e. (CF )T1,T2 := { x ∈ X | x ∈ T1(x) ∩ T2(x) }.
A sequence (xn)n∈N is called sequence of successive approximations of T1 if x0 ∈ X
and xn+1 ∈ T1(xn), for each n ∈ N.
A sequence (xn)n∈N is called sequence of successive approximations for the pair (T1, T2)
if x0 ∈ X , x2n+1 ∈ T1(x2n) and x2n+2 ∈ T2(x2n+1), for each n ∈ N.

Definition 1.1. Let (X, d) be a metric space and T : X → P (X) a multivalued
operator. We say that T is a weakly Picard multivalued operator iff for each x ∈ X
and for every y ∈ T (x), there exists a sequence (xn)n∈N such that:

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ T (xn), for each n ∈ N

∗;
(iii) sequence (xn)n∈N is convergent and its limit is a fixed point of T .

For examples of weakly Picard multivalued operators see for instance [15],
[16].

Definition 1.2. Let (X, d) be a metric space and T1, T2 : X → P (X) two multival-
ued operators. We say that {T1, T2} is a weakly Picard pair of multivalued operators
iff for each x ∈ X and for every y ∈ T1(x)∪T2(x), there exists a sequence (xn)n∈N

such that:
(i) x0 = x, x1 = y;
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(ii) x2n+1 ∈ Ti(x2n) and x2n+2 ∈ Tj(x2n+1), for each n ∈ N, where i, j ∈
{1, 2}, i �= j;

(iii) sequence (xn)n∈N is convergent and its limit is a common fixed point of
T1 and T2.

For examples of weakly Picard pairs of multivalued operators see [18], [19],
[20].

Let (X, d) be a metric space.
We denote by Pcl(X) the set of all nonempty and closed subsets of X , i. e.
Pcl(X) := {Y |Y ∈ P (X), Y is a closed set} and by Pb(X) the set of all nonempty
and bounded subsets of X , i. e. Pb(X) := {Y |Y ∈ P (X), Y is a bounded set}.
We also recall the functional D : P (X) × P (X) → R+, defined by D(A, B) =
inf { d(a, b) | a ∈ A, b ∈ B }, for each A, B ∈ P (X), and the generalized function-
als δ : P (X) × P (X) → R+ ∪ {+∞}, defined by δ(A, B) = sup{ d(a, b) | a ∈ A,
b ∈ B}, for each A, B ∈ P (X), and H : P (X) × P (X) → R+ ∪ {+∞}, defined by
H(A, B) = max {supa∈A D(a, B), supb∈B D(b, A)}, for each A, B ∈ P (X).

The following property of the generalized functional H is well-known.

Lemma 1.1. Let (X, d) be a metric space, A, B ∈ P (X) and q ∈ R, q > 1.
Then for every a ∈ A, there exists b ∈ B such that d(a, b) ≤ q H(A, B).

The purpose of this paper is to study the following problem.

Problem 1.1. Let (X, d) be a metric space and T1, T2 : X → P (X) two multivalued
operators. Determine metric conditions on the pair of multivalued operators T1 and T2,
which imply that, for each x ∈ X , there exists a sequence of successive approximations for
the pair (T1, T2) or for the pair (T2, T1), starting from x, which converges to a common
fixed point or to a common strict fixed point of T1 and T2 and, for each x ∈ X , there
exists a sequence of successive approximations of Ti, starting from x, which converges to
a fixed point or to a strict fixed point of Ti, for each i ∈ {1, 2}.

For singlevalued operators results of this type are given by Rus [13] and Dien
[4] and for multivalued operators results which answer to Problem 1.1 are pre-
sented by Dien [4] and Sı̂ntămărian [18], [19], [20].

2. FIXED POINTS AND COMMON FIXED POINTS

Theorem 2.1. Let (X, d) be a complete metric space and T1, T2 : X → Pcl(X) two
multivalued operators for which there exist a, b ∈ R

∗
+, with a + 2b < 1, such that

H(T1(x), T2(y)) ≤ a d(x, y) + b [D(x, T1(x)) + D(y, T2(y))],

for each x, y ∈ X .
Then FT1 = FT2 ∈ Pcl(X) and {T1, T2} is a weakly Picard pair of multivalued

operators.
If in addition we have a+ 3b+ ab < 1, then T1 and T2 are weakly Picard multivalued

operators.

Proof. From a result given by Popa in [10] it follows that FT1 = FT2 ∈ P (X) and
that {T1, T2} is a weakly Picard pair of multivalued operators. It is easy to verify
that FT1 and FT2 are closed sets.
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Further on we suppose that a + 3b + ab < 1 and we shall prove that T1 and T2

are weakly Picard multivalued operators.
Let i, j ∈ {1, 2}, i �= j and q ∈ R such that 1 < q < [

√
(a + 9b)(a + b) − (a +

3b)]/(2ab). Let x0 ∈ X and x1 ∈ Ti(x0).
There exits y1 ∈ Tj(x1) such that

d(x1, y1) ≤ q H(Ti(x0), Tj(x1)) ≤
≤ q [a d(x0, x1) + b D(x0, Ti(x0)) + b D(x1, Tj(x1))] ≤
≤ q [a d(x0, x1) + b d(x0, x1) + b d(x1, y1)]

and so
d(x1, y1) ≤ q(a + b)/(1 − qb) d(x0, x1).

Also there exits x2 ∈ Ti(x1) such that

d(y1, x2) ≤ q H(Tj(x1), Ti(x1)) ≤
≤ q [a d(x1, x1) + b D(x1, Tj(x1)) + b D(x1, Ti(x1))] ≤
≤ qb [d(x1, y1) + d(x1, x2)].

Using the triangle inequality and taking into account the above inequalities we
obtain

d(x1, x2) ≤ d(x1, y1) + d(y1, x2) ≤
≤ d(x1, y1) + qb [d(x1, y1) + d(x1, x2)] =

= (1 + qb) d(x1, y1) + qb d(x1, x2) ≤
≤ q(a + b)(1 + qb)/(1 − qb) d(x0, x1) + qb d(x1, x2)

and so
d(x1, x2) ≤ q(a + b)(1 + qb)/(1 − qb)2 d(x0, x1).

Now, there exists y2 ∈ Tj(x2) such that

d(x2, y2) ≤ q H(Ti(x1), Tj(x2)) ≤
≤ q [a d(x1, x2) + b D(x1, Ti(x1)) + b D(x2, Tj(x2))] ≤
≤ q [a d(x1, x2) + b d(x1, x2) + b d(x2, y2)]

and so
d(x2, y2) ≤ q(a + b)/(1 − qb) d(x1, x2).

Also there exits x3 ∈ Ti(x2) such that

d(y2, x3) ≤ q H(Tj(x2), Ti(x2)) ≤
≤ q [a d(x2, x2) + b D(x2, Tj(x2)) + b D(x2, Ti(x2))] ≤
≤ qb [d(x2, y2) + d(x2, x3)].

Using again the triangle inequality and taking into account the above two in-
equalities we get

d(x2, x3) ≤ d(x2, y2) + d(y2, x3) ≤ d(x2, y2) + qb [d(x2, y2) + d(x2, x3)] =

= (1 + qb) d(x2, y2) + qb d(x2, x3) ≤
≤ q(a + b)(1 + qb)/(1 − qb) d(x1, x2) + qb d(x2, x3)
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and so
d(x2, x3) ≤ q(a + b)(1 + qb)/(1 − qb)2 d(x1, x2).

By induction we obtain that there exists a sequence (xn)n∈N of successive approx-
imations of Ti, starting from (x0, x1), with the property that

d(xn, xn+1) ≤ q(a + b)(1 + qb)/(1 − qb)2 d(xn−1, xn),

for each n ∈ N
∗.

It follows that (xn)n∈N is a convergent sequence, because (X, d) is a complete
metric space and q(a + b)(1 + qb)/(1 − qb)2 < 1. Let x∗ = limn→∞ xn.

We have

D(x∗, Tj(x∗)) ≤ d(x∗, xn+1) + D(xn+1, Tj(x∗)) ≤
≤ d(x∗, xn+1) + H(Ti(xn), Tj(x∗)) ≤
≤ d(x∗, xn+1) + a d(xn, x∗) + b [D(xn, Ti(xn)) + D(x∗, Tj(x∗))] ≤
≤ d(x∗, xn+1) + a d(xn, x∗) + b d(xn, xn+1) + b D(x∗, Tj(x∗)),

for each n ∈ N.
From this we get

D(x∗, Tj(x∗)) ≤ (1 − b)−1 [d(x∗, xn+1) + a d(xn, x∗) + b d(xn, xn+1)],

for each n ∈ N, which implies, by letting n to tend to infinity, that D(x∗, Tj(x∗)) =
0. Taking into account the fact that Tj(x∗) is a closed set, we are able to write
that x∗ ∈ Tj(x∗), which means that x∗ ∈ FTj . But FT1 = FT2 and therefore
x∗ ∈ FTi . �
Remark 2.1. If we take a = 0 in Theorem 2.1, then we obtain a result presented in
Theorem 2.2 from [18].

Theorem 2.2. Let (X, d) be a complete metric space and T1, T2 : X → Pcl(X) two
multivalued operators. We suppose that:

(i) there exist a1, b1 ∈ R+, with a1 + 2b1 < 1, such that for each x ∈ X , any
ux ∈ T1(x) and for all y ∈ X , there exists uy ∈ T2(y) so that

d(ux, uy) ≤ a1 d(x, y) + b1 [d(x, ux) + d(y, uy)];

(ii) there exist a2, b2 ∈ R+, with a2 + 2b2 < 1, such that for each x ∈ X , any
ux ∈ T2(x) and for all y ∈ X , there exists uy ∈ T1(y) so that

d(ux, uy) ≤ a2 d(x, y) + b2 [d(x, ux) + d(y, uy)].

Then FT1 = FT2 ∈ Pcl(X) and {T1, T2} is a weakly Picard pair of multivalued operators.
If in addition we have that b1 + b2 + max {a1 + b1 + a1b2, a2 + b2 + a2b1} < 1, then

T1 and T2 are weakly Picard multivalued operators.

Proof. From Theorem 2.2 in [17] it follows that FT1 = FT2 ∈ Pcl(X) and that
{T1, T2} is a weakly Picard pair of multivalued operators.

Further on we suppose that b1 + b2 + max {a1 + b1 + a1b2, a2 + b2 + a2b1} < 1.
We shall prove that T1 and T2 are weakly Picard multivalued operators.

Let i, j ∈ {1, 2}, i �= j. Let x0 ∈ X and x1 ∈ Ti(x0).
It follows that there exits y1 ∈ Tj(x1) such that

d(x1, y1) ≤ ai d(x0, x1) + bi [d(x0, x1) + d(x1, y1)]
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and so
d(x1, y1) ≤ (ai + bi)/(1 − bi) d(x0, x1).

Also there exits x2 ∈ Ti(x1) such that

d(y1, x2) ≤ aj d(x1, x1) + bj [d(x1, y1) + d(x1, x2)] = bj [d(x1, y1) + d(x1, x2)].

Using the triangle inequality we obtain

d(x1, x2) ≤ d(x1, y1) + d(y1, x2) ≤ d(x1, y1) + bj [d(x1, y1) + d(x1, x2)] =

= (1 + bj) d(x1, y1) + bj d(x1, x2) ≤
≤ (1 + bj)(ai + bi)/(1 − bi) d(x0, x1) + bj d(x1, x2)

and therefore

d(x1, x2) ≤ (1 + bj)/(1 − bj)(ai + bi)/(1 − bi) d(x0, x1).

Now, there exists y2 ∈ Tj(x2) such that

d(x2, y2) ≤ ai d(x1, x2) + bi [d(x1, x2) + d(x2, y2)]

and so
d(x2, y2) ≤ (ai + bi)/(1 − bi) d(x1, x2).

Also there exits x3 ∈ Ti(x2) such that

d(y2, x3) ≤ aj d(x2, x2) + bj [d(x2, y2) + d(x2, x3)] =

= bj [d(x2, y2) + d(x2, x3)].

Using again the triangle inequality and taking into account the above two in-
equalities we get

d(x2, x3) ≤ d(x2, y2) + d(y2, x3) ≤ d(x2, y2) + bj [d(x2, y2) + d(x2, x3)] =

= (1 + bj) d(x2, y2) + bj d(x2, x3) ≤
≤ (1 + bj)(ai + bi)/(1 − bi) d(x1, x2) + bj d(x2, x3)

and therefore

d(x2, x3) ≤ (1 + bj)/(1 − bj)(ai + bi)/(1 − bi) d(x1, x2).

By induction we obtain that there exists a sequence (xn)n∈N of successive approx-
imations of Ti, starting from (x0, x1), with the property that

d(xn, xn+1) ≤ (1 + bj)/(1 − bj)(ai + bi)/(1 − bi) d(xn−1, xn),

for each n ∈ N
∗.

It follows that (xn)n∈N is a convergent sequence, because (X, d) is a complete
metric space and (1 + bj)/(1 − bj)(ai + bi)/(1 − bi) < 1. Let x∗ = limn→∞ xn.

From xn ∈ Ti(xn−1) we have that there exists un ∈ Tj(x∗) such that

d(xn, un) ≤ ai d(xn−1, x
∗) + bi [d(xn−1, xn) + d(x∗, un)],

for all n ∈ N
∗.

Using the triangle inequality we obtain

d(x∗, un) ≤ d(x∗, xn) + d(xn, un) ≤
≤ d(x∗, xn) + ai d(xn−1, x

∗) + bi [d(xn−1, xn) + d(x∗, un)]
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and so

d(x∗, un) ≤ (1 − bi)−1 [d(x∗, xn) + ai d(xn−1, x
∗) + bi d(xn−1, xn)],

for all n ∈ N
∗.

This implies that d(x∗, un) → 0, as n → ∞. Since un ∈ Tj(x∗), for all n ∈ N
∗ and

Tj(x∗) is a closed set, it follows that x∗ ∈ Tj(x∗). Therefore x∗ ∈ FTj = FTi . �

Remark 2.2. It is not difficult to verify that the sequence (xn)n∈N from the proof of
Theorem 2.2 has the property that

d(xn, x∗) ≤
(

1 + bj

1 − bj
· ai + bi

1 − bi

)n (1 − bi)(1 − bj)
1 − ai − 2bi − bj − aibj

d(x0, x1),

for each n ∈ N.

Remark 2.3. If we take a = 0 in Theorem 2.2, then we obtain a result presented in
Theorem 2 from [19].

3. STRICT FIXED POINT AND COMMON STRICT FIXED POINT

There are many strict fixed point and common strict fixed point theorems
for multivalued operators which satisfy metric conditions in which functional δ

appears (see, for example, Reich [11], Ćirić [2], [3], Rus [12], Avram [1], Fisher [5],
Khan-Khan-Kubiaczyk [6], Dien [4], Kubiaczyk [8], Khan-Kubiaczyk [7]).

The following result gives an answer to Problem 1.1 for two multivalued op-
erators which satisfy a metric condition in which functional δ appears.

Theorem 3.1. Let (X, d) be a complete metric space and T1, T2 : X → Pb(X) two
multivalued operators for which there exist a, b ∈ R+, with a + 2b < 1, such that

δ(T1(x), T2(y)) ≤ a d(x, y) + b [δ(x, T1(x)) + δ(y, T2(y))],

for each x, y ∈ X .
Then FT1 = FT2 = (SF )T1 = (SF )T2 = {x∗} and, for each i, j ∈ {1, 2}, with i �= j,

any sequence (xn)n∈N of successive approximations for the pair (Ti, Tj) converges to x∗

and

d(xn, x∗) ≤
(

a + b

1 − b

)n 1 − b

1 − (a + 2b)
δ(x0, Ti(x0)),

for every n ∈ N.
Also, for each i ∈ {1, 2}, any sequence (yn)n∈N of successive approximations of Ti

converges to x∗ and

d(yn, x∗) ≤
(

a + b

1 − b

)n−1

[a d(y0, x
∗) + b δ(y0, Ti(y0))],

for every n ∈ N
∗.

Proof. The fact that T1 and T2 have a unique common fixed point, which is a strict
fixed point both of T1 and of T2, it is a known result. In order to prove some other
parts of the conclusion we shall take again the proof.

Let i, j ∈ {1, 2}, i �= j. Let x0 ∈ X , x2n−1 ∈ Ti(x2n−2) and x2n ∈ Tj(x2n−1), for
each n ∈ N

∗.
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We have

δ(Ti(x0), Tj(x1)) ≤ a d(x0, x1) + b [δ(x0, Ti(x0)) + δ(x1, Tj(x1))] ≤
≤ a δ(x0, Ti(x0)) + b [δ(x0, Ti(x0)) + δ(Ti(x0), Tj(x1))] =

= (a + b) δ(x0, Ti(x0)) + b δ(Ti(x0), Tj(x1))

and so

d(x1, x2) ≤ δ(Ti(x0), Tj(x1)) ≤ (a + b)/(1 − b) δ(x0, Ti(x0)).

For each n ∈ N
∗ we have

δ(Tj(x2n−1), Ti(x2n)) ≤ a d(x2n−1, x2n)+b [δ(x2n−1, Tj(x2n−1))+δ(x2n, Ti(x2n))] ≤
≤ a δ(Ti(x2n−2), Tj(x2n−1))+b [δ(Ti(x2n−2), Tj(x2n−1))+δ(Tj(x2n−1), Ti(x2n))] =

= (a + b) δ(Ti(x2n−2), Tj(x2n−1)) + b δ(Tj(x2n−1), Ti(x2n))
and from here we get that

d(x2n, x2n+1) ≤ δ(Tj(x2n−1), Ti(x2n)) ≤ (a + b)/(1 − b) δ(Ti(x2n−2), Tj(x2n−1)).

Also, for each n ∈ N
∗ we have

δ(Ti(x2n), Tj(x2n+1)) ≤ a d(x2n, x2n+1)+b [δ(x2n, Ti(x2n))+δ(x2n+1, Tj(x2n+1))] ≤
≤ a δ(Tj(x2n−1), Ti(x2n)) + b [δ(Tj(x2n−1), Ti(x2n)) + δ(Ti(x2n), Tj(x2n+1))] =

= (a + b) δ(Tj(x2n−1), Ti(x2n)) + b δ(Ti(x2n), Tj(x2n+1))
and so

d(x2n+1, x2n+2) ≤ δ(Ti(x2n), Tj(x2n+1)) ≤ (a + b)/(1 − b) δ(Tj(x2n−1), Ti(x2n)).

Now, we are able to write that

d(xn, xn+1) ≤ [(a + b)/(1 − b)]n δ(x0, Ti(x0)),

for each n ∈ N.
Let p ∈ N

∗. Using the triangle inequality we obtain

d(xn, xn+p) ≤ [(a + b)/(1 − b)]n(1 − b)/[1 − (a + 2b)] δ(x0, Ti(x0)),

for each n ∈ N. It follows that (xn)n∈N is a Cauchy sequence and so a convergent
sequence, because (X, d) is a complete metric space and (a + b)/(1 − b) < 1. Let
x∗ = limn→∞ xn.

Letting p to tend to infinity in the above inequality we get that

d(xn, x∗) ≤ [(a + b)/(1 − b)]n(1 − b)/[1 − (a + 2b)] δ(x0, Ti(x0)),

for every n ∈ N.
We have

δ(x∗, Ti(x∗)) ≤ d(x∗, x2n+2) + δ(x2n+2, Ti(x∗)) ≤
≤ d(x∗, x2n+2) + δ(Tj(x2n+1), Ti(x∗)) ≤
≤ d(x∗, x2n+2)+ad(x2n+1, x

∗)+b [δ(x2n+1, Tj(x2n+1))+δ(x∗, Ti(x∗))] ≤
≤ d(x∗, x2n+2)+ad(x2n+1, x

∗)+b [δ(Ti(x2n), Tj(x2n+1))+δ(x∗, Ti(x∗))] ≤
≤ d(x∗, x2n+2) + a d(x2n+1, x

∗)+

+ b {[(a + b)/(1 − b)]2n+1 δ(x0, Ti(x0)) + δ(x∗, Ti(x∗))},
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for all n ∈ N.
From this we get that

δ(x∗, Ti(x∗)) ≤ (1 − b)−1 {d(x∗, x2n+2) + a d(x2n+1, x
∗)+

+ b[(a + b)/(1 − b)]2n+1 δ(x0, Ti(x0))},
for each n ∈ N.

Letting n to tend to infinity it follows that δ(x∗, Ti(x∗)) = 0, so Ti(x∗) = {x∗}.
It is easy to verify that (CF )T1,T2 = (SF )T1 = (SF )T2 = {x∗}.

In order to prove that FTi = {x∗}, let x ∈ FTi . Then we have

d(x, x∗) ≤ δ(Ti(x), Tj(x∗)) ≤ a d(x, x∗) + b [δ(x, Ti(x)) + δ(x∗, Tj(x∗))] =

= a d(x, x∗) + b δ(x, Ti(x))

and therefore
d(x, x∗) ≤ b/(1 − a) δ(x, Ti(x)).

We also have

δ(x, Ti(x)) ≤ δ(Ti(x), Ti(x)) ≤ δ(Ti(x), Tj(x∗)) + δ(Tj(x∗), Ti(x)) =

= 2 δ(Ti(x), Tj(x∗)) ≤ 2 [a d(x, x∗) + b δ(x, Ti(x))] ≤
≤ 2[ab/(1−a)δ(x, Ti(x)) + bδ(x, Ti(x))] = 2b/(1−a)δ(x, Ti(x)).

From this we get that δ(x, Ti(x)) = 0, so Ti(x) = {x}, i. e. x ∈ (SF )Ti .
Let y0 ∈ X and yn+1 ∈ Ti(yn), for each n ∈ N. We have

d(y1, x
∗) ≤ δ(Ti(y0), Tj(x∗)) ≤

≤ a d(y0, x
∗) + b [δ(y0, Ti(y0)) + δ(x∗, Tj(x∗))] =

= a d(y0, x
∗) + b δ(y0, Ti(y0)).

Taking into account the above inequality we are able to write

δ(Ti(y0), Ti(y1)) ≤ δ(Ti(y0), Tj(x∗)) + δ(Tj(x∗), Ti(y1)) ≤
≤ a d(y0, x

∗) + b [δ(y0, Ti(y0)) + δ(x∗, Tj(x∗))]+

+ a d(x∗, y1) + b [δ(x∗, Tj(x∗)) + δ(y1, Ti(y1))] =

= a d(y0, x
∗) + b δ(y0, Ti(y0)) + a d(x∗, y1) + b δ(y1, Ti(y1)) ≤

≤ a d(y0, x
∗) + b δ(y0, Ti(y0)) + a d(x∗, y1) + b δ(Ti(y0), Ti(y1)) ≤

≤ (1 + a) [a d(y0, x
∗) + b δ(y0, Ti(y0))] + b δ(Ti(y0), Ti(y1))

and from here we get

δ(Ti(y0), Ti(y1)) ≤ 1 + a

1 − b
[a d(y0, x

∗) + b δ(y0, Ti(y0))].

Now we have

d(y2, x
∗) ≤ δ(Ti(y1), Tj(x∗)) ≤ a d(y1, x

∗) + b [δ(y1, Ti(y1)) + δ(x∗, Tj(x∗))] =

= a d(y1, x
∗) + b δ(y1, Ti(y1)) ≤ a d(y1, x

∗) + b δ(Ti(y0), Ti(y1)) ≤

≤ a + b

1 − b
[a d(y0, x

∗) + b δ(y0, Ti(y0))].
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Using this result we obtain

δ(Ti(y1), Ti(y2)) ≤ δ(Ti(y1), Tj(x∗)) + δ(Tj(x∗), Ti(y2)) ≤
≤ a d(y1, x

∗) + b [δ(y1, Ti(y1)) + δ(x∗, Tj(x∗))]+

+ a d(x∗, y2) + b [δ(x∗, Tj(x∗)) + δ(y2, Ti(y2))] =

= a d(y1, x
∗) + b δ(y1, Ti(y1)) + a d(x∗, y2) + b δ(y2, Ti(y2)) ≤

≤ a d(y1, x
∗) + b δ(Ti(y0), Ti(y1)) + a d(x∗, y2) + b δ(Ti(y1), Ti(y2)) ≤

≤ a + b

1 − b
(1 + a) [a d(y0, x

∗) + b δ(y0, Ti(y0))] + b δ(Ti(y1), Ti(y2))

and so

δ(Ti(y1), Ti(y2)) ≤ a + b

1 − b
· 1 + a

1 − b
[a d(y0, x

∗) + b δ(y0, Ti(y0))].

We have

d(y3, x
∗) ≤ δ(Ti(y2), Tj(x∗)) ≤ a d(y2, x

∗) + b [δ(y2, Ti(y2)) + δ(x∗, Tj(x∗))] =

= a d(y2, x
∗) + b δ(y2, Ti(y2)) ≤ a d(y2, x

∗) + b δ(Ti(y1), Ti(y2)) ≤

≤
(

a + b

1 − b

)2

[a d(y0, x
∗) + b δ(y0, Ti(y0))].

Using this result we obtain

δ(Ti(y2), Ti(y3)) ≤ δ(Ti(y2), Tj(x∗)) + δ(Tj(x∗), Ti(y3)) ≤
≤ a d(y2, x

∗) + b [δ(y2, Ti(y2)) + δ(x∗, Tj(x∗))]+

+ a d(x∗, y3) + b [δ(x∗, Tj(x∗)) + δ(y3, Ti(y3))] =

= a d(y2, x
∗) + b δ(y2, Ti(y2)) + a d(x∗, y3) + b δ(y3, Ti(y3)) ≤

≤ a d(y2, x
∗) + b δ(Ti(y1), Ti(y2)) + a d(x∗, y3) + b δ(Ti(y2), Ti(y3)) ≤

≤
(

a + b

1 − b

)2

(1 + a) [a d(y0, x
∗) + b δ(y0, Ti(y0))] + b δ(Ti(y2), Ti(y3)),

which implies

δ(Ti(y2), Ti(y3)) ≤
(

a + b

1 − b

)2 1 + a

1 − b
[a d(y0, x

∗) + b δ(y0, Ti(y0))].

By induction can be proved that the sequence (yn)n∈N has the following proper-
ties:

d(yn, x∗) ≤
(

a + b

1 − b

)n−1

[a d(y0, x
∗) + b δ(y0, Ti(y0))]

and

δ(Ti(yn−1), Ti(yn)) ≤
(

a + b

1 − b

)n−1 1 + a

1 − b
[a d(y0, x

∗) + b δ(y0, Ti(y0))],

for each n ∈ N
∗.

It follows that (yn)n∈N is a convergent sequence and its limit is x∗. �
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Corollary 3.1. Let (X, d) be a complete metric space and T1, T2 : X → Pb(X) two
multivalued operators for which there exist a, b ∈ R+, with a + 2b < 1, such that

δ(T1(x), T2(y)) ≤ a d(x, y) + b [δ(x, T1(x)) + δ(y, T2(y))],

for each x, y ∈ X .
Then FT1 = FT2 = (SF )T1 = (SF )T2 = {x∗} and

d(x0, x
∗) ≤ (1 + b)/(1 − a) min {δ(x0, T1(x0)), δ(x0, T2(x0))},

for each x0 ∈ X .

Proof. From Theorem 3.1 we have that FT1 = FT2 = (SF )T1 = (SF )T2 = {x∗}.
Let i ∈ {1, 2}. Let x0 ∈ X and x1 ∈ Ti(x0). We have

d(x0, x
∗) ≤ d(x0, x1) + d(x1, x

∗) ≤ δ(x0, Ti(x0)) + a d(x0, x
∗) + b δ(x0, Ti(x0)) =

= a d(x0, x
∗) + (1 + b) δ(x0, Ti(x0))

and so
d(x0, x

∗) ≤ (1 + b)/(1 − a) δ(x0, Ti(x0)).

�
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