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Some pairs of multivalued operators

ALINA SINTAMARIAN

ABSTRACT. We study the following problem.

Let (X, d) be a metric space and 7T1,7> : X — P(X) two multivalued operators. Determine
metric conditions on the pair of multivalued operators 77 and 7%, which imply that, for each z € X,
there exists a sequence of successive approximations for the pair (71,7%) or for the pair (75,71),
starting from x, which converges to a common fixed point or to a common strict fixed point of 73 and
T» and, for each € X, there exists a sequence of successive approximations of 7;, starting from z,
which converges to a fixed point or to a strict fixed point of T}, for each ¢ € {1, 2}.

1. INTRODUCTION

Let X be a nonempty set. We denote by P(X) the set of all nonempty subsets
of X,i. e P(X) ={Y |0 #Y C X} LetTy,75 : X — P(X) be two
multivalued operators. We denote by Fr, the fixed points set of 71, i. e. Fp, =
{z € X |z € Ti(z) }, by (SF)p, the strict fixed points set of T3, i. e. (SF)p, :=
{z € X |Ti(z) = {z} } and by (CF)p, 1, the common fixed points set of T} and
Ty, i. €. (CF)Tl,TQ = {x e X | x e Tl(l‘) ﬂTg(x) }

A sequence (x,)nen IS called sequence of successive approximations of 7 if zp € X
and x,,41 € Ty (z,,), foreachn € N.

A sequence (x, )nen i called sequence of successive approximations for the pair (77, T»)
if zg € X, Tont+1 € Tl(l'gn) and Tont2 € TQ(I‘QnJrl), foreach n € N.

Definition 1.1. Let (X,d) be a metric space and 7' : X — P(X) a multivalued
operator. We say that T is a weakly Picard multivalued operator iff for each z € X
and for every y € T'(x), there exists a sequence (z,,).en such that:
(i) xy =x, 21 = y;
(i) zp41 € T(xy), for each n € N*;
(iii) sequence (z,)nen IS convergent and its limit is a fixed point of 7.

For examples of weakly Picard multivalued operators see for instance [15],
[16].

Definition 1.2. Let (X, d) be a metric space and T, 7> : X — P(X) two multival-
ued operators. We say that {73, 7>} is a weakly Picard pair of multivalued operators
iff for each « € X and for every y € Ty (x) UTz(x), there exists a sequence (z, )nen
such that:

(i) zo =2, 21 =¥,
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(II) Ton+1 € Ti(xgn) and Ton42 € Tj($27l+1), for each n € N, where i7j S
{1,2},i # 5

(iii) sequence (z,)nen IS convergent and its limit is a common fixed point of
T, and T5.

For examples of weakly Picard pairs of multivalued operators see [18], [19],
[20].

Let (X, d) be a metric space.
We denote by P.(X) the set of all nonempty and closed subsets of X, i. e.
P,(X):={Y|Y € P(X),Yisaclosed set} and by P,(X) the set of all nonempty
and bounded subsets of X, i. e. P,(X) :={Y |Y € P(X),Yis abounded set}.
We also recall the functional D : P(X) x P(X) — Ry, defined by D(A, B) =
inf { d(a,b) |a € A, b€ B}, foreach A, B € P(X), and the generalized function-
alsd : P(X) x P(X) — Ry U{+o0}, defined by §(A, B) = sup{ d(a,b)| a € A,
be B}, foreach A,B € P(X),and H : P(X) x P(X) — R4 U {+0c}, defined by
H(A, B) = max {sup,c 4 D(a, B), supycz D(b, A)}, for each A, B € P(X).

The following property of the generalized functional H is well-known.

Lemmal.l. Let (X,d) be ametric space, A, B € P(X)and ¢ € R, ¢ > 1.
Then for every a € A, there exists b € B such that d(a,b) < ¢ H(A, B).

The purpose of this paper is to study the following problem.

Problem 1.1. Let (X,d) be a metric space and 77,75 : X — P(X) two multivalued
operators. Determine metric conditions on the pair of multivalued operators 737 and 715,
which imply that, for each x € X, there exists a sequence of successive approximations for
the pair (71, T%) or for the pair (T3, Ty), starting from z, which converges to a common
fixed point or to a common strict fixed point of 7, and 7% and, for each x € X, there
exists a sequence of successive approximations of 7;, starting from z, which converges to
a fixed point or to a strict fixed point of T, for each : € {1, 2}.

For singlevalued operators results of this type are given by Rus [13] and Dien
[4] and for multivalued operators results which answer to Problem 1.1 are pre-
sented by Dien [4] and Sintadmarian [18], [19], [20].

2. FIXED POINTS AND COMMON FIXED POINTS

Theorem 2.1. Let (X, d) be a complete metric space and 71,72 : X — Py(X) two
multivalued operators for which there exist a, b € R* , with @ + 2b < 1, such that

H(Ti(z), Ta(y)) < ad(x,y) + b [D(x, Ti(z)) + D(y, Ta(y))],

foreachz,y € X.

Then Fr, = Fr, € Py(X) and {T1,T>} is a weakly Picard pair of multivalued
operators.

If in addition we have a + 3b+ ab < 1, then T, and T are weakly Picard multivalued
operators.

Proof. From a result given by Popa in [10] it follows that F, = Fr, € P(X) and
that {77, T>} is a weakly Picard pair of multivalued operators. It is easy to verify
that Frr, and Fr, are closed sets.
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Further on we suppose that a + 3b + ab < 1 and we shall prove that 77 and 7>
are weakly Picard multivalued operators.
Leti,j € {1,2},i # jand ¢ € Rsuchthatl < ¢ < [\/(a+9b)(a+b) — (a +
3b)]/(2ab). Letzp € X and z; € T;(zo).
There exits y; € T;(x1) such that
d(z1,y1) < q H(Ti(20), Tj(21)) <
< qlad(xo,z1) + b D(z0, Ti(20)) + b D(w1, Tj(21))] <
< qlad(zo,z1)+bd(xo, 1) + b d(w1,y1)]
and so
d(xz1,y1) < qla+b)/(1 - ¢b) d(zg, z1).
Also there exits x5 € T;(x1) such that
d(y1,z2) < q H(Tj(z1), T;(21)) <
<glad(z1,z1)+b D(x1,Tj(z1)) + b D(z1,Ti(21))] <
< b [d(z1,y1) + d(z1, 22)]-
Using the triangle inequality and taking into account the above inequalities we

obtain
d(xlal‘Q) d(mlayl) +d(y1)l‘2) S
d

<
< d(x1,y1) + gb[d(z1,y1) + d(21,22)] =

(1+gb) d(z1,9y1) + gbd(x1,22) <
< q(a+0b)(1+qb)/(1 — gb) d(zo,21) + gb d(z1,22)
and so
d(z1,29) < qla+b)(1+qb)/(1 — gb)? d(zg, z1).
Now, there exists y2 € T;(z2) such that
d(@2,y2) < ¢ H(Ti(21), Tj(w2)) <
<gqlad(z1,z2) + b D(x1,Ti(21)) + b D(xa, Tj(x2))] <
< qlad(zy,z2) +bd(x1,22) + bd(x2,y2)]
and so
d(x2,y2) < qla+0b)/(1 — ¢b) d(z1, z2).
Also there exits z3 € T;(x2) such that
d(y2,z3) < q H(Tj(x2), Ti(x2)) <
< qlad(wz,x2) +b D(w2,Tj(22)) + b D(x2, Ti(x2))] <
< gb [d(z2,y2) + d(x2, 3)].
Using again the triangle inequality and taking into account the above two in-
equalities we get
d(x2,3) < d(x2,Y2) + d(y2, 23) < d(22,92) + qb [d(22, y2) + d(z2, 23)] =
= (14 gb) d(x2,y2) + gb d(z2,73) <
<qg(a+b)(L+qgb)/(1— qb) d(z1,22) + gb d(x2,x3)
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and so
d(x3,x3) < q(a+b)(1+ gb)/(1 — gb)* d(z1, x2).
By induction we obtain that there exists a sequence (z,, ),y Of successive approx-
imations of T}, starting from (xo, 1), with the property that

d(xnv anrl) S Q(a + b)(]- + qb)/(l - qb)2 d(xnflv xn)a
for each n € N*.
It follows that (z,,).cn IS @ convergent sequence, because (X, d) is a complete
metric space and g(a + b)(1 + ¢b) /(1 — gb)? < 1. Let z* = lim,,—, 00 Tn-
We have
D(z", Tj(z")) < d(z*, znt1) + D(@n1, Tj(2")) <
< d(@", wng1) + H(Ti(2n), Tj (27)) <
< d(@®, wng1) +ad(n, %) + 0 [D(wn, Ti(zn)) + D(x*, Tj(27))] <
< d(:c*, anrl) +a d(xnv x*) +0 d(:cn, anrl) +b D(:C*v Tj(:c*))v
foreach n € N.
From this we get

D(z",T;(z")) < (1 - b)~! [d(z", 2pi1) + a d(@y, ") + b d(@n, Tni1)],
for each n € N, which implies, by letting » to tend to infinity, that D(z*, T} (z*)) =
0. Taking into account the fact that T;(z*) is a closed set, we are able to write

that z* ¢ T;(«*), which means that z* ¢ Fr,. But Fr, = Frp, and therefore
z* € FTi- O

Remark 2.1. If we take @ = 0 in Theorem 2.1, then we obtain a result presented in
Theorem 2.2 from [18].

Theorem 2.2. Let (X, d) be a complete metric space and 71,72 : X — Py(X) two
multivalued operators. We suppose that:
(i) there exist a;,b; € Ry, with a; + 2b; < 1, such that for each z € X, any
uy € Th(z) and for all y € X, there exists u, € T>(y) so that

d(uzvuy) S a1 d(lE, y) + bl [d(lE, uz) + d(ya Uy)]»

(ii) there exist as,bs € R, with as + 2b2 < 1, such that for each x € X, any
uy € To(x) and for all y € X, there exists u,, € T (y) so that

d(uzv uy) < az d(:c, y) + b2 [d(:c, Uz) + d(y, Uy)]
Then Py, = Fr, € P, (X)and {T1,T>} is aweakly Picard pair of multivalued operators.

If in addition we have that b1 + by + max {a; + b1 + a1ba, as + b + azb1 } < 1, then
Ty and T are weakly Picard multivalued operators.

Proof. From Theorem 2.2 in [17] it follows that Fr, = Fp, € P,(X) and that
{T1,T>} is a weakly Picard pair of multivalued operators.

Further on we suppose that b; + by + max {a; + b1 + a1b2, a2 + ba + a2b1 } < 1.
We shall prove that 77 and T are weakly Picard multivalued operators.

Leti,j e {1,2},i+#j. Letzo € X and z; € Ty(zo).

It follows that there exits y, € T);(x1) such that

d(z1,y1) < a; d(xo, 1) + b; [d(20, 1) + d(21, Y1)
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and so
d(w1,y1) < (a; +b;)/(1 = b;) d(zo,71).
Also there exits x5 € T;(x1) such that
d(y1,z2) < aj d(z1,21) + b5 [d(z1,y1) + d(x1, 22)] = b, [d(x1, 1) + d(x1, 22)].
Using the triangle inequality we obtain
d(z1,72) < d(z1,91) +d(y1,22) < d(w1,91) + bj [d(@1,91) + d(21, 72)] =
= (1 +b;) d(w1,y1) +bj d(z1,22) <
< (14+0b5)(ai +b:)/(1—b;) d(zo, x1) + b; d(z1, 22)
and therefore
d(@1,22) < (1+b;)/(1 = b;)(ai + bi)/(1 = b;) d(zo, z1).
Now, there exists y2 € T;(z2) such that
d(x2,y2) < a; d(z1, 22) + b; [d(21, 22) + d(22,12)]
and so
d(w2,y2) < (a; +b;)/(1 = b;) d(z1,72).
Also there exits z3 € T;(x2) such that
d(y2, z3) < aj d(x2,72) + b; [d(22,y2) + d(22, 23)] =
= b; [d(x2,y2) + d(x2, x3)].
Using again the triangle inequality and taking into account the above two in-
equalities we get
d(z2,73) < d(22,y2) + d(y2, x3) < d(72,Y2) + bj [d(22,y2) + d(22,73)] =
= (14 b;) d(w2,y2) + b; d(z2,73) <
< (140b5)(a;i +b)/(1—b;) d(z1,x2) + b; d(z2,x3)
and therefore
(g, 3) < (14b5)/(1 = bj)(ai +b:)/(1 = b;) d(x1, x2).

By induction we obtain that there exists a sequence (z,, ),cn Of successive approx-
imations of T}, starting from (xo, 1), with the property that

d(xn, ni1) < (1+05)/(1 = bj)(ai +b:)/(1 = bi) d(wn—1,2n),
for each n € N*.
It follows that (x,,).cn iS @ convergent sequence, because (X, d) is a complete
metric space and (1 +b;)/(1 — b;)(a; + b;)/(1 — b;) < 1. Let z* = lim;,— 00 @
From z,, € T;(z,—1) we have that there exists u,, € T;(z*) such that
d(x'm Un) < a; d(mn—h $*) +b; [d(mn—lv xn) + d(x*; un)]a

for all n € N*.
Using the triangle inequality we obtain

d(x*,up) < d(z*,z,) + d(@n, un) <
<d(z*,zn) + a; d(Tp-1,2") + b; [d(xp-1,zn) + d(z, uy)]
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and so
d(z* up) < (1— bi)_1 [d(z*, zp) + a; d(xp—1,2%) + b; d(Tp—1, )],

forall n € N*,
This implies that d(z*, u,,) — 0, as n — oo. Since u,, € T;(z*), for all n € N* and
Tj(x*) is a closed set, it follows that z* € T;(z*). Therefore 2* € Fr, = Fr,. O

Remark 2.2. It is not difficult to verify that the sequence (x,),en from the proof of
Theorem 2.2 has the property that

d(zn, %) < Ltb; aidths (1=5:){1 ;)
1—bj 1—bi 1—ai—2bi—bj—a,-bj
foreach n € N.

d(zo, 1),

Remark 2.3. If we take a = 0 in Theorem 2.2, then we obtain a result presented in
Theorem 2 from [19].

3. STRICT FIXED POINT AND COMMON STRICT FIXED POINT

There are many strict fixed point and common strict fixed point theorems
for multivalued operators which satisfy metric conditions in which functional §
appears (see, for example, Reich [11], Cirié [2], [3], Rus [12], Avram [1], Fisher [5],
Khan-Khan-Kubiaczyk [6], Dien [4], Kubiaczyk [8], Khan-Kubiaczyk [7]).

The following result gives an answer to Problem 1.1 for two multivalued op-
erators which satisfy a metric condition in which functional § appears.

Theorem 3.1. Let (X,d) be a complete metric space and 77,75 : X — P(X) two
multivalued operators for which there exist a, b € R, with a + 2b < 1, such that

§(Th(x), To(y)) < ad(z,y) + b [0(z, T1(x)) + 0(y, T2(y))],
foreachz,y € X.
Then Fp, = Fr, = (SF)p, = (SF)p, = {z*}and, foreach ¢, j € {1, 2}, withi # j,
any sequence (x,, )nen Of successive approximations for the pair (7;,7;) converges to x*
and

d(xo, Ti (o)),

d(wn, z*) < (“+b) 171_b

1-0b (a + 2b)
forevery n € N.

Also, for each i € {1,2}, any sequence (y.)nen Of successive approximations of T;
converges to z* and

a+b
1-b

d(yn,fc*)é( ) : la d(yo, ™) 4 b d(yo, Ti(v0))],

for every n € N*.

Proof. The fact that 77 and 7> have a unique common fixed point, which is a strict
fixed point both of 77 and of T5, it is a known result. In order to prove some other
parts of the conclusion we shall take again the proof.

Leti,j € {1,2},i# j. Letzg € X, 22,1 € Ti(22n—2) and x, € Tj(22,—1), fOr
eachn € N*,
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We have
§(Ti(xo), Tj(21)) < ad(wo, 1) + b [6(x0, Ti(w0)) +5($1, (1)) <
< a 0(xo, Ty(w0)) + b [6(z0, Ti(x0)) + 0(T3(wo), Tj(21))] =
= (a+0b) é(xo, Ti(x ))+b5(T( ) T;(z1))
and so

d(@1,x2) < 6(T;i(20), Tj(21)) < (a+b)/(1 = b) 6(zo, Ti(20))-
For each n € N* we have
(T (xan—1),Ti(z2n)) < ad(zan—1,x2n)+b[0(T2n—1,Tj(x2n—1))+0(z2n, Ti(z2,))] <
< ad(Ti(w2n—2), Tj(x2n—-1)) +0 [0(T3(v2n—2), Tj(w20n-1)) +6(T(22n-1), Ti(220))] =
= (a+b) 0(Ti(z2n—2), Tj(x2n—1)) + b 6(Tj(w2n-1), Ti(w2n))
and from here we get that
d(T2n, Tant1) < 0(Tj(v2n—1), Ti(w20)) < (a+b)/(1 = b) 0(Ti(z2n—2), Tj(w2n-1))-
Also, for each n € N* we have
§(Ti(z2n), Tj(T2n+1)) < ad(@2n, T2011)+0[6(T2n, Ti(720))+6 (22041, Tj(T2n41))] <
< ad(Tj(z2n—1), Ti(z2n)) + b [0(Tj(z2n-1), Ti(22n)) + 0(Ti(22n), Tj(22n41))] =
= (a+b) 0(Tj(z2n—1), Ti(z2n)) + b 8(Ti(22n), Tj(22041))
and so
d(@2n+1, Tant2) < 6(T5(22n), Tj(22n+1)) < (a+0)/(1 = b) 6(Tj(z2n—1), Ti(z2n))-
Now, we are able to write that
d(@n, Tn+1) < [(a+)/(1 = )" 6(zo, Ti(20)),

for each n € N.
Let p € N*. Using the triangle inequality we obtain

d(n, Tnip) < [(a+0)/(1=0)]"(1 = b)/[1 = (a+2b)] 6(xo, Ti(0)),

for each n € N. It follows that (z,,),en is @ Cauchy sequence and so a convergent
sequence, because (X, d) is a complete metric space and (a + b)/(1 — b) < 1. Let
¥ = lim,,_ o0 Tp,.

Letting p to tend to infinity in the above inequality we get that

d(an, z%) <[(a+b)/(1=0)]"(1 = b)/[L = (a + 2b)] 6(z0, Ti(0)),

for every n € N.
We have

6(z", Ti(2")) < d(z”, want2) + 0(@2n42, Ti2")) <

< d(@", want2) + 6(Tj(w2n41), Ti(2")) <

< d(@", pont2) +ad(@on1, 27)+0 [0(z2n41, Tj (22n41)) +0(2", Ti(z"))] <
< d(z", xont+2) +ad(Tont1, 2°)+0[0(Ti(z2n), Tj(@ont1))+0(z", T;(z))] <
< d( ) + a d(zani1,2")+

+b {{(a+0)/(1=b)*" " 8z, Ti(x0)) + 8(z*, Ti(*))},

*
T, Tan+2
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foralln € N.
From this we get that

§(z*, Ti(x")) < (1= b)"" {d(a", x2n12) + a d(wani1,2%)+
+b[(a +0)/(1 = )" (w0, Ti(w0))},
for each n € N.
Letting n to tend to infinity it follows that 6(z*, T;(2*)) = 0, so T;(z*) = {z*}.
Itis easy to verify that (CF)p, 1, = (SF)n, = (SF)p, = {z*}.
In order to prove that Frr, = {«*}, let x € Fr,. Then we have
d(z,2") < 6(Ti(2), Tj(2")) < ad(z,2”) + b [0(z, Ti(x)) + 0(2", T;(27))] =
=ad(x,x")+bd(x, T;(x))
and therefore
d(z,2*) < b/(1 - a) 6(x, T;(x)).
We also have
6(z, Ti(x)) < 6(Ti(x), Ti(x)) < 6(Ti(x), Tj(2")) + 6(T;(x"), Ti(x)) =
=26(Ti(z), Tj(x )) <2ad(z,z") +b0(z, Ti(x))] <
< 2[ab/(1—a)d(z, Ti(x)) + bd(z, Ti(x))] = 2b/(1—a)é(z, Ti(x)).
From this we get that §(z, T;(z)) = 0,50 T;(z) = {z},i. e. z € (SF)7,.
Letyo € X and y,,+1 € Ti(yn), for each n € N. We have
d(yr, ") < 0(Ti(yo), T;(2")) <
< ad(yo, ") + b [6(yo, Ti(yo)) + 6(z", Tj(2"))] =
=ad(yo,z*) + b (Yo, Ti(v0))-
Taking into account the above inequality we are able to write

8(Ti(yo), Ti(yr)) < 0(Ti(yo), Tj(«™)) + 6(T;(x7), Ti(yr)) <

< ad(yo, =) + b [0(yo, Ti(yo)) + d(z*, Tj(x"))]+

+ad@”,y) + 0[5, (") + 6(yr, Ti(yn))] =

= ad(yo,z") + b 6(yo, Tiyo)) + a d(x”, y1) + b (y1, Ti(y1)) <

< ad(yo, ") +b0(yo, Ti(yo)) + a d(a”,y1) + b 6(Ti(yo), Ti(y1)) <

< (1+a) [ad(yo, z*) +bd(yo, Ti(yo))] + b (Ti(yo), Ti(y1))

and from here we get

14+a
1-b

(Ti(yo), Ti(y1)) < [a d(yo,z™) + b 8(yo, Ti(yo))]-

Now we have
d(y2,2*) < 6(Ti(y1), Tj(x")) < ad(ys,z™) + b [0(y1, Ti(y1)) + 0(z™, Tj(z"))] =
=ad(y,z") +bd(y1, Ti(y1)) < ad(yr, x") +b(T;(yo), Ti(y1)) <

a+b[ad(yo7 ") +06(yo, Ti(yo))]-

<
—1-b
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Using this result we obtain

6(Ti(y1), Ti(y2)) < 6(Ti(yr), Tj(2™)) + 6(T5(2"), Ti(y2)) <
<ad(yr,z") +b[6(y1, Ti(y1)) + 6(a", Tj (")) ]+

+ad(z,y2) + b [6(z", Tj(z")) + 5(2/27 i(y2))] =

=ad(y, *)+b5(y17 ( 1) +ad(@®,y2) +0(y2, Ti(y2)) <

< ad(yy,z") +b0(Ti(yo), Tily ))+ad( “y2) + 0 0(Ti(yr), Ti(yz)) <

0 (14 a) fa (o, )+ (o, Tio))] + b O(T(wr). Tiaw)

<

and so
a+b 1+a

§(Ti(y1), Ti(y2)) < 1-b 1-0b

[a d(yo,2”) + b 6(yo, Ts(yo))]-

We have

d(ys,z") < 6(Ti(y2), Tj(2z")) < ad(yz,z") + b [0(y2, Ti(y2)) + 0(2", T;(2"))] =
=ad(y2, v") + b 0(y2, Ti(y2)) < ad(yz, ™) + b d(Ti(y1), Ti(ye)) <

< (£52) . a") + bt T

Using this result we obtain
6(Ti(y2), Tiys)) < 6(Ti(y2), T;(x7)) + 6(T;(z"), Ti(ys)) <

< ad(yz, @) +b[6(y2, Ti(y2)) + d(z”, Tj(x™))]+

+ad(z”,ys) +b[0(z", Tj(z")) + 5(3/37 i(y3))] =

=ad(yz, )+b5(y27 i(y2)) +ad(z”,ys) +b(ys, Tiys)) <
<ad(y2, ") +b0(Ti(y1), Ti(y2)) + ad(@™,y3) + b d(Ti(y2), Ti(ys)) <

- (61“2) (1+a) [ad(yo, a) +b 8(y0, Ti(yo))] +b 6(Ti(92), Ta(w)).

which implies

a+b)21+a

0(Ti(y2), Ti(ys)) < (lb 1-b

[a d(yo, z") + b (yo, Ti(yo))]-
By induction can be proved that the sequence (y,)»en has the following proper-
ties:

L) adne) + 300 i)

d(yn, ") < <

and

a—i—b)"_l 1+a

6(E(yn_1),ﬂ(yn)) < (lb 1-b

for each n € N*,
It follows that (y,,).cn is a convergent sequence and its limit is z*. O

[a d(yo,z*) + b 6(yo, T:(v0))],
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Corollary 3.1. Let (X,d) be a complete metric space and 71,72 : X — Py(X) two
multivalued operators for which there exist a, b € R, with a + 2b < 1, such that

6(Th(x), To(y)) < ad(z,y) + b [6(z, T1(x)) + 5(y, T2(y))];

foreachz,y € X.
Then F’T1 = F‘T2 = (SF)Tl = (SF)T2 = {$*} and

d(zo,2") < (1+0)/(1 — a) min {d(zo, T1(x0)), 6(x0, T2(0))},
for each zg € X.

Proof. From Theorem 3.1 we have that Fp, = Fp, = (SF)p, = (SF)r, = {z*}.
Leti € {1,2}. Letzy € X and z; € T;(x0). We have

d(zg,z") < d(xo,z1) + d(z1,2") < §(x0, Ti(x0)) + a d(xo, %) + b §(x0, Ti(x0)) =

=a d(zg,z") + (1 +b) §(xo, T;(xg))
and so
d(zg,z*) < (140b)/(1 —a) §(zo, Ti(x0)).
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