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On S3-actions on spin 4-manifolds

XIMIN LIU

ABSTRACT. Let X be a smooth, closed, connected spin 4-manifold with b1(X) = 0 and signature
σ(X). In this paper we use Seiberg-Witten theory to prove that if X admits an even type symmet-
ric group S3 action preserving the spin structure, then b+

2 (X) ≥ |σ(X)|/8 + 2 under some non-
degeneracy conditions.

1. INTRODUCTION

Let X be a smooth, closed, connected spin 4-manifold. We denote by b2(X)
the second Betti number and denote by σ(X) the signature of X . The following
conjecture, credited to Kas and Kirby [7], is well known and has been called the
11/8 - conjecture:

(1.1) b2(X) ≥ 11
8
|σ(X)|.

All complex surfaces and their connected sums satisfy the conjecture (see [10]).
From the classification of unimodular even integral quadratic forms and the

Rochlin’s theorem, for the choice of orientation with non-positive signature the
intersection form of a closed spin 4-manifold X is

−2kE8 ⊕ mH, k ≥ 0,

where E8 is the 8 × 8 intersection form matrix and H is the hyperbolic matrix(
0 1
1 0

)
.

Thus, m = b+
2 (X) and k = −σ(X)/16 and so the inequality (1) is equivalent

to m ≥ 3k. Since K3 surface satisfies the equality with k = 1 and m = 3, the
coefficient 11/8 is optimal, if the 11/8 - conjecture is true.

Donaldson has proved that if k > 0 then m ≥ 3 [4]. In early 1995, using the
Seiberg-Witten theory introduced by Seiberg and Witten [12], Furuta [8] proved
that

(1.2) b2(X) ≥ 5
4
|σ(X)| + 2.

This estimate has been dubbed the 10/8 - theorem. In fact, if the intersection form
of X is definite, i.e., m = 0, then Donaldson proved that b2(X) and σ(X) are zero
[4, 5]. Thus, Furuta assumed that m is not zero. Inequality (1.2) follows by a
surgery argument from the non-positive signature, b1(X) = 0 case:
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Theorem 1.1. (Furuta [8]). Let X be a smooth spin 4-manifold with b1(X) = 0 and
non-positive signature. Let k = −σ(X)/16 and m = b+

2 (X). Then, if m �= 0,

2k + 1 ≤ m.

Throughout this paper we will assume that m is not zero and b1(X) = 0, unless
stated otherwise.

A Z/2p-action is called a spin action if the generator of the action τ : X → X
lifts to an action τ̂ : PSpin → PSpin of the Spin bundle PSpin. Such an action is of
even type if τ̂ has order 2p and is of odd type if τ̂ has order 2p+1.

In [2], Bryan (see also [6]) improved the above bound by p under the assump-
tion that X has a spin odd type Z/2p-action satisfying some non-degeneracy con-
ditions analogous to the condition m �= 0. More precisely, he proved

Theorem 1.2. (Bryan [2]). Let X be a smooth, closed, connected spin 4-manifold with
b1(X) = 0. Assume that τ : X → X generates a spin smooth Z/2p-action of odd type.
Let Xi denote the quotient of X by Z/2i ⊂ Z/2p. Then

2k + 1 + p ≤ m

if m �= 2k + b+
2 (X1) and b+

2 (Xi) �= b+
2 (Xj) > 0 for i �= j.

In the paper [9], Kim gave the same bound for smooth, spin, even type Z/2p-
action on X satisfying some non-degeneracy conditions analogous to Bryan’s.

The purpose of this paper is to study the spin symmetric group S3 actions of
even type on spin 4-manifolds, we prove that b+

2 (X) ≥ |σ(X)|/8 + 2 under some
non-degeneracy conditions.

We organize this paper as follows. In section 2, we give some preliminaries to
prove the main theorems. We refer the readers to the Bryan’s excellent exposition
[2] for more details. In section 3, we we use equivariant K-theory and represen-
tation theory to study the G-equivariant properties of the moduli space. In the
last section we give our main result.

2. NOTATIONS AND PRELIMINARIES

We assume that we have completely every Banach spaces with suitable Sobolev
norms. Let S = S+ ⊕ S− denote the decomposition of the spinor bundle into the
positive and negative spinor bundles. Let D : Γ(S+) → Γ(S−) be the Dirac op-
erator, and ρ : Λ∗

C → EndC(S) be the Clifford multiplication. The Seiberg-Witten
equations are for a pair (a, φ) ∈ Ω1(X,

√−1R) × Γ(S+) and they are

Dφ + ρ(a)φ = 0, ρ(d+a) − φ ⊗ φ∗ +
1
2
|φ|2id = 0, d∗a = 0.

Let
V = Γ(

√−1Λ1 ⊕ S+),
W ′ = Γ(S− ⊕√−1su(S+) ⊕√−1Λ0).

We can think of the equation as the zero set of a map

D + Q : V → W,

where D(a, φ) = (Dφ, ρ(d+a), d∗a)), Q(a, φ) = (ρ(a)φ, φ⊗φ∗− 1
2
|φ|2id, 0), and W

is defined to be the orthogonal complement to the constant functions in W ′.
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Now we describe the group of symmetries of the equations. Define Pin(2) ⊂
SU(2) to be the normalizer of S1 ⊂ SU(2). Regarding SU(2) as the group of unit
quaternions and taking S1 to be elements of the form e

√−1θ, then Pin(2) consists
of the form e

√−1θ or e
√−1θJ . Define the action of Pin(2) on V and W as follows:

Since S+ and S− are SU(2) bundles, Pin(2) naturally acts on Γ(S±) by multipli-
cation on the left. Z/2 acts on Γ(Λ∗

C) by multiplication by ±1 and this pulls back
to an action of Pin(2) by the natural map Pin(2) → Z/2. A calculation shows that
this pullback also describes the induced action of Pin(2) on

√−1su(S+). Both D
and Q are seen to be Pin(2) equavariant maps.

If X is a smooth closed spin 4-manifold. Suppose that X admits a spin struc-
ture preserving action by a compact Lie group ( or finite group) G′. We may
assume a Riemannian metric on X so that G′ acts by isometries. If the action is of
even type, Both D and Q are G = Pin(2) × G′ equavariant maps.

Now we define Vλ to be the subspace of V spanned by the eigenspaces D∗D
with eigenvalues less than or equal to λ ∈ R. Similarly, define Wλ using DD∗.
The virtual G-representation [Vλ ⊗ C] − [Wλ ⊗ C] ∈ R(G) is the G-index of D
and can be determined by the G-index and is independent of λ ∈ R, where R(G)
is the complex representation of G. In particular, since V0 = KerD and W0 =
CokerD ⊕ Coker d+, we have

[Vλ ⊗ C] − [Wλ ⊗ C] = [V0 ⊗ C] − [W0 ⊗ C] ∈ R(G).

Note that Coker d+ = H2
+(X, R).

The symmetric group S3 is the group of all permutations of a set {a, b, c} hav-
ing three elments. It has 4 elements, partitioned into 3 conjugacy classes:

the identity element 1;
3 transpositions: (ab), (ac), (bc);
2 elements of order 3: (abc), (acb).
And we have the following character table for S3 [11]:

1 x1 = (ab) x2 = (abc)
χ0 1 1 1
θ 1 −1 1
η 2 0 −1

3. THE INDEX OF D AND THE CHARACTER FORMULA FOR THE K -THEORETIC
DEGREE

The virtual representation [Vλ,C ] − [Wλ,C ] ∈ R(G) is the same as Ind(D) =
[kerD] − [CokerD]. Furuta determines Ind(D) as a Pin(2) representation; denot-
ing the restriction map r : R(G) → R(Pin(2)), Furuta shows

r(Ind(D)) = 2kh− m1̃

where k = |σ(X)|/16 and m = b+
2 (X). Thus Ind(D) = sh − t1̃ where s and t

are polynomials such that s(1) = 2k and t(1) = m. we suppose σ(X) ≤ 0 in the
following. For spin S3 action of even type, G = Pin(2) × S3, and we could write

s(θ, η) = a0 + b0θ + c0η, and (θ, η) = a1 + b1θ + c1η,
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such that a0 + b0 + 2c0 = 2k and a1 + b1 + 2c1 = m.
The Thom isomorphism theory in equivariant K-theory for a general compact

Lie group is a deep theory proved using elliptic operator [1]. The subsequent
character formula of this section uses only elementary properties of the Bott class.

Let V and W be complex Γ representations for some compact Lie group Γ.
Let BV and BW denote balls in V and W and let f : BV → BW be a Γ-map
preserving the boundaries SV and SW . By definition KΓ(V ) is KΓ(BV, SV ), and
by the equivariant Thom isomorphism theorem, KΓ(V ) is a free R(Γ) module
with generator the Bott class λ(V ). Applying the K-theory functor to f we get a
map

f∗ : KΓ(W ) → KΓ(V )

which defines a unique element αf ∈ R(Γ) by the equation f∗(λ(W )) = αf ·λ(V ).
The element αf is called the K-theoretic degree of f .

Let Vg and Wg denote the subspaces of V and W fixed by an element g ∈ Γ
and let V ⊥

g and W⊥
g be the orthogonal complements. Let fg : Vg → Wg be the

restriction of f and let d(fg) denote the ordinary topological degree of fg (by
definition, d(fg) = 0 if dim Vg �= dim Wg). For any β ∈ R(Γ), let λ−1β denote the
alternating sum Σ(−1)iλiβ of exterior powers.

T. tom Dieck proves the following character formula for the degree αf :

Theorem 3.3. Let f : BV → BW be a Γ-map preserving boundaries and let αf ∈ R(Γ)
be the K-theory degree. Then

trg(αf ) = d(fg)trg(λ−1(W⊥
g − V ⊥

g ))

where trg is the trace of the action of an element g ∈ Γ.

This formula is very useful in the case where dim Vg �= dim Wg so that d(fg) = 0.
Recall that λ−1(Σiairi) =

∏
i(λ−1ri)ai and that for a one dimensional represen-

tation r, we have λ−1r = (1− r). A two dimensional representation such as h has
λ−1h = (1 − h + Λ2h). In this case, since h comes from an SU(2) representation,
Λ2h = det h = 1 so λ−1h = (2 − h).

In the following by using the character formula to examine the K-theory de-
gree αfλ

of the map fλ : BVλ,C → BWλ,C coming from the Seiberg-Witten equa-
tions. We will abbreviate αfλ

as α and Vλ,C and Wλ,C as just V and W . Let
φ ∈ S1 ⊂ Pin(2) ⊂ G be the element generating a dense subgroup of S1, and
recall that there is the element J ∈ Pin(2) coming from the quaternion. Note that
the action of J on h has two invariant subspaces on which J acts by multiplication
with

√−1 and −√−1.

4. THE MAIN RESULT

Consider α = αfλ
∈ R(Pin(2)× S3), it has the following form

α = α0 + α̃01̃ +
∞∑

i=1

αihi.

where αi = mi + niθ + liη, i ≥ 0 and α̃0 = m̃0 + ñ0θ + l̃0η. Denote by < xi > the
subgroup of S3 generated by xi, i = 1, 2.
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Since φ acts non-trivially on h and trivially on 1̃, so

dim(V (θ, η)h)φ − dim(W (θ, η)1̃)φ = −(a1 + b1 + 2c1) = −m = −b+
2 (X).

So if b+
2 (X) > 0, trφα = 0.

Since φx1 acts non-trivially on V (θ, η)h, φ acts trivially on 1̃ and φx1 acts triv-

ially on a1, non-trivially on b1θ, and acts on c1η as
(

1
−1

)
, so we have

dim(V (θ, η)h)φx1 − dim(W (θ, η)1̃)φx1 = −(a1 + c1) = −b+
2 (X/ < x1 >).

So if b+
2 (X/ < x1 >) > 0, trφx1α = 0.

Finally since φx2 acts non-trivially on V (θ, η)h, φ acts trivially on 1̃ and φx2

acts trivially on a1 and b1θ, and acts on c1η non-trivially. So we have

dim(V (θ, η)h)φx2 − dim(W (θ, η)1̃)φx2 = −(a1 + b1) = −b+
2 (X/ < x2 >).

So if b+
2 (X/ < x2 >) > 0, trφx2α = 0.

Now if b+
2 (X) > 0, b+

2 (X/ < x1 >) > 0, b+
2 (X/ < x2 >) > 0, we have

trφα = trφx1α = trφx2α = 0 which implies that

0 = trφα = trφ(α0 + α̃01̃ +
∞∑

i=1

αihi)

= trφα0 + trφα̃0 +
∞∑

i=1

trφαi(φi + φ−i)

= (m0 + n0 + l0) + (m̃0 + ñ0 + l̃0) +
∞∑

i=1

trφαi(φi + φ−i),

and so on. From these equations we have α0 = −α̃0 and αi = 0, i ≥ 0, that is
α = α0(1 − 1̃).

Next we calculate trJα. Since J acts non-trivially on both h and 1̃, dimVJ =
dimWJ = 0 so d(fJ ) = 1 and the character formula gives trJ (α) = trJ(λ−1(m1̃−
2kh)) = trJ ((1 − 1̃)m(2 − h)−2k) = 2m−2k using trJh = 0 and trJ 1̃ = −1.

Now we calculate trJx1α. Since Jx1 acts non-trivially on V (θ, η)h. J acts on 1̃
by multiplication by -1, and x1 acts trivially on a1, on b1θ by multiplication by -1

and acts on c1η as
(

1
−1

)
. So

dim(V (θ, η)h)Jx1 −dim(W (θ, η)1̃)Jx1 = −(b1 +c1) = −(b+
2 (X)−b+

2 (X/ < x1 >)).

So if b+
2 (X/ < x1 >) �= b+

2 (X), trJx1α = 0.
At last, we look at trJx2α. Since Jx2 acts non-trivially on both V (θ, η)h and

W (θ, η)1̃, so d(fJx2) = 1. By tom Dieck formula, we have

trJx2(α) = trJx2 [λ−1((a1 + b1θ + c1η)1̃ − (a0 + b0θ + c0η)h)]

= trJx2 [(1 − 1̃)a1(1 − θ1̃)b1(1 − η1̃)c1(1 − h)−a0(1 − θh)−b0(1 − ηh)−c0 ]

= 2a12b1(1 + ω)c1(1 + ω2)c12−a02−b0(1 + ω)−c0(1 + ω2)−c0

= 2(a1+b1)−(a0+b0).
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By direct calculation we have

(4.3) tr1α0 = m0 + n0 + 2l0 = 2m−2k−1

(4.4) trx1α0 = m0 − n0

(4.5) trx2α0 = m0 + n0 − l0 = 2(a1+b1)−(a0+b0)−1.

Here we use 0 = trJxα = trx(2 · α0) = 2 · trxα0.
So if b1 + c1 = b+

2 (X) − b+
2 (X/ < x1 >) �= 0, trx2α0 = m0 − n0 = 0, with the

equation (4.3), we get 2(m0 + l0) = 2m−2k−1, that is m0 + l0 = 2m−2k−2. So we
have the following theorem.

Theorem 4.4. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-positive
signature. Let k = −σ(X)/16 and m = b+

2 (X). If S3 acts on X such that the action is
spin even type. Then 2k + 2 ≤ m if b+

2 (X) > 0, b+
2 (X/ < x1 >) > 0, b+

2(X/< x2 >)
> 0, and b+

2 (X) �= b+
2 (X/ < x1 >).

Remark 4.1. From the Theorem, we know that the genuine K3 surface can not
admit a nontrivial spin S3 action of even type. In fact, the standard action of S3

on Fermat quartic surface X which is defined by the equation
3∑

i=0

z4
i = 0 in CP 3

which is given as permutation of variables is not even type, since the fixed point
set is not isolated.
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