CARPATHIAN J. MATH. **22** (2006), No. 1 - 2, 1 - 5

On finite groups of whose all proper subgroups are *w***-cyclic**

HOSSEIN ANDIKFAR AND ALI REZA ASHRAFI

ABSTRACT. A finite group *G* is called *w*-cyclic, if *G* has at most *d* subgroup, for all divisors *d* of |G|. In this paper, we study the structure of a finite group all of whose proper subgroups are *w*-cyclic. In the case that *G* has prime power order, we prove that such a group is elementary abelian of order p^2 , *p* is prime, the quaternion group Q_8 or the generalized quaternion group Q_{16} . We prove that if such a *G* is not a *p*-group, then *G* is solvable and in some cases, we obtain the structure of *G*. Finally, we characterize the finite groups with w-cyclic proper quotient groups.

1. INTRODUCTION

Let *G* be a finite group. It is a well known fact that if the equation $x^n = 1$ has at most *n* solutions, for all divisors *n* of |G|, then *G* must be cyclic. Indeed, *G* is cyclic if the number of elements of order *n* does not exceed *n*, for any natural number *n*.

In this connection we might ask about the structure of G, if the number of subgroups of order n of G is at most n, for all positive integers n.

Definition 1.1. A finite group *G* is called weak cyclic, for abbreviation *w*-cyclic, if the number of subgroups of order *n* of *G* is at most *n*, for any positive integer *n*. Furthermore, if any proper subgroup of *G* is *w*-cyclic, then *G* is called w^* -cyclic.

It is clear that if *G* is *w*-cyclic, then all of proper subgroups of *G* is also *w*-cyclic. Therefore, if *G* is *w*-cyclic, then *G* is w^* -cyclic, but its converse is not generally true. To see this, it is enough to consider the generalized quaternion group Q_{16} of order 16. This group has exactly five subgroups of order 4 and so it is not *w*-cyclic.

In this paper, we obtain the structure of finite w^* -cyclic groups. Furthermore, we characterize the finite groups in which any proper quotient is *w*-cyclic. We prove that such a group is solvable and investigate the structure of *G*.

Throughout this paper, only finite groups are treated. Our notation are standard and taken mainly from [2] and [3].

2. NILPOTENT w-Cyclic Group

In this section we will classify the w^* -cyclic *p*-groups, which will also be of use latter. Moreover, we characterize the w^* -cyclic group with an abelian Sylow 2-subgroup.

The proof of the next lemma is elementary.

Received: 25.11.2005; In revised form: 16.05.2006; Accepted: 01.11.2006 2000 *Mathematics Subject Classification:* 20D10, 20D15, 20D06.

Key words and phrases: Finite group, w-cyclic group, W*-cyclic group.

Hossein Andikfar and Ali Reza Ashrafi

Lemma 2.1. Let G be an abelian w^* -cyclic group. Then G is cyclic or $G \cong Z_p \times Z_p$, for some prime p.

Lemma 2.2. Let G be a w^* -cyclic group with an abelian Sylow 2-subgroup. Then G is metacyclic.

Proof. Suppose p is a prime divisor of |G|. Then G has exactly one subgroup of order p. Therefore, every Sylow subgroup of G is cyclic, as desired.

The following theorem is crucial throughout this paper.

Theorem 2.1. Let G be a w^* -cyclic p-group. Then G is isomorphic to a cyclic p-group, the elementary abelian group of order p^2 , the quaternion group Q_8 or the generalized quaternion group Q_{16} .

Proof. Suppose *G* is abelian. Then by Lemma 2.1, *G* is a cyclic *p*-group or the elementary abelian group of order p^2 . Thus, it is enough to investigate the non-abelian case. On the other hand, it is well known that a *p*-group which contains only one subgroup of order *p* is cyclic or a generalized quaternion group (see Theorem 12.5.2 of [1]). Therefore, maximal subgroups of *G* are cyclic or generalized quaternion. We proceed in two steps.

Step 1. If every maximal subgroup of G is abelian, then $G \cong Q_8$. Since G is not cyclic, it has at least two maximal subgroups, say M and K. By Lemma 2.1, M and K are cyclic and G = MK. Set $X = M \cap K$. We can see that $M \leq C_G(X)$, $K \leq C_G(X)$ and so $G = MK \leq C_G(X)$. Thus $X \leq Z(G)$ and $|G : Z(G)|||G : X| = p^2$. But, G is not abelian, so $X = Z(G) = \Phi(G)$. Now we assume that T is a subgroup of order p in G. Then there exists a maximal subgroup Y of G which contains T. Since Y is cyclic, $T \leq \Phi(G)$. Therefore, G has exactly one subgroup of order p and so G is isomorphic to the generalized quaternion group Q_{2^n} . But $|Z(Q_{2^n})| = 2$ and $|Q_{2^n} : Z(Q_{2^n})| = 4$, so $G \cong Q_8$, as desired.

Step 2. If *G* has a non-abelian maximal subgroup, then $G \cong Q_{16}$. Suppose *M* is a non-abelian maxiaml subgroup of *G*. If every maximal subgroup of *M* is abelian, then by Step 1, $M \cong Q_8$. Since $M \trianglelefteq G$, $Z(M) \trianglelefteq G$. Now, if *S* is another subgroup of *G* of order 2, then H = SZ(M) is a subgroup of *G* with three subgroup of order 2, a contradiction. Therefore, *G* has exactly one subgroup of order 2 and so $G \cong Q_{16}$. Otherwise, with an inductive argument, we can assume that *M* has a subgroup *N* isomorphic to Q_8 . Suppose *T* is a subgroup of *M* with |T : N| = 2. Using a similar arqument as in above, we can show that $T \cong Q_{16}$. Therefore, *G* has a proper subgroup isomorphic to Q_{16} . But, Q_{16} has exactly five subgroups of order 4, which is a contradiction. This completes the proof.

Corollary 2.1. If G is a w-cyclic p-group, then G is cyclic or it is isomorphic to Q_8 .

Corollary 2.2. There is no finite w^* -cyclic group G such that |G| > 16 and a Sylow 2-subgroup of G is isomorphic to Q_{16} .

Proof. Suppose |G| > 16 and a Sylow 2-subgroup of *G* is isomorphic to Q_{16} . Then *G* has a subgroup with five subgroups of order four, which is a contradiction. \Box

2

3. MAIN RESULTS

The aim of this section is to characterize the structure of w^* -cyclic groups with a Sylow 2-subgroup isomorphic to the quaternion group Q_8 . In the following lemma we investigate the structure of *G*, when *G* is *w*-cyclic.

Lemma 3.3. Let G be a w-cyclic group and a Sylow 2-subgroup S of G is isomorphic to Q_8 . Then $S \leq G$.

Proof. Suppose that *S* is not normal in *G* and *T* is another Sylow 2-subgroup of *G*. It is clear that $|S \cap T| = 1, 2, 4$. If $|S \cap T| = 1, 2$ then *G* has at least six subgroups of order 4, a contradiction. Otherwise, *G* has at least five subgroups of order 4, which is a contradiction. Therefore, $S \leq G$.

Corollary 3.3. Let *G* be a w^* -cyclic group and a Sylow 2-subgroup *S* of *G* is isomorphic to Q_8 . If there exists a proper normal subgroup *N* of *G* such that $S \subseteq N$ then $S \leq G$.

Proof. By assumption, N is a *w*-cyclic group and a Sylow 2-subgroup of N is isomorphic to Q_8 . Therefore, $S \leq N$ and so $S \leq G$.

Theorem 3.2. Let G be a finite w^* -cyclic group and a Sylow 2-subgroup Q of G is isomorphic to Q_8 . Then one of the following holds:

a) $G \cong Z_3 \propto Q_8$, the semi-direct product of Z_3 by Q_8 ,

b) $G \cong Q_8 \times H$, in which *H* is a metacyclic odd order group,

c) $G \cong P \propto (Q_8 \times K)$ such that P is a Sylow 3-subgroup of G, (|K|, 6) = 1 and $|P: C_P(Q_8)| = 3$.

Proof. We first assume that $S \not \trianglelefteq G$ and show that G is 2-nilpotent. By Theorem 2.27 of [3], it is enough to show that for any 2-subgroup U of G, $\frac{N_G(U)}{C_G(U)}$ is a 2-group. If $|U| \le 4$, then |Aut(U)| = 1, 2 and so $|\frac{N_G(Q)}{C_G(Q)}| = 1, 2$, as desired. It remains to show that $\frac{N_G(S)}{C_G(S)}$ is a 2-group. If $3/||\frac{N_G(S)}{C_G(S)}|$ then $|\frac{N_G(S)}{C_G(S)}| = 1, 2, 4$. Also, it is easy to see that $4||\frac{N_G(S)}{C_G(S)}|$. Therefore, we have $|\frac{N_G(S)}{C_G(S)}| = 12$. Suppose $P \in Syl_3(G)$. If |P| = 3 then $P \subseteq C_G(S)$, which is a contradiction. We now assume that $P_0 \in Syl_3(N_G(S)$ and $P_0 \subset P$. If $P_0 \trianglelefteq N_G(S)$ then $SP_0 \cong S \times P_0$ and so $P_0 \le C_G(S)$, a contradiction. This implies that $P \not \trianglelefteq G$ and so $N_G(P) \neq G$. If $C_G(P) = N_G(P)$ then G has a normal 3-complement and by Corollary 2.7, $S \trianglelefteq G$, which is impossible. Therefore, $C_G(P) < N_G(P)$ and we can see that $|\frac{N_G(P)}{C_G(P)}| = 2$. Suppose S_0 is a Sylow 2-subgroup of $N_G(P)$. If $|S_0| = 8$ then by Lemma 2.6, $S_0 \trianglelefteq N_G(P)$ and so $S_0 \le C_G(P)$, which is a contradiction. So, $|S_0| = 4$. Suppose $P_1 < P_0$ has order 3. Using similar argument as in above, $P_1 \subseteq C_N_G(S_0)$. Thus, $N_G(P) = S_0C_{N_G(P)}(P)$. On the other hand, $P_1 \subseteq C_G(S_0)$, $P_1 \subseteq C_{N_G(P)}(P)$ and so $P_1 \subseteq Z(N_G(P))$. Thereofre, $C_P(N_G(P)) \neq 1$ and so G is 3-nilpotent. Now by Lemma 2.6, $S \trianglelefteq G$, which is a contradiction. This shows that G is 2-nilpotent.

We now show that $G \cong Q_8 \propto Z_3$. Assume p is the least prime factor of |G|, Q a subgroup of order p and H is a normal 2-complement for G. It is clear that $P \leq H$. But p is the least prime factor of H, so $P \leq Z(H)$. If $|H| \neq p$ then by Lemma 2.6, $S \leq SQ$ and so $Q \leq C_G(S)$. Now since G = SH, so $P \leq Z(G)$. This shows that G is p-nilpotent and by Corollay 2.7, $S \leq G$, which is impossible. Therefore, |G| = 8p, p is odd prime. If $Q \not\leq G$ then p = 3 or 7. It is an easy fact that a group

of order 56 has either a normal Sylow 2-subgroup or a normal Sylow 7-subgroup. Also, there is no w^* -cyclic group of order 24 with a non-normal Sylow 2- and 3-subgroup. Thus, $Q \leq G$. We now consider the group $\frac{G}{C_G(H)}$. If $G = C_G(H)$ then G has a normal p-complement and so $S \leq G$, a contradiction. Otherwise $\left|\frac{G}{C_G(H)}\right| = 2$. Let K be a subgroup of order 4 of S and $K \not\subseteq C_G(H)$. Then since $K \not\leq KH$, KH has exactly p Sylow 2-subgroup. But, KH is a w-cyclic group, so $p \leq 4$. This implies that p = 3 and $G \cong Q_8 \propto Z_3$.

Next we assume that $S \subseteq G$. If $|G : C_G(S)| = 4$ then G has a normal 2complement H and we have $G \cong S \times H$. Otherwise, we can assume that $|G : C_G(S)| = 12$. Suppose $|C_G(S)| = 2n$, where n is odd. Then $C_G(S)$ has a normal 2-complement K which is normal in G. Since $|S \cap K| = 1$ and S, K are normal subgroups of G, $SK \cong S \times K$. We now consider a Sylow 3-subgroup P of G. If |P| = 3 then $G \cong Z_3 \propto (S \times K)$, $6 \not| |K|$ and $|P : C_P(S)| = 3$, as required. Otherwise, |P| > 3 and $P \cap K$ contains a subgroup P_0 of order 3. Since N is w-cyclic, $P_0 \subseteq Z(K)$. Set H = PK. Then since $P_0 \leq C_G(P)$, $P_0 \subseteq Z(H)$. But, $P_0 \subseteq C_G(S)$ and G = SH, so $P_0 \subseteq Z(G)$. This implies that G has a normal 3-complement, which completes the proof.

Corollary 3.4. Let G be a w^* -cyclic group, then G is a non-abelian group of order pq, p and q are prime numbers, or $|Z(G)| \neq 1$.

Proof. We first assume that a Sylow 2-subgroup of G is cyclic. Then by Lemma 2.2, G is metacyclic. Suppose G is a non-abelian group of order $p_1^{a_1} \cdot p_2^{a_2} \cdots p_r^{a_r}$, where $p_1 < \cdots p_r$ are prmes and $P_i \in Syl_{p_i}, 1 \leq i \leq r$. If r = 1 or r > 2, then Z(G) contains an element of order p_1 . So, we can assume that r = 2. Assume that A is a subgroup of order p_1 and $B = AP_2$. If $B \neq G$ then B is w-cyclic and so B is cyclic. This implies that $A \leq Z(G)$. Suppose $G = AP_2$. We now assume that D is a subgroup of G of order p_2 . Since $D \leq G$, AD is a subgroup of order p_1p_2 of G. Again, if $G \neq AD$, then AD is w-cyclic and so $AD \cong A \times D$. This shows that $C_G(D) = G$, i.e., $D \leq Z(G)$, as desired.

Next we assume that a Sylow 2-subgroup of *G* is isomorphic to Q_8 . If $S \leq G$ then $Z(S) \leq Z(G)$, so we can assume that $S \not \leq G$. In this case, by Theorem 3.2, $G \cong Q_8 \propto Z_3$ and the proof is complete.

In the end of this paper we obtain the structure of finite groups in which every proper quotient is w^* -cyclic. We have:

Theorem 3.3. Let G be a finite group. If for every proper normal subgroup N of G, $\frac{G}{N}$ is w^* -cyclic then one of the following holds:

- a) G is cyclic,
- b) $G \cong Z_p \times Z_p$, p is prime,
- c) G is the quaternion group Q_8 ,
- d) G is a two generators group presented by,

$$G = \langle x, y | x^n = y^q = 1, x^{-1}yx = x^\alpha \rangle$$

in which (n, q) = 1 and there exists a prime factor p of n such that p < q, $q \equiv 1 \pmod{p}$ and $\alpha^p \equiv 1 \pmod{p}$.

4

Proof. By Lemma 2.1, we can assume that G is non-abelian. Suppose a Sylow 2-subgroup of G is cyclic. Then by a result of Taunt [4], G is centerless and its hypercenter is Z(G). Therefore, by Corollary 3.4, $\frac{G}{Z(G)}$ is a non-abelian group of order pq, p < q are primes, and $q \equiv 1 \pmod{p}$. If R is a Sylow r-subgroup of G such that $r \neq p$ and $r \neq q$ then $R \subseteq Z(G)$. Set $T = R_1R_2 \cdots R_n$, in which R_i 's are distinct Sylow r_i -subgroups of G and for $1 \leq i \leq n$, $r_i \notin \{p,q\}$. Therefore, there is a subgroup U of G such that $G \cong U \times T$. It is easy to see that $|U| = p^a q^b$, p, q are distinct primes and a, b are positive integers. Suppose $Q \in Syl_q(G)$ and $P \in Syl_p(G)$. Then $Q \trianglelefteq G$ and $\frac{G}{Q} \cong P \times T$, so $G' \leq Q$. If b > 1 then $G' \cap Z(G) \neq 1$, a contradiction. Thus, b = 1 and G' = Q. This shows that G is a two generators group presented by,

$$G = \langle x, y | x^n = y^q = 1, x^{-1}yx = x^\alpha \rangle$$

in which (n,q) = 1 and there exists a prime factor p of n such that p < q, $q \equiv 1 \pmod{p}$ and $\alpha^p \equiv 1 \pmod{p}$.

Secondly, if $G \cong Q_{16}$ then $\frac{G}{Z(G)} \cong D_8$, a contradiction. So, we can assume that a Sylow 2-subgroup of *G* is isomorphic to Q_8 . By Theorem 3.2, $S \trianglelefteq G$ or $G \cong Q_8 \propto Z_3$. In any case, $Z(S) \trianglelefteq G$ and a Sylow 2-subgroup of $\frac{G}{Z(S)} \cong Z_2 \times Z_2$. Therefore, $G \cong Q_8$ which completes the proof.

References

[1] Hall, M., The Theory of Groups, Chelsea Publishing Company, New York, 1976

[2] Robinson, D. J. S., A Course in the Theory of Groups, Springer, Berlin, 1982

[3] Suzuki, M., Group Theory II, Springer-Verlag-New York, 1986

[4] D. Taunt, D., On A-groups, Proc. Cambridge Philos. Soc. 45 (1949), 24-42

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT CHICAGO CHICAHO, IL, USA

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE SCIENCE UNIVERSITY OF KASHAN, KASHAN, IRAN *E-mail address*: ashrafi@kashanu.ac.ir