
CARPATHIAN J. MATH.
22 (2006), No. 1 - 2, 1 - 5

On finite groups of whose all proper subgroups are
w-cyclic

HOSSEIN ANDIKFAR AND ALI REZA ASHRAFI

ABSTRACT. A finite group G is called w-cyclic, if G has at most d subgroup, for all divisors d of
|G|. In this paper, we study the structure of a finite group all of whose proper subgroups are w-cyclic.
In the case that G has prime power order, we prove that such a group is elementary abelian of order
p2, p is prime, the quaternion group Q8 or the generalized quaternion group Q16. We prove that if
such a G is not a p-group, then G is solvable and in some cases, we obtain the structure of G. Finally,
we characterize the finite groups with w-cyclic proper quotient groups.

1. INTRODUCTION

Let G be a finite group. It is a well known fact that if the equation xn = 1 has
at most n solutions, for all divisors n of |G|, then G must be cyclic. Indeed, G
is cyclic if the number of elements of order n does not exceed n, for any natural
number n.

In this connection we might ask about the structure of G, if the number of
subgroups of order n of G is at most n, for all positive integers n.

Definition 1.1. A finite group G is called weak cyclic, for abbreviation w-cyclic, if
the number of subgroups of order n of G is at most n, for any positive integer n.
Furthermore, if any proper subgroup of G is w-cyclic, then G is called w�-cyclic.

It is clear that if G is w-cyclic, then all of proper subgroups of G is also w-cyclic.
Therefore, if G is w-cyclic, then G is w�-cyclic, but its converse is not generally
true. To see this, it is enough to consider the generalized quaternion group Q16 of
order 16. This group has exactly five subgroups of order 4 and so it is not w-cyclic.

In this paper, we obtain the structure of finite w�-cyclic groups. Furthermore,
we characterize the finite groups in which any proper quotient is w-cyclic. We
prove that such a group is solvable and investigate the structure of G.

Throughout this paper, only finite groups are treated. Our notation are stan-
dard and taken mainly from [2] and [3].

2. NILPOTENT w-CYCLIC GROUP

In this section we will classify the w�-cyclic p-groups, which will also be of
use latter. Moreover, we characterize the w�-cyclic group with an abelian Sylow
2-subgroup.

The proof of the next lemma is elementary.
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Lemma 2.1. Let G be an abelian w�-cyclic group. Then G is cyclic or G ∼= Zp ×Zp, for
some prime p.

Lemma 2.2. Let G be a w�-cyclic group with an abelian Sylow 2-subgroup. Then G is
metacyclic.

Proof. Suppose p is a prime divisor of |G|. Then G has exactly one subgroup of
order p. Therefore, every Sylow subgroup of G is cyclic, as desired. �

The following theorem is crucial throughout this paper.

Theorem 2.1. Let G be a w�-cyclic p-group. Then G is isomorphic to a cyclic p-group,
the elementary abelian group of order p2, the quaternion group Q8 or the generalized
quaternion group Q16.

Proof. Suppose G is abelian. Then by Lemma 2.1, G is a cyclic p-group or the
elementary abelian group of order p2. Thus, it is enough to investigate the non-
abelian case. On the other hand, it is well known that a p-group which contains
only one subgroup of order p is cyclic or a generalized quaternion group (see The-
orem 12.5.2 of [1]). Therefore, maximal subgroups of G are cyclic or generalized
quaternion. We proceed in two steps.

Step 1. If every maximal subgroup of G is abelian, then G ∼= Q8. Since G is not
cyclic, it has at least two maximal subgroups, say M and K . By Lemma 2.1, M
and K are cyclic and G = MK . Set X = M ∩ K . We can see that M ≤ CG(X),
K ≤ CG(X) and so G = MK ≤ CG(X). Thus X ≤ Z(G) and |G : Z(G)|||G :
X | = p2. But, G is not abelian, so X = Z(G) = Φ(G). Now we assume that T is
a subgroup of order p in G. Then there exists a maximal subgroup Y of G which
contains T . Since Y is cyclic, T ≤ Φ(G). Therefore, G has exactly one subgroup
of order p and so G is isomorphic to the generalized quaternion group Q2n . But
|Z(Q2n)| = 2 and |Q2n : Z(Q2n)| = 4, so G ∼= Q8, as desired.

Step 2. If G has a non-abelian maximal subgroup, then G ∼= Q16. Suppose M is a
non-abelian maxiaml subgroup of G. If every maximal subgroup of M is abelian,
then by Step 1, M ∼= Q8. Since M � G, Z(M) � G. Now, if S is another subgroup
of G of order 2, then H = SZ(M) is a subgroup of G with three subgroup of
order 2, a contradiction. Therefore, G has exactly one subgroup of order 2 and so
G ∼= Q16. Otherwise, with an inductive argument, we can assume that M has a
subgroup N isomorphic to Q8. Suppose T is a subgroup of M with |T : N | = 2.
Using a similar arqument as in above, we can show that T ∼= Q16. Therefore, G
has a proper subgroup isomorphic to Q16. But, Q16 has exactly five subgroups of
order 4, which is a contradiction. This completes the proof. �

Corollary 2.1. If G is a w-cyclic p-group, then G is cyclic or it is isomorphic to Q8.

Corollary 2.2. There is no finite w�-cyclic group G such that |G| > 16 and a Sylow
2-subgroup of G is isomorphic to Q16.

Proof. Suppose |G| > 16 and a Sylow 2-subgroup of G is isomorphic to Q16. Then
G has a subgroup with five subgroups of order four, which is a contradiction. �
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3. MAIN RESULTS

The aim of this section is to characterize the structure of w�-cyclic groups with
a Sylow 2-subgroup isomorphic to the quaternion group Q8. In the following
lemma we investigate the structure of G, when G is w-cyclic.

Lemma 3.3. Let G be a w-cyclic group and a Sylow 2-subgroup S of G is isomorphic to
Q8. Then S � G.

Proof. Suppose that S is not normal in G and T is another Sylow 2-subgroup of
G. It is clear that |S∩T | = 1, 2, 4. If |S∩T | = 1, 2 then G has at least six subgroups
of order 4, a contradiction. Otherwise, G has at least five subgroups of order 4,
which is a contradiction. Therefore, S � G. �
Corollary 3.3. Let G be a w�-cyclic group and a Sylow 2-subgroup S of G is isomorphic
to Q8. If there exists a proper normal subgroup N of G such that S ⊆ N then S � G.

Proof. By assumption, N is a w-cyclic group and a Sylow 2-subgroup of N is
isomorphic to Q8. Therefore, S � N and so S � G. �
Theorem 3.2. Let G be a finite w�-cyclic group and a Sylow 2-subgroup Q of G is
isomorphic to Q8. Then one of the following holds:

a) G ∼= Z3 ∝ Q8, the semi-direct product of Z3 by Q8,
b) G ∼= Q8 × H , in which H is a metacyclic odd order group,
c) G ∼= P ∝ (Q8 × K) such that P is a Sylow 3-subgroup of G, (|K|, 6) = 1 and

|P : CP (Q8)| = 3.

Proof. We first assume that S �� G and show that G is 2-nilpotent. By Theorem
2.27 of [3], it is enough to show that for any 2-subgroup U of G, NG(U)

CG(U) is a 2-

group. If |U | ≤ 4, then |Aut(U)| = 1, 2 and so |NG(Q)
CG(Q) | = 1, 2, as desired. It

remains to show that NG(S)
CG(S) is a 2-group. If 3� ||NG(S)

CG(S) | then |NG(S)
CG(S) | = 1, 2, 4.

Also, it is easy to see that 4||NG(S)
CG(S) |. Therefore, we have |NG(S)

CG(S) | = 12. Suppose
P ∈ Syl3(G). If |P | = 3 then P ⊆ CG(S), which is a contradiction. We now
assume that P0 ∈ Syl3(NG(S) and P0 ⊂ P . If P0 � NG(S) then SP0

∼= S×P0 and
so P0 ≤ CG(S), a contradiction. This implies that P �� G and so NG(P ) �= G. If
CG(P ) = NG(P ) then G has a normal 3-complement and by Corollary 2.7, S � G,
which is impossible. Therefore, CG(P ) < NG(P ) and we can see that |NG(P )

CG(P ) | = 2.
Suppose S0 is a Sylow 2-subgroup of NG(P ). If |S0| = 8 then by Lemma 2.6,
S0 � NG(P ) and so S0 ≤ CG(P ), which is a contradiction. So, |S0| = 4. Suppose
P1 < P0 has order 3. Using similar argument as in above, P1 ⊆ CG(S0). Thus,
NG(P ) = S0CNG(P )(P ). On the other hand, P1 ⊆ CG(S0), P1 ⊆ CNG(P )(P ) and
so P1 ⊆ Z(NG(P )). Thereofre, CP (NG(P )) �= 1 and so G is 3-nilpotent. Now by
Lemma 2.6, S � G, which is a contradiction. This shows that G is 2-nilpotent.

We now show that G ∼= Q8 ∝ Z3. Assume p is the least prime factor of |G|, Q a
subgroup of order p and H is a normal 2-complement for G. It is clear that P ≤ H .
But p is the least prime factor of H , so P ≤ Z(H). If |H | �= p then by Lemma 2.6,
S � SQ and so Q ≤ CG(S). Now since G = SH , so P ≤ Z(G). This shows
that G is p-nilpotent and by Corollay 2.7, S � G, which is impossible. Therefore,
|G| = 8p, p is odd prime. If Q �� G then p = 3 or 7. It is an easy fact that a group
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of order 56 has either a normal Sylow 2-subgroup or a normal Sylow 7-subgroup.
Also, there is no w�-cyclic group of order 24 with a non-normal Sylow 2- and
3-subgroup. Thus, Q � G. We now consider the group G

CG(H) . If G = CG(H)
then G has a normal p-complement and so S � G, a contradiction. Otherwise
| G
CG(H) | = 2. Let K be a subgroup of order 4 of S and K �⊆ CG(H). Then since

K �� KH , KH has exactly p Sylow 2-subgroup. But, KH is a w-cyclic group, so
p ≤ 4. This implies that p = 3 and G ∼= Q8 ∝ Z3.

Next we assume that S � G. If |G : CG(S)| = 4 then G has a normal 2-
complement H and we have G ∼= S × H . Otherwise, we can assume that |G :
CG(S)| = 12. Suppose |CG(S)| = 2n, where n is odd. Then CG(S) has a normal
2-complement K which is normal in G. Since |S ∩ K| = 1 and S, K are normal
subgroups of G, SK ∼= S × K . We now consider a Sylow 3-subgroup P of G.
If |P | = 3 then G ∼= Z3 ∝ (S × K), 6 � | |K| and |P : CP (S)| = 3, as required.
Otherwise, |P | > 3 and P ∩ K contains a subgroup P0 of order 3. Since N is
w-cyclic, P0 ⊆ Z(K). Set H = PK . Then since P0 ≤ CG(P ), P0 ⊆ Z(H). But,
P0 ⊆ CG(S) and G = SH , so P0 ⊆ Z(G). This implies that G has a normal
3-complement, which completes the proof. �

Corollary 3.4. Let G be a w�-cyclic group, then G is a non-abelian group of order pq, p
and q are prime numbers, or |Z(G)| �= 1.

Proof. We first assume that a Sylow 2-subgroup of G is cyclic. Then by Lemma
2.2, G is metacyclic. Suppose G is a non-abelian group of order pa1

1 · pa2
2 · · · par

r ,
where p1 < · · · pr are prmes and Pi ∈ Sylpi , 1 ≤ i ≤ r. If r = 1 or r > 2, then
Z(G) contains an element of order p1. So, we can assume that r = 2. Assume that
A is a subgroup of order p1 and B = AP2. If B �= G then B is w-cyclic and so B
is cyclic. This implies that A ≤ Z(G). Suppose G = AP2. We now assume that D
is a subgroup of G of order p2. Since D � G, AD is a subgroup of order p1p2 of
G. Again, if G �= AD, then AD is w-cyclic and so AD ∼= A × D. This shows that
CG(D) = G, i.e., D ≤ Z(G), as desired.

Next we assume that a Sylow 2-subgroup of G is isomorphic to Q8. If S � G
then Z(S) ≤ Z(G), so we can assume that S �� G. In this case, by Theorem 3.2,
G ∼= Q8 ∝ Z3 and the proof is complete. �

In the end of this paper we obtain the structure of finite groups in which every
proper quotient is w�-cyclic. We have:

Theorem 3.3. Let G be a finite group. If for every proper normal subgroup N of G, G
N

is w�-cyclic then one of the following holds:
a) G is cyclic,
b) G ∼= Zp × Zp, p is prime,
c) G is the quaternion group Q8,
d) G is a two generators group presented by,

G = 〈x, y|xn = yq = 1, x−1yx = xα〉
in which (n, q) = 1 and there exists a prime factor p of n such that p < q, q ≡ 1 (mod p)
and αp ≡ 1 (mod p).
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Proof. By Lemma 2.1, we can assume that G is non-abelian. Suppose a Sylow
2-subgroup of G is cyclic. Then by a result of Taunt [4], G is centerless and its
hypercenter is Z(G). Therefore, by Corollary 3.4, G

Z(G) is a non-abelian group of
order pq, p < q are primes, and q ≡ 1 (mod p). If R is a Sylow r-subgroup of G
such that r �= p and r �= q then R ⊆ Z(G). Set T = R1R2 · · ·Rn, in which Ri’s
are distinct Sylow ri-subgroups of G and for 1 ≤ i ≤ n, ri �∈ {p, q}. Therefore,
there is a subgroup U of G such that G ∼= U × T . It is easy to see that |U | = paqb,
p, q are distinct primes and a, b are positive integers. Suppose Q ∈ Sylq(G) and
P ∈ Sylp(G). Then Q � G and G

Q
∼= P ×T , so G′ ≤ Q. If b > 1 then G′∩Z(G) �= 1,

a contradiction. Thus, b = 1 and G′ = Q. This shows that G is a two generators
group presented by,

G = 〈x, y|xn = yq = 1, x−1yx = xα〉
in which (n, q) = 1 and there exists a prime factor p of n such that p < q,
q ≡ 1 (mod p) and αp ≡ 1 (mod p).

Secondly, if G ∼= Q16 then G
Z(G)

∼= D8, a contradiction. So, we can assume
that a Sylow 2-subgroup of G is isomorphic to Q8. By Theorem 3.2, S � G or
G ∼= Q8 ∝ Z3. In any case, Z(S) � G and a Sylow 2-subgroup of G

Z(S)
∼= Z2 × Z2.

Therefore, G ∼= Q8 which completes the proof. �
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