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Positive solutions of functional differential equations

SORIN BUDIŞAN

ABSTRACT. We study the existence of positive solutions of the equation

u′′ (t) + a (t) f (u (g (t))) = 0, 0 < t < 1

with linear boundary conditions.We show the existence of at least one positive solution if f is either
superlinear or sublinear by an application of a fixed point theorem in cones.

1. INTRODUCTION

In this paper we shall consider the second-order boundary value problem with
modified argument

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

u′′ (t) + a (t) f (u (g (t))) = 0, 0 < t < 1
αu (0) − β u′ (0) = 0,
γ u (1) + δu′ (1) = 0,
u (t) = k, −θ ≤ t < 0.

Here g : [0, 1] → [−θ, 1] , θ > 0, and g (t) < t for all t ∈ [0, 1] .
The following conditions will be assumed throughout:
(A.1) f ∈ C ([0,∞) , [0,∞)) and g ∈ C ([0, 1] , [−θ, 1]) ;
(A.2) a ∈ C ([0, 1] , [0,∞)) and a (t) is not identically zero on any proper subin-

terval of [0, 1];
(A.3) α, β, γ, δ ≥ 0 and ρ := γ β + αγ + α δ > 0.
The purpose here is to give an existence result for positive solutions to (1.1), as-

suming that f is either superlinear or sublinear. We seek solutions of (1.1) which
are positive in the sense that u (t) > 0 for 0 < t < 1. We introduce the notations

f0 := lim
u→0

f (u)
u

, f∞ := lim
u→∞

f (u)
u

.

The situation f0 = 0 and f∞ = ∞ corresponds to the superlinear case, and
f0 = ∞ and f∞ = 0 to the sublinear one.

The proof of our main result, Theorem 2.1, is based on the following fixed point
theorem, due to Krasnoselskii [3].

Theorem 1.1. (Krasnoselskii [3]) Let E be a Banach space, and letK ⊂ E be a cone in
E. Assume Ω1,Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (
Ω2 − Ω1

) → K

be a completely continuous operator such that either:
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
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(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.
Then A has a fixed point in K ∩ (

Ω2 − Ω1

)
.

2. THE MAIN RESULT

We start with a lemma which improves a result from [2].

Lemma 2.1. Let K be the Green’s function of the problem:⎧⎨
⎩

u′′ = 0
αu (0) − β u′ (0) = 0
γ u (1) + δ u′ (1) = 0

given by

K (t, s) =

⎧⎪⎪⎨
⎪⎪⎩

1
ρ
ϕ (t) ψ (s) , 0 ≤ s ≤ t ≤ 1

1
ρ
ϕ (s) ψ (t) , 0 ≤ t ≤ s ≤ 1

where
ϕ (t) := γ + δ − γ t, ψ (t) := β + α t, 0 ≤ t ≤ 1.

Then, for every n >
4
3
, there is M (n) > 0 such that

K(t, s)
K (s, s)

≥M (n) for
1
n
≤ t ≤ 3

4
.

Proof. We have

K(t, s)
K(s, s)

=

⎧⎪⎪⎨
⎪⎪⎩

ϕ (t)
ϕ (s)

, s ≤ t

ψ (t)
ψ (s)

, t ≤ s.

For s ≤ t, we will prove that

ϕ (t)
ϕ (s)

≥ γ + 4 δ
4 (γ + δ)

, t ≤ 3
4
.

Indeed, for 0 ≤ s ≤ t ≤ 3
4

one has

γ + δ − γ t

γ + δ − γ s
≥ γ + 4 δ

4 (γ + δ)
,

4 (γ + δ)2 − 4 γ (γ + δ) t ≥ (γ + 4 δ) (γ + δ) − γ (γ + 4 δ) s,

4
(
γ2 + 2 γ δ + δ2

) − (
γ2 + 5 γ δ + 4 δ2

) ≥ γ [4 (γ + δ) t− (γ + 4 δ) s] ,

3 γ2 + 3 γ δ ≥ γ [4 (γ + δ) t− (γ + 4 δ) s] ,

3 (γ + δ) ≥ 4 (γ + δ) t− (γ + 4 δ) s,

(γ + δ) (3 − 4 t) ≥ − (γ + 4 δ) s,

that is obviously for γ, δ ≥ 0 and t ≤ 3
4

.



Positive solutions of functional differential equations 15

For t ≤ s, we will prove that

ψ (t)
ψ (s)

≥ α+ n β

n (α+ β)

for t ≥ 1
n

, n >
4
3

, which may be written equivalently using the following in-

equalities:

n β (α+ β) + n α (α+ β) t ≥ β (α+ n β) + α (α+ n β) s,

n β α+ n β2 + n α2 t+ n α β t ≥ β α+ n β2 + α (α+ n β) s,

n β + n t α+ n t β ≥ β + (α+ n β) s,

(2.2) B (t, s) := β (n− 1) + n t (α+ β) − (α+ nβ) s ≥ 0.

But we have:

B (t, s) ≥ min
s
B (t, s) = B (t, 1) = β (n− 1) + n t (α+ β) − α− n β =

= n t (α+ β) − (α+ β) = (α+ β) (n t− 1) ≥ 0

for α, β > 0, t ≥ 1
n

, so (2.1) is true, which proves the conclusion.

Now we choose

M (n) = min

{
γ + 4 δ

4 (γ + δ)
,
α+ n β

n (α+ β)

}
,

in order that for
1
n
≤ t ≤ 3

4
,

K (t, s)
K (s, s)

≥M (n) .

�

Theorem 2.2. Assume that conditions (A.1) − (A.3) hold. If g ∈ C 1 [0, 1] , g′ > 0,
g (1) > 0 and g is bijective, then problem (1.1) has at least one positive solution in each
of the cases:

(i) f0 = 0 and f∞ = ∞ (superlinear); or
(ii) f0 = ∞ and f∞ = 0 (sublinear).

Proof. Superlinear case: Suppose that f0 = 0 and f∞ = ∞. We wish to show the
existence of a positive solution of (1.1). Now (1.1) has a solution u = u (t) if and
only if u solves the operator equation

u (t) =
∫ 1

0

K (t, s) a (s) f (u (g (s))) ds := Au (t) , u ∈ C [0, 1] .

HereK (t, s) denotes the Green’s function (expressed in Lemma 2.1) for the bound-
ary values problem (BVP)

(2.3)

⎧⎨
⎩

u′′ = 0
α u (0) − β u′ (0) = 0
γ u (1) + δ u′ (1) = 0.
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Observe that

(2.4) K (t, s) ≤ 1
ρ
ϕ (s) ψ (s) = K (s, s) , 0 ≤ t, s ≤ 1

We let K be the cone in C [0, 1] given by

K =
{
u ∈ C [0, 1] : u (t) ≥ 0, min

a0≤t≤b
u (t) ≥M ‖u‖

}
where ‖u‖ = sup

t∈[0,1]

|u (t)|, a0 and b will be specified later and M = M (n) is from

Lemma 2.1.
So, for u ∈ K , we have, using (2.4):

Au (t) =
∫ 1

0

K (t, s) a (s) f (u (g (s))) ds ≤
∫ 1

0

K (s, s) a (s) f (u (g (s))) ds

and hence

(2.5) ‖Au‖ ≤
∫ 1

0

K (s, s) a (s) f (u (g (s))) ds

We choose a0 =
1
n

(n from Lemma 2.1.), and b = min

{
g (1) ,

3
4

}
.

For u ∈ K , using (2.5) and Lemma 2.1, we obtain

min
a0≤t≤b

Au (t) = min
a0≤t≤b

∫ 1

0

K (t, s) a (s) f (u (g (s))) ds ≥

≥M

∫ 1

0

K (s, s) a (s) f (u (g (s))) ds ≥M ‖Au‖.

Therefore, A (K) ⊂ K . Moreover, it is easy to see that A : K → K is completely
continuous. Now, since f0 = 0, we may choose H1 > 0 so that f (u) ≤ η u, for
0 < u ≤ H1, where η > 0 can be chosen conveniently. For 0 < u ≤ H1, we have:

‖Au‖ ≤
∫ 1

0

K (s, s) a (s) f (u (g (s))) ds ≤(2.6)

≤ η

∫ 1

0

K (s, s) a (s) u (g (s)) ds =

= η

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

u (y) dy ≤ ‖u‖

making

g (s) = y, s = g−1 (y) , ds =
1

g′ (g−1 (y))
dy,

if we choose η so that

η

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

dy ≤ 1.

Now if we let Ω1 = {u ∈ E : ‖u‖ < H1} then (2.6) shows that ‖Au‖ ≤ ‖u‖,
u ∈ K ∩ ∂Ω1.
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Making the same change of variables, we have

Au (t) =
∫ g(1)

g(0)

K
(
t, g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy.

Furthermore, since f∞ = ∞, there exists H2 > 0 such that f (u) ≥ μ u, u ≥ H2,
where μ > 0 can be chosen conveniently. Let

Ω2 = {u ∈ E : ‖u‖ < H2} ,

where

H2 = max
{

2 H1,
H2

M

}
.

Using the hypothesis g (1) > 0, g (0) < 0, g′ > 0, we obtain for a0 ≤ t0 ≤ b, u ∈ K ,
‖u‖ = H2, that

min
a0≤t≤b

u (t) ≥M ‖u‖ ≥ H2

and so

Au (t0) =
∫ g(1)

g(0)

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≥

≥ μ

∫ g(1)

g(0)

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

u (y) dy ≥

≥ μ M

[∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

dy

]
‖u‖ ≥ ‖u‖

if we choose μ > 0 so that

μ M

[∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

dy

]
≥ 1.

Hence ‖Au‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ω2. We observe that for g (1) > 0 we may

choose n >
1

g (1)
in Lemma 2.1, so g (1) > a0 (obviously, for g(1) <

3
4

, we may

choose n >
1
g(1)

>
4
3

, how we need in Lemma 2.1). Therefore,by the first part

of the Fixed Point Theorem,it follows that A has a fixed point in K ∩ (
Ω2 − Ω1

)
,

such thatH1 ≤ ‖u‖ ≤ H2. Furthermore, sinceK (t, s) > 0, it follows that u (t) > 0
for 0 < t < 1. This completes the superlinear part of the Theorem 2.1.

Sublinear case. Suppose next that f0 = ∞ and f∞ = 0. We first choose H1 > 0
such that f (u) ≥ η u for 0 < u ≤ H1, where η > 0 may be chosen conveniently.
Let’s consider M from the first part of the proof. Then, for a0 ≤ t0 ≤ b, u ∈ K and
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‖u‖ = H1, we have:

Au (t0) =
∫ g(1)

g(0)

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≥

≥
∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≥

≥ η

∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

u (y) dy ≥

≥
[
η M

∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

dy

]
‖u‖ ≥ ‖u‖

if we choose η > 0 such that

η M

∫ b

a0

K
(
t0, g

−1 (y)
) a

(
g−1 (y)

)
g′ (g−1 (y))

dy ≥ 1.

Thus, we may let

Ω1 := {u ∈ E : ‖u‖ < H1} ,

so that ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1.
Now, since f∞ = 0, there exists H2 > 0 so that f (u) ≤ λ u for u ≥ H2 where

λ > 0 may be chosen conveniently.
We consider two cases:
Case (i). Suppose f is bounded, say f (u) ≤ N for all u ∈ (0,∞). In this case

choose

H2 := max

{
2 H1, N

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

dy

}

so that for u ∈ K with ‖u‖ = H2 we have:

Au (t) =
∫ g(1)

g(0)

K
(
t, g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≤

≤ N

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

dy ≤ H2

and therefore ‖Au‖ ≤ ‖u‖.
Case (ii). If f is unbounded, then let H2 > max

{
2 H1, H2

}
and such that

f (u) ≤ f (H2) for 0 < u ≤ H2(we are able to do this since f is unbounded). Then
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for u ∈ K and ‖u‖ = H2 we have:

Au (t) =
∫ g(1)

g(0)

K
(
t, g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≤

≤
∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

f (u (y)) dy ≤

≤
∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

f (H2) dy ≤

≤ λ H2

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

dy ≤ H2 = ‖u‖

if we choose λ > 0 such that

λ

∫ g(1)

g(0)

K
(
g−1 (y) , g−1 (y)

) a
(
g−1 (y)

)
g′ (g−1 (y))

dy ≤ 1.

Therefore, in either case we may put

Ω2 := {u ∈ E : ‖u‖ < H2}
and for u ∈ K ∩ ∂Ω2 we have ‖Au‖ ≤ ‖u‖.

By the second part of Fixed Point Theorem it follows that (1.1) has a positive
solution, and this completes the proof of the Theorem 2.1. �
Remark 2.1. If we choose g (t) = t − h, h ∈ [0, 1), we note that g (1) > 0, g ′ ≡ 1,
so g satisfies the hypothesis of Theorem 2.1. In this case problem (1.1) concerns a
delay equation.

Remark 2.2. If we choose g (t) =
t

ξ
, ξ > 1, we note that g (1) > 0, g′ ≡ 1

ξ
so

satisfies the hypothesis of Theorem 2.1. In this case we do not need the condition
u (t) = k,−θ ≤ t < 0.
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