CARPATHIAN J. MATH. **22** (2006), No. 1 - 2, 21-31

Weak forms of open and closed functions via semi- θ -open sets

MIGUEL CALDAS, SAEID JAFARI and GOVINDAPPA NAVALAGI

ABSTRACT. In this paper, we introduce and study two new classes of functions by using the notions of semi- θ -open sets and semi- θ -closure operator called weakly semi- θ -open and weakly semi- θ -closed functions. The connections between these functions and other existing well-known related functions are investigated.

1. INTRODUCTION AND PRELIMINARIES

In 1987, Di Maio and Noiri [13] initiated a brief study of the concepts of semi- θ -open and semi- θ -closed sets which provide a formulation of semi- θ -closure of a set in a topological space. Noiri [24] defined and studied the concept of θ -semicontinuous functions by involving these sets. Mukherjee and Basu [21] continued the work of Di Maio and Noiri and defined the concepts of semi- θ -connectedness, semi- θ - components and semi- θ -quasi-components. Also Park and Park [26] have used these sets to define the notion of weaker forms of irresolute functions. Dontchev and Noiri [14] obtained, among others, that a topological space is semi-Hausdorff if and only if each singleton is semi- θ -closed. Recently the authors [7, 8, 9] have also obtained several new and important results and notions related to these sets. The aim of this paper is to present the class of weakly semi θ -openness (resp. weakly semi θ -closedness) as a new generalization of semi θ -openties of this class of functions, w.r.t. these notions.

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of a space X, then Cl(A) and Int(A) denote the closure and the interior of A respectively. Recall that a subset A of X is called regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The subset A is called δ -open [31] if $A = Int_{\delta}(A)$, where $Int_{\delta}(A)$ is the union of all regular open sets of X which are contained in A.

Definition 1.1. A subset *A* of a space (X, τ) is said to be semi-open [17], if there exists an open set *U* such that $U \subset A \subset Cl(U)$, or equivalently if $A \subset Cl(Int(A))$.

The complement of a semi-open set is said to be semi-closed [12]. The intersection of all semi-closed sets containing A is called the semi-closure [12] of A and is denoted by sCl(A). The semi-interior of A denoted by sInt(A), is defined by

Received: 17.06.2006; In revised form: 15.10.2006; Accepted: 01.11.2006

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 54C10, 54D10; 54C08.

Key words and phrases: Semi- θ -open sets, semi- θ -closed sets, weakly semi- θ -closed functions, extremally disconnected spaces, quasi H-closed spaces.

the union of all semi-open sets contained in *A*. The family of all semiopen (resp. semiclosed) sets of a space *X* is denoted by $SO(X, \tau)$ (resp. $SC(X, \tau)$).

Definition 1.2. A point $x \in X$ is called a semi θ -cluster [13] (resp. θ -cluster [31]) point of A if $A \cap sCl(U) \neq \emptyset$ (resp. $A \cap Cl(U) \neq \emptyset$) for each semiopen (resp. open) set U containing x.

The set of all semi θ -cluster (resp. θ -cluster) points of A is called the semi θ closure (resp. θ -closure) of A and is denoted by $sCl_{\theta}(A)$ (resp. $Cl_{\theta}(A)$. Hence, a subset A is called semi- θ -closed [13] (resp. θ -closed [31]) if $sCl_{\theta}(A) = A$ (resp. $Cl_{\theta}(A) = A$). The complement of a semi- θ -closed (resp. θ -closed) set is called semi- θ -open (resp. θ -open) set. The semi θ -interior (resp. θ -interior) of A is defined by the union of all semi- θ -open (resp. θ -open) sets contained in A and is denoted by $sInt_{\theta}(A)$ (resp. $Int_{\theta}(A)$. The family of all semi- θ -open (resp. semi- θ closed) sets of a space X is denoted by $S\theta O(X, \tau)$ (resp. $S\theta C(X, \tau)$). Recall that a subset A of a space (X, τ) is said to be δ -semi-open [27] if $A \subset Cl(Int_{\delta}(A))$.

Definition 1.3. A subset $A \subset X$ is called preopen [20] (resp. α -open [22] and β open [1] (or semi-preopen [2]), if $A \subset Int(Cl(A))(resp.A \subset Int(Cl(Int(A)))$ and $A \subset Cl(Int(Cl(A)))$. The complement of a preopen (resp. α -open) set is called preclosed (resp. α -closed).

Remark 1.1. We have the following diagram [25] in which the converses of the implications need not be true.

		DIAGRAM		
θ -open	\rightarrow	δ -open	\rightarrow	open
\downarrow		\downarrow		\downarrow
$semi - \theta - open$	\rightarrow	$\delta - semi - open$	\rightarrow	semi - open

Lemma 1.1. (Di Maio and Noiri [13]) Let A be a subset of a topological space (X, τ) . (1) If $A \in SO(X, \tau)$, then $sCl(A) = sCl_{\theta}(A)$.

(2) If A is open in X, then sCl(A) = Int(Cl(A)).

Lemma 1.2. (Mukherjee and Basu [21]) For any subset A of a topological space (X, τ) , $sCl_{\theta}(A)$ is semi- θ -closed, for every $A \subset X$.

A space *X* is called extremally disconnected (E.D) [32] if the closure of each open set in *X* is open. A space *X* is called semi θ -connected[21] if *X* can not be expressed as the union of two nonempty disjoint semi- θ -open sets.

Definition 1.4. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called:

(i) semi θ -open (resp. semi θ -closed) if for each open set U (resp. closed set F) of X, $f(U) \in S\theta O(Y, \sigma)$ (resp. $f(F) \in S\theta C(Y, \sigma)$;

(ii) θ -semicontinuous [24] if for each $x \in X$ and each open set V containing f(x), there exists $U \in SO(x)$ such that $f(sCl(U)) \subset Cl(V)$;

(iii) θ -irresolute [26] if for each $x \in X$ and each $V \in SO(Y)$ containing f(x), there exists $U \in SO(x)$ such that $f(sCl(U) \subset sCl(V);$

(iv) almost open in the sense of Singal and Singal , written as (a.o.S) [30] if the image of each regular open set U of X is open set in Y;

(v) preopen [20] (resp. preclosed [15], β -open [1], α -open [22])if for each open set U (resp. closed set F, open set U, open set U) of X, f(U) is preopen (resp. f(F) is preclosed, f(U) is β -open, f(U) is α -open) set in Y;

(vi) contra-open [4] (resp. contra-closed [4]) if f(U) is closed (resp. open) in Y for each open (resp. closed) set U of X;

(vii) weak semi- θ -continuous [10] if $f^{-1}(V) \subset sInt_{\theta}(f^{-1}(Cl(V)))$ for each open set V of Y.

2. Weakly semi- θ -open functions

We define in this section the concept of weak semi- θ -openness as natural dual to the weak semi- θ -continuity.

Definition 2.5. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly semi- θ -open if $f(U) \subset sInt_{\theta}(f(Cl(U)))$ for each open set U of X.

Clearly, every semi- θ -open function is also weakly semi- θ -open, but the converse is not generally true.

Example 2.1. A weakly semi- θ -open function need not be semi- θ -open. Let $X = \{a, b\}, \tau = \{\emptyset, \{b\}, X\}, Y = \{x, y\}$ and $\sigma = \{\emptyset, \{x\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be given by f(a) = x and f(b) = y. Then f is clearly weakly semi- θ -open, but is not semi- θ -open since f(b) is not a semi- θ -open set in Y.

Theorem 2.1. Let X be a regular space. Then $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -open if and only if f is semi- θ -open.

Proof. The sufficiency is clear. Necessity. Let W be a nonempty open subset of X. For each x in W, let U_x be an open set such that $x \in U_x \subset Cl(U_x) \subset W$. Hence we obtain that $W = \bigcup \{U_x : x \in W\} = \bigcup \{Cl(U_x) : x \in W\}$ and , $f(W) = \bigcup \{f(U_x) : x \in W\} \subset \bigcup \{sInt_{\theta}(f(Cl(U_x))) : x \in W\} \subset sInt_{\theta}(f(\bigcup \{Cl(U_x) : x \in W\}) = sInt_{\theta}(f(W))$. Thus f is semi- θ -open.

Theorem 2.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent :

- (*i*) f is weakly semi- θ -open.
- (*ii*) $f(Int_{\theta}(A)) \subset sInt_{\theta}(f(A))$ for every subset A of X.

(*iii*) $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(sInt_{\theta}(B))$ for every subset B of Y.

(iv) $f^{-1}(sCl_{\theta}(B)) \subset Cl_{\theta}(f^{-1}(B))$ for every subset B of Y.

(v) For each $x \in X$ and each open set U of X containing x, there exists a semi- θ -open set V containing f(x) such that $V \subset f(Cl(U))$.

(vi) For each closed subset F of X, $f(Int(F)) \subset sInt_{\theta}(f(F))$.

(vii) For each open subset U of X, $f(Int(Cl(U))) \subset sInt_{\theta}(f(Cl(U)))$.

(*viii*) For each preopen subset U of X, $f(Int(Cl(U))) \subset sInt_{\theta}(f(Cl(U)))$.

(*ix*) For every α -open subset U of X, $f(U) \subset sInt_{\theta}(f(Cl(U)))$.

Proof. $(i) \to (ii)$ Let A be any subset of X and $x \in Int_{\theta}(A)$. Then, there exists an open set U such that $x \in U \subset Cl(U) \subset A$. Then, $f(x) \in f(U) \subset f(Cl(U)) \subset f(A)$. Since f is weakly semi- θ -open, $f(U) \subset sInt_{\theta}(f(Cl(U))) \subset sInt_{\theta}(f(A))$. It implies that $f(x) \in sInt_{\theta}(f(A))$. This shows that $x \in f^{-1}(sInt_{\theta}(f(A)))$. Thus $Int_{\theta}(A) \subset f^{-1}(sInt_{\theta}(f(A)))$, and so, $f(Int_{\theta}(A)) \subset sInt_{\theta}(f(A))$.

Miguel Caldas, Saeid Jafari and Govindappa Navalagi

 $(ii) \rightarrow (i)$ Let U be an open set in X. As $U \subset Int_{\theta}(Cl(U))$ implies, $f(U) \subset f(Int_{\theta}(Cl(U))) \subset sInt_{\theta}(f(Cl(U)))$. Hence f is weakly semi- θ -open.

 $(ii) \rightarrow (iii)$ Let *B* be any subset of *Y*. Then by (ii), $f(Int_{\theta}(f^{-1}(B)) \subset sInt_{\theta}(B))$. Therefore $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(sInt_{\theta}(B))$.

 $(iii) \rightarrow (ii)$ This is obvious.

 $(iii) \rightarrow (iv)$ Let *B* be any subset of *Y*. Using (iii), we have $X - Cl_{\theta}(f^{-1}(B)) = Int_{\theta}(X - f^{-1}(B)) = Int_{\theta}(f^{-1}(Y - B)) \subset f^{-1}(sInt_{\theta}(Y - B)) = f^{-1}(Y - sCl_{\theta}(B)) = X - (f^{-1}(sCl_{\theta}(B))$. Therefore, we obtain $f^{-1}(sCl_{\theta}(B)) \subset Cl_{\theta}(f^{-1}(B))$.

 $(iv) \rightarrow (iii)$ Similarly we obtain, $X - f^{-1}(sInt_{\theta}(B)) \subset X - Int_{\theta}(f^{-1}(B))$, for every subset B of Y, i.e., $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(sInt_{\theta}(B))$.

 $(i) \to (v)$ Let $x \in X$ and U be an open set in X with $x \in U$. Since f is weakly semi- θ -open. $f(x) \in f(U) \subset sInt_{\theta}(f(Cl(U)))$. Let $V = sInt_{\theta}(f(Cl(U)))$. Hence $V \subset f(Cl(U))$, with V containing f(x).

 $(v) \rightarrow (i)$ Let U be an open set in X and $y \in f(U)$. It follows from (ii) that $V \subset f(Cl(U))$ for some V semi- θ -open in Y containing y. Hence we have, $y \in V \subset sInt_{\theta}(f(Cl(U)))$. This shows that $f(U) \subset sInt_{\theta}(f(Cl(U)))$, i.e., f is a weakly semi- θ -open function.

$$(i) \rightarrow (vi) \rightarrow (vii) \rightarrow (viii) \rightarrow (iv) \rightarrow (i)$$
 This is obvious.

Theorem 2.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. Then the following statements are equivalent.

(i) f is weakly semi- θ -open,

(*ii*) $sCl_{\theta}(f(U)) \subset f(Cl(U))$ for each U open of X,

(*iii*) $sCl_{\theta}(f(Int(F)) \subset f(F)$ for each F closed of X.

Proof. (*i*) \rightarrow (*iii*) Let *F* be a closed set in *X*. Then we have $f(X-F) = Y - f(F) \subset sInt_{\theta}(f(Cl(X-F)))$ and so $Y - f(F) \subset Y - sCl_{\theta}(f(Int(F)))$. Hence $sCl_{\theta}(f(Int(F))) \subset f(F)$.

 $(iii) \rightarrow (ii)$ Let U be a open set in X. Since Cl(U) is a closed set and $U \subset Int(Cl(U))$ by (iii) we have $sCl_{\theta}(f(U)) \subset sCl_{\theta}(f(Int(Cl(U))) \subset f(Cl(U)))$. $(ii) \rightarrow (iii)$ Similar to $(iii) \rightarrow (ii)$.

 $(iii) \rightarrow (iii)$ Similar to $(iiii) \rightarrow (i)$ Clear.

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly continuous [18], if for every subset A of X, $f(Cl(A)) \subset f(A)$.

Theorem 2.4. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -open and strongly continuous, then f is semi- θ -open.

Proof. Let U be an open subset of X. Since f is weakly semi- θ -open $f(U) \subset sInt_{\theta}(f(Cl(U)))$. However, because f is strongly continuous, $f(U) \subset sInt_{\theta}(f(U))$. Therefore f(U) is semi- θ -open.

A function $f : (X, \tau) \to (Y, \sigma)$ is said to be contra semi- θ -closed if f(U) is a semi- θ -open set of Y, for each closed set U in X.

Theorem 2.5. If $f : (X, \tau) \to (Y, \sigma)$ is contra semi- θ -closed, then f is a weakly semi- θ -open function.

Proof. Let U be an open subset of X. Then, we have $f(U) \subset f(Cl(U)) = sInt_{\theta}(f(Cl(U)))$.

Example 2.2. The converse of Theorem 2.5 does not hold. Example 2.1 shows that a weakly semi- θ -open function need not be contra semi- θ -closed.

Next, we define a dual form, called complementary weakly semi- θ -open function as follows:

Definition 2.6. A function $f : (X, \tau) \to (Y, \sigma)$ is called complementary weakly semi- θ -open (written as c.w.s θ .o) if for each open set U of X, f(Fr(U)) is semi- θ -closed in Y, where Fr(U) denotes the frontier of U.

Example 2.3. A weakly semi- θ -open function need not be c.w.s θ .o.

Let $X = \{a, b\}, \tau = \{\emptyset, \{b\}, X\}, Y = \{x, y\}$ and $\sigma = \{\emptyset, \{x\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be given by f(a) = x and f(b) = y. Then f is clearly weakly semi- θ -open, but it is not c.w.s θ .o., since $F_r(\{b\}) = Cl(\{b\}) - \{b\} = \{a\}$ and $f(F_r(\{b\})) = \{x\}$ is not a semi- θ -closed set in Y.

Theorem 2.6. Let $S\theta O(X, \tau)$ be closed under finite intersections. If $f : (X, \tau) \to (Y, \sigma)$ is bijective weakly semi- θ -open and c.w.s θ .o, then f is semi- θ -open.

Proof. Let U be an open subset in X with $x \in U$. Since f is weakly semi- θ -open, by Theorem 2.4 there exists a semi- θ -open set V containing f(x) = y such that $V \subset f(Cl(U))$. Now Fr(U) = Cl(U) - U and thus $x \notin Fr(U)$. Hence $y \notin f(Fr(U))$ and therefore $y \in V - f(Fr(U))$. Put $V_y = V - f(Fr(U))$ a semi- θ -open set since f is c.w.s θ .o. Since $y \in V_y$, $y \in f(Cl(U))$. But $y \notin f(Fr(U))$ and thus $y \notin f(Fr(U)) = f(Cl(U)) - f(U)$. It follows that $y \in f(U)$. Therefore $f(U) = \cup \{V_y : V_y \in S\theta O(Y, \sigma), y \in f(U)\}$. Hence f is semi- θ -open.

The following theorem is a variation of a result of Baker [4] in which contraclosedness is replaced by weakly semi- θ -open and closed by contra-pre-semi- θ closed, where, $f : (X, \tau) \to (Y, \sigma)$ is said to be contra-pre-semi- θ -closed provided that f(F) is semi- θ -open for each semi- θ -closed subset F of X.

Theorem 2.7. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -open, $S\theta O(Y, \sigma)$ closed under finite unions and if for each semi- θ -closed subset F of X and each fiber $f^{-1}(y) \subset X - F$ there exists an open subset U of X for which $F \subset U$ and $f^{-1}(y) \cap Cl(U) = \phi$, then f is contra-pre-semi- θ -closed.

Proof. Assume that *F* is a semi-*θ*-closed subset of *X* and let $y \in Y - f(F)$. Thus $f^{-1}(y) \subset X - F$. Hence there exists an open subset *U* of *X* for which *F* ⊂ *U* and $f^{-1}(y) \cap Cl(U) = \phi$. Therefore $y \in Y - f(Cl(U)) \subset Y - f(F)$. Since *f* is weakly semi-*θ*-open $f(U) \subset sInt_{\theta}(f(Cl(U)))$. We obtain $y \in sCl_{\theta}(Y - f(Cl(U))) \subset Y - f(F)$. Let $B_y = sCl_{\theta}(Y - f(Cl(U)))$. Then B_y is a semi-*θ*-closed subset of *Y* containing *y*. Hence $Y - f(F) = \cup \{B_y : y \in Y - f(F)\}$ is semi-*θ*-closed. Therefore f(F) is semi-*θ*-open.

Theorem 2.8. If $f : (X, \tau) \to (Y, \sigma)$ is an a.o.S and closed function, then it is a weakly semi- θ -open function.

Proof. Let *U* be an open set in *X*. Since *f* is a.o.S and Int(Cl(U)) is regular open, f(Int(Cl(U))) is open in *Y*. Since *f* is closed,

$$f(U) \subset f(Int(Cl(U))) \subset Int(f(Cl(U))) \subset sInt_{\theta}(f(Cl(U))).$$

This shows that *f* is weakly semi- θ -open.

Lemma 2.3. If $f : (X, \tau) \to (Y, \sigma)$ is a continuous function, then for any subset U of X, $f(Cl(U)) \subset Cl(f(U))$ [32].

Theorem 2.9. If $f : (X, \tau) \to (Y, \sigma)$ is a weakly semi- θ -open and continuous function, then f is a β -open function.

Proof. Let U be an open set in X. Then by weak semi- θ -openness of f, $f(U) \subset sInt_{\theta}(f(Cl(U)))$. Since f is continuous $f(Cl(U)) \subset Cl(f(U))$. Hence we obtain that, $f(U) \subset sInt_{\theta}(f(Cl(U))) \subset sInt_{\theta}(Cl(f(U))) \subset sInt(Cl(f(U))) \subset Cl(Int(Cl(f(U))))$. Therefore, $f(U) \subset Cl(Int(Cl(f(U)))$ which shows that f(U) is a β -open set in Y and we are done.

Since every strongly continuous function is continuous we have the following,

Corollary 2.1. If $f : (X, \tau) \to (Y, \sigma)$ is a weakly semi- θ -open and strongly continuous function. Then f is a β -open function.

Theorem 2.10. If $f : (X, \tau) \to (Y, \sigma)$ is a bijective weakly semi- θ -open function from a space X onto a semi- θ -connected space Y, then X is connected.

Proof. Assume that X is not connected. Then there exist non-empty open sets U_1 and U_2 such that $U_1 \cap U_2 = \phi$ and $U_1 \cup U_2 = X$. Hence we have $f(U_1) \cap f(U_2) = \phi$ and $f(U_1) \cup f(U_2) = Y$. Since f is bijective weakly semi- θ -open, we have $f(U_i) \subset sInt_{\theta}(f(Cl(U_i)))$ for i=1, 2 and since U_i is open and also closed, we have $f(Cl(U_i) = f(U_i)$ for i=1, 2. Hence $f(U_i)$ is semi- θ -open in Y for i=1, 2. Thus, Y has been decomposed into two non-empty disjoint semi- θ -open sets. This is contrary to the hypothesis that Y is a semi- θ -connected space. Thus X is connected.

Definition 2.7. A space *X* is said to be hyperconnected [23] if every nonempty open subset of *X* is dense in *X*.

Theorem 2.11. If X is a hyperconnected space, then a function $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -open if and only if f(X) is semi- θ -open in Y.

Proof. The sufficiency is clear. For the necessity observe that for any open subset U of $X, f(U) \subset f(X) = sInt_{\theta}(f(X) = sInt_{\theta}(f(Cl(U)))$.

3. Weakly semi- θ -closed functions

Now, we define the generalized form of semi- θ -closed functions.

Definition 3.8. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly semi- θ -closed if $sCl_{\theta}(f(Int(F))) \subset f(F)$ for each closed set F of X.

Clearly, every semi- θ -closed function is weakly semi- θ -closed function, but the converse is not generally true.

Example 3.4. Let $f : (X, \tau) \to (Y, \sigma)$ be the function from Example 2.1. Then it is shown that f is weakly semi- θ -closed which is not semi- θ -closed.

Theorem 3.12. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent.

- (i) f is weakly semi- θ -closed.
- (*ii*) $sCl_{\theta}(f(U)) \subset f(Cl(U))$ for every open set U of X.

Proof.
$$(i) \rightarrow (ii)$$
. Let U be any open subset of X. Then

$$\begin{split} sCl_{\theta}(f(U)) &= sCl_{\theta}(f(Int(U))) \subset sCl_{\theta}(f(Int(Cl(U))) \subset f(Cl(U)). \\ (ii) &\to (i). \text{ Let } F \text{ be any closed subset of } X. \text{ Then,} \\ sCl_{\theta}(f(Int(F))) \subset f(Cl(Int(F))) \subset f(Cl(F)) = f(F). \end{split}$$

The proof of the following result is mostly straightforward and is therefore omitted.

Theorem 3.13. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$ the following conditions are equivalent:

(*i*) f is weakly semi- θ -closed,

(*ii*) $sCl_{\theta}(f(U)) \subset f(Cl(U))$ for each open set U in X,

 $(iii) \ sCl_{\theta}(f(Int(F))) \subset f(F)$ for each preclosed subset F in X,

 $(iv) \ sCl_{\theta}(f(Int(F))) \subset f(F)$ for every α -closed subset F in X.

Theorem 3.14. For a function $f : (X, \tau) \to (Y, \sigma)$ the following conditions are equiva*lent:*

(i) f is weakly semi- θ -closed,

(*ii*) $sCl_{\theta}(f(U)) \subset f(Cl(U))$ for each regular open subset U of X,

(*iii*) For each subset F in Y and each open set U in X with $f^{-1}(F) \subset U$, there exists a semi- θ -open set A in Y with $F \subset A$ and $f^{-1}(F) \subset Cl(U)$,

(*iv*) For each point y in Y and each open set U in X with $f^{-1}(y) \subset U$, there exists a semi- θ -open set A in Y containing y and $f^{-1}(A) \subset Cl(U)$,

(v) $sCl_{\theta}(f(Int(Cl(U)))) \subset f(Cl(U))$ for each set U in X,

 $(vi) \ sCl_{\theta}(f(Int(Cl_{\theta}(U)))) \subset f(Cl_{\theta}(U))$ for each set U in X,

 $(vii) \ sCl_{\theta}(f(U)) \subset f(Cl(U))$ for each preopen set U in X.

Proof. It is clear that: $(i) \rightarrow (vi), (iii) \rightarrow (iv), \text{ and } (i) \rightarrow (v) \rightarrow (vii) \rightarrow (ii) \rightarrow (i)$. To show that $(ii) \rightarrow (iii)$, let F be a subset in Y and U be open in X with $f^{-1}(F) \subset U$. Then $f^{-1}(F) \cap Cl(X - Cl(U)) = \phi$ and consequently, $F \cap f(Cl(X - Cl(U))) = \phi$. Since X - Cl(U) is regular open, $F \cap sCl_{\theta}(f(X - Cl(U))) = \phi$ by (ii). Let $A = Y - sCl_{\theta}(f(X - Cl(U)))$. Then A is semi- θ -open with $F \subset A$ and $f^{-1}(A) \subset X - f^{-1}(sCl_{\theta}(f(X - Cl(U)))) \subset X - f^{-1}f(X - Cl(U)) \subset Cl(U)$.

 $(vi) \rightarrow (i)$ It suffices to see that $Cl_{\theta}(U) = Cl(U)$ for every open sets U in X.

 $(iv) \rightarrow (i)$ Let F be closed in X and $y \in Y - f(F)$. Since $f^{-1}(y) \subset X - F$, there exists a semi- θ -open A in Y with $y \in A$ and $f^{-1}(A) \subset Cl(X - F) = X - Int(F)$ by (iv). Therefore $A \cap f(Int(F)) = \phi$, so that $y \in Y - sCl_{\theta}(f(Int(F)))$. Thus $(iv) \rightarrow (i)$.

 $(vi) \rightarrow (vii)$ Note that $Cl_{\theta}(U) = Cl(U)$ for each preopen subset U in X. \Box

Remark 3.2. By Theorem 2.3, if $f : (X, \tau) \to (Y, \sigma)$ is a bijective function, then f is weakly semi- θ -open if and only if f is weakly semi- θ -closed.

Next we investigate conditions under which weakly semi- θ -closed functions are semi- θ -closed.

Theorem 3.15. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -closed and if for each closed subset F of X and each fiber $f^{-1}(y) \subset X - F$, there exists an open U of X such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$. Then f is semi- θ -closed.

Proof. Let *F* be any closed subset of *X* and $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \phi$ and hence $f^{-1}(y) \subset X - F$. By hypothesis, there exists an open *U* of *X* such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$. Since *f* is weakly semi- θ -closed by Theorem 3.14, there exists a semi- θ -open *V* in *Y* with $y \in V$ and $f^{-1}(V) \subset Cl(U)$. Therefore, we obtain $f^{-1}(V) \cap F = \phi$ and thus $V \cap f(F) = \phi$, this shows that $y \notin sCl_{\theta}(f(F))$. Therefore, f(F) is semi- θ -closed in *Y* and *f* is semi- θ -closed.

Theorem 3.16. (i) If $f : (X, \tau) \to (Y, \sigma)$ is preclosed and contra-closed, then f is weakly semi- θ -closed.

(*ii*) If $f : (X, \tau) \to (Y, \sigma)$ is contra-semi- θ -open, then f is weakly semi- θ -closed.

Proof. (i) Let *F* be a closed subset of *X*. Since *f* is preclosed $Cl(Int(f(F))) \subset f(F)$ and *f* is contra-closed, f(F) is open. Therefore $sCl_{\theta}(f(Int(F))) \subset sCl_{\theta}(f(F)) \subset Cl(Int(f(F))) \subset f(F)$.

(ii) Let *F* be a closed subset of *X*. Then, $sCl_{\theta}(f(Int(F))) \subset f(Int(F)) \subset f(F)$.

Theorem 3.17. If $f : (X, \tau) \to (Y, \sigma)$ is an injective weakly semi- θ -closed function, then for every subset F in Y and every open set U in X with $f^{-1}(F) \subset U$, there exists a semi- θ -closed set B in Y such that $F \subset B$ and $f^{-1}(B) \subset Cl(U)$.

Proof. Let *F* be a subset of *Y* and *U* be an open subset of *X* with $f^{-1}(F) \subset U$. Put $B = sCl_{\theta}(f(Int(Cl(U))))$, then *B* is a semi- θ -closed set of *Y* such that $F \subset B$ since $F \subset f(U) \subset f(Int(Cl(U))) \subset sCl_{\theta}(f(Int(Cl(U)))) = B$. By weakly semi- θ -closedness of *f*, it follows that $f^{-1}(B) \subset Cl(U)$.

Taking the set F in Theorem 3.17 to be y for $y \in Y$ we obtain the following result,

Corollary 3.2. If $f : (X, \tau) \to (Y, \sigma)$ is one-one weakly semi- θ -closed, then for every point y in Y and every open set U in X with $f^{-1}(y) \subset U$, there exists a semi- θ -closed set B in Y containing y such that $f^{-1}(B) \subset Cl(U)$.

Recall that, a set *F* in a space *X* is θ -compact [29] if for each cover Ω of *F* by open *U* in *X*, there is a finite family $U_1, ..., U_n$ in Ω such that $F \subset Int(\cup \{Cl(U_i) : i = 1, 2, ..., n\})$.

Theorem 3.18. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -closed with all fibers θ -closed, then f(F) is semi- θ -closed for each θ -compact set F in X.

Proof. Let F be θ -compact set and $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \phi$ and for each $x \in F$ there is an open U_x containing x in X and $Cl(U_x) \cap f^{-1}(y) = \phi$. Clearly $\Omega = \{U_x : x \in F\}$ is an open cover of F. Since F is θ -compact, there is a finite family $\{U_{x_1}, ..., U_{x_n}\}$ in Ω such that $F \subset Int(A)$, where $A = \bigcup \{Cl(U_{x_i}) :$ $i = 1, ..., n\}$. Since f is weakly semi- θ -closed by Theorem 2.2 there exists a semi- θ -open B in Y with $f^{-1}(y) \subset f^{-1}(B) \subset Cl(X - A) = X - Int(A) \subset X - F$. Therefore $y \in B$ and $B \cap f(F) = \phi$. Thus $y \in Y - sCl_{\theta}(f(F))$. This shows that f(F) is semi- θ -closed.

Two non empty subsets A and B in X are strongly separated [29], if there exist open sets U and V in X with $A \subset U$ and $B \subset V$ and $Cl(U) \cap Cl(V) = \phi$. If A and

B are singleton sets we may speak of points being strongly separated. We will use the fact that in a normal space, disjoint closed sets are strongly separated.

Recall that a space X is said to be semi- θ -Hausdorff (briefly semi- θ - T_2 [8]) if for every distinct pair of points x and y, there exist two semi- θ -open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V = \phi$.

Theorem 3.19. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -closed surjection and all pairs of disjoint fibers are strongly separated, then Y is semi- θ - T_2 .

Proof. Let y and z be two points in Y. Let U and V be open sets in X such that $f^{-1}(y) \subset U$ and $f^{-1}(z) \subset V$, respectively, with $Cl(U) \cap Cl(V) = \phi$. By weak semi- θ -closedness (Theorem 3.14 (iv)) there are semi- θ -open sets F and B in Y such that $y \in F$ and $z \in B$, $f^{-1}(F) \subset Cl(U)$ and $f^{-1}(B) \subset Cl(V)$. Therefore $F \cap B = \phi$, since $Cl(U) \cap Cl(V) = \phi$ and f is a surjection. Therefore Y is semi- θ - T_2 .

Corollary 3.3. If $f : (X, \tau) \to (Y, \sigma)$ is weakly semi- θ -closed surjection with all closed fibers and X is normal, then Y is semi- θ - T_2 .

Corollary 3.4. If $f : (X, \tau) \to (Y, \sigma)$ is continuous weakly semi- θ -closed surjection with X compact T_2 space and Y a T_1 space, then Y is compact semi- θ - T_2 space.

Proof. Since f is a continuous surjection and Y is a T_1 space, Y is compact and all fibers are closed. Since X is normal Y is also semi- θ - T_2 .

Definition 3.9. A topological space *X* is said to be quasi H-closed [11] (resp. N $s\theta$ -closed), if every open (resp. semi- θ -closed) cover of *X* has a finite subfamily whose closures cover *X*. A subset *A* of a topological space *X* is quasi H-closed relative to *X* (resp. N $s\theta$ -closed relative to *X*) if every cover of *A* by open (resp. N $s\theta$ -closed) sets of *X* has a finite subfamily whose closures cover *A*.

Lemma 3.4. A function $f : (X, \tau) \to (Y, \sigma)$ is open if and only if for each $B \subset Y$, $f^{-1}(Cl(B)) \subset Cl(f^{-1}(B))$ [19].

Theorem 3.20. Let X be an extremally disconnected space and $S\theta O(X, \tau)$ closed under finite intersections. Let $f : (X, \tau) \to (Y, \sigma)$ be an open weakly semi- θ -closed function one-one such that $f^{-1}(y)$ is quasi H-closed relative to X for each y in Y. If G is N s θ -closed relative to Y then $f^{-1}(G)$ is quasi H-closed.

Proof. Let { $V_{\beta} : \beta \in I$ }, *I* being the index set be a open cover of $f^{-1}(G)$. Then for each $y \in G \cap f(X)$, $f^{-1}(y) \subset \cup \{Cl(V_{\beta}) : \beta \in I(y)\} = H_y$ for some finite subfamily I(y) of *I*. Since *X* is extremally disconnected each $Cl(V_{\beta})$ is open, hence H_y is open in *X*. So by Corollary 3.2, there exists a semi- θ -closed set U_y containing *y* such that $f^{-1}(U_y) \subset Cl(H_y)$. Then, $\{U_y : y \in G \cap f(X)\} \cup \{Y - f(X)\}$ is a semi- θ -closed cover of *G*, $G \subset \cup \{Cl(U_y) : y \in K\} \cup \{Cl(Y - f(X))\}$ for some finite subset *K* of $g \cap f(X)$. Hence and by Lemma 3.4, $f^{-1}(G) \subset \cup \{f^{-1}(Cl(U_y) : y \in K\} \cup \{Cl(f^{-1}(Y - f(X)))\} \subset \{Cl(f^{-1}(U_y)) : y \in K\}$. $\{Cl(f^{-1}(U_y)) : y \in K\}$, so $f^{-1}(G) \subset \cup \{Cl(V_{\beta}) : \beta \in I(y), y \in K\}$. Therefore $f^{-1}(G)$ is quasi *H*-closed. \Box

Corollary 3.5. Let $f : (X, \tau) \to (Y, \sigma)$ be as in Theorem 3.20. If Y is N s θ -closed, then X is quasi-H-closed.

Acknowledgment. This work was concluded during the second visit of the first author to the Institute of Mathematics of the Universidad Autónoma de México under the TWAS-UNESCO.

REFERENCES

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A., β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 70-90
- [2] Andrijević, D., Semipreopen sets, Mat. Vesnik 38 (1986), 24-32
- [3] Arya, S. P. and Gupta, R., Strongly continuous mappings, Kyungpook Math. J. 14 (1974), 131-143
- [4] Baker, C. W., Contra-open functions and contra-closed functions, Math. Today 15 (1997), 19-24
- [5] Baker, C. W., Decomposition of openness, Internat. J. Math. & Math. Sci. 17 (1994), 413-415
- [6] Caldas, M. and Jafari, S., On θ-semigeneralized closed sets in topology, Kyungpook Math. J. 43 (2003), 135-148
- [7] Caldas, M. and Jafari, S., Some applications of semi-θ-open sets, J. Egypt. Math. Soc. 11 (2003), 73-81
- [8] Caldas, M., Jafari, S. and Noiri, T., On the class of semi-θ-open sets in topological spaces, East-West J. of Math. 4 (2002), 137-147
- [9] Caldas, M., Jafari, S., Sober regular spaces, Jour. of Inst. of Math. & Comp. Sci. (Math. Ser.) 13 (3)(2002), 297-302.
- [10] Caldas, M., Jafari, S., Navalagi, G. and Noiri, T., Properties of weak semi-θ-continuous functions (under preparation)
- [11] Cameron, D. E., Some maximal topologies which are Q.H.C., Proc. Amer. Math. Soc. 75 (1979), 149-156
- [12] Crossley, S. G. and Hildebrand, S. K., Semi-closure, Texas J. Sci. 22 (1971), 99-112
- [13] Di Maio, G. and Noiri, T., On s-closed spaces, Indian J. Pure Appl. Math. 18(3)(1987), 226-233
- [14] Dontchev, J. and Noiri, T., On properties of spaces defined in terms of semi-regular sets (preprint)
- [15] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S. and Noiri, T., On p-regular spaces, Bull. Math. de la Soc. Sci. Math. de la. R. S. Roumanie 27 (1983), 311-315
- [16] Husain, T., Almost continuous mappings, Prace Mat. 10 (1966),1-7
- [17] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41
- [18] Levine, N., Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269
- [19] Long, P. E. and Carnahan, D. A., Comparing almost continuous functions, Proc. Amer. Math. Soc., 38 (1973), 413-418
- [20] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N., Precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47-53
- [21] Mukherjee, M. N. and Basu, C. K., On semi-θ-closed sets, semi θ-connectedness and some associated mappings, Bull. Cal. Math. Soc. 83 (1991), 227-238
- [22] Njåstad, O., On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970
- [23] Noiri, T., A generalization of closed mappings, Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 8 (1973), 210-214
- [24] Noiri, T., On θ -semicontinuous functions, Indian J. Pure Appl. Math. 21(5)(1990),410-415
- [25] Noiri, T. and Popa, V., A unified theory of contra-continuity for functions (submitted)
- [26] Park, J. H. and Park, Y. B., Weaker forms of irresolute functions, Indian J. Pure Appl.Math. 26(7)(1995), 691-696
- [27] Park, J. H., Lee, Y. and Son, M. J., On δ -semiopen sets in topological spaces, J. Indian Acad. Math. **19**(1997), 59-67

- [28] Rose, D. A., On weak openness and almost openness, Internat. J. Math.& Math. Sci. 7 (1984), 35-40
- [29] Rose, D. A. and Janković, D. S., Weakly closed functions and Hausdorff spaces, Math. Nachr. 130 (1987), 105-110
- [30] Singal, M. K. and Singal, A. R., Almost continuous mappings, Yokohama Math. J. 16 (1968), 63-73
- [31] Veličko, N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118
- [32] Willard, S., *General topology*, Addition Wesley Publishing Company (1970)

DEPARTAMENTO DE MATEMATICA APLICADA UNIVERSIDADE FEDERAL FLUMINENSE RUA MARIO SANTOS BRAGA, CEP: 24020-140, NITEROI, RJ BRASIL *E-mail address*: gmamccs@vm.uff.br

COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRAEDE 11, 4200 SLAGELSE, DENMARK *E-mail address*: jafari@stofanet.dk

DEPARTMENT OF MATHEMATICS KLE SOCIETY G. H. COLLEGE, HAVERI-581110, KARNATAKA, INDIA *E-mail address*: gnavalagi@hotmail.com