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Weak forms of open and closed functions via
semi-θ-open sets

MIGUEL CALDAS, SAEID JAFARI and GOVINDAPPA NAVALAGI

ABSTRACT. In this paper, we introduce and study two new classes of functions by using the no-
tions of semi-θ-open sets and semi-θ-closure operator called weakly semi-θ-open and weakly semi-
θ-closed functions. The connections between these functions and other existing well-known related
functions are investigated.

1. INTRODUCTION AND PRELIMINARIES

In 1987, Di Maio and Noiri [13] initiated a brief study of the concepts of semi-
θ-open and semi-θ-closed sets which provide a formulation of semi-θ-closure
of a set in a topological space. Noiri [24] defined and studied the concept of
θ-semicontinuous functions by involving these sets. Mukherjee and Basu [21]
continued the work of Di Maio and Noiri and defined the concepts of semi-θ-
connectedness, semi-θ- components and semi-θ-quasi-components. Also Park
and Park [26] have used these sets to define the notion of weaker forms of ir-
resolute functions. Dontchev and Noiri [14] obtained, among others, that a topo-
logical space is semi-Hausdorff if and only if each singleton is semi-θ-closed. Re-
cently the authors [7, 8, 9] have also obtained several new and important results
and notions related to these sets. The aim of this paper is to present the class of
weakly semi θ-openness (resp. weakly semi θ-closedness) as a new generaliza-
tion of semi θ-openness (resp. semi θ-closedness). We investigate some of the
fundamental properties of this class of functions, w.r.t. these notions.

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y ) denote topolog-
ical spaces on which no separation axioms are assumed unless explicitly stated.
If A is any subset of a space X , then Cl(A) and Int(A) denote the closure and the
interior of A respectively. Recall that a subset A of X is called regular open (resp.
regular closed ) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The subset A is called
δ-open [31] if A = Intδ(A), where Intδ(A) is the union of all regular open sets of
X which are contained in A.

Definition 1.1. A subset A of a space (X, τ) is said to be semi-open [17], if there
exists an open set U such that U ⊂ A ⊂ Cl(U), or equivalently if A ⊂ Cl(Int(A)).

The complement of a semi-open set is said to be semi-closed [12]. The intersec-
tion of all semi-closed sets containing A is called the semi-closure [12] of A and
is denoted by sCl(A). The semi-interior of A denoted by sInt(A), is defined by
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the union of all semi-open sets contained in A.The family of all semiopen (resp.
semiclosed) sets of a space X is denoted by SO(X, τ) ( resp. SC(X, τ)).

Definition 1.2. A point x ∈ X is called a semi θ-cluster [13] (resp. θ-cluster [31])
point of A if A∩sCl(U) �= ∅ (resp. A∩Cl(U) �= ∅) for each semiopen (resp. open)
set U containing x.

The set of all semi θ-cluster (resp. θ-cluster) points of A is called the semi θ-
closure (resp. θ-closure) of A and is denoted by sClθ(A) (resp. Clθ(A). Hence,
a subset A is called semi-θ-closed [13] (resp. θ-closed [31]) if sClθ(A) = A (resp.
Clθ(A) = A). The complement of a semi-θ-closed (resp. θ-closed) set is called
semi-θ-open (resp. θ-open) set. The semi θ-interior (resp. θ-interior) of A is de-
fined by the union of all semi-θ-open (resp. θ-open) sets contained in A and is
denoted by sIntθ(A) (resp. Intθ(A). The family of all semi-θ-open (resp. semi-θ-
closed) sets of a space X is denoted by SθO(X, τ) ( resp. SθC(X, τ)). Recall that
a subset A of a space (X, τ) is said to be δ-semi-open [27] if A ⊂ Cl(Intδ(A)).

Definition 1.3. A subset A ⊂ X is called preopen [20] (resp. α-open [22] and β-
open [1] (or semi-preopen [2]), if A ⊂ Int(Cl(A))(resp.A ⊂ Int(Cl(Int(A)) and
A ⊂ Cl(Int(Cl(A))). The complement of a preopen (resp. α-open) set is called
preclosed (resp. α-closed).

Remark 1.1. We have the following diagram [25] in which the converses of the
implications need not be true.

DIAGRAM
θ-open → δ-open → open

↓ ↓ ↓
semi − θ − open → δ − semi − open → semi − open

Lemma 1.1. (Di Maio and Noiri [13]) Let A be a subset of a topological space (X, τ).
(1) If A ∈ SO(X, τ), then sCl(A) = sClθ(A).
(2) If A is open in X , then sCl(A) = Int(Cl(A)).

Lemma 1.2. (Mukherjee and Basu [21]) For any subset A of a topological space (X, τ),
sClθ(A) is semi-θ-closed, for every A ⊂ X.

A space X is called extremally disconnected (E.D) [32] if the closure of each
open set in X is open. A space X is called semi θ-connected[21] if X can not be
expressed as the union of two nonempty disjoint semi-θ-open sets.

Definition 1.4. A function f : (X, τ) → (Y, σ) is called:
(i) semi θ-open (resp. semi θ-closed) if for each open set U (resp. closed set F )

of X , f(U) ∈ SθO(Y, σ) (resp. f(F ) ∈ SθC(Y, σ);
(ii) θ-semicontinuous [24] if for each x ∈ X and each open set V containing

f(x), there exists U ∈ SO(x) such that f(sCl(U)) ⊂ Cl(V );
(iii) θ-irresolute [26] if for each x ∈ X and each V ∈ SO(Y ) containing f(x),

there exists U ∈ SO(x) such that f(sCl(U) ⊂ sCl(V );
(iv) almost open in the sense of Singal and Singal , written as (a.o.S) [30] if the

image of each regular open set U of X is open set in Y ;
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(v) preopen [20] (resp. preclosed [15], β-open [1], α-open [22])if for each open
set U (resp. closed set F , open set U , open set U ) of X , f(U) is preopen (resp.
f(F ) is preclosed, f(U) is β-open, f(U) is α-open) set in Y ;

(vi) contra-open [4] (resp. contra-closed [4]) if f(U) is closed (resp. open) in Y
for each open (resp. closed) set U of X ;

(vii) weak semi-θ-continuous [10] if f−1(V ) ⊂ sIntθ(f−1(Cl(V ))) for each
open set V of Y .

2. WEAKLY SEMI-θ-OPEN FUNCTIONS

We define in this section the concept of weak semi-θ-openness as natural dual
to the weak semi-θ-continuity.

Definition 2.5. A function f : (X, τ) → (Y, σ) is said to be weakly semi-θ-open if
f(U) ⊂ sIntθ(f(Cl(U))) for each open set U of X.

Clearly, every semi-θ-open function is also weakly semi-θ-open, but the con-
verse is not generally true.

Example 2.1. A weakly semi-θ-open function need not be semi-θ-open.
Let X = {a, b}, τ = {∅, {b}, X}, Y = {x, y} and σ = {∅, {x}, Y }. Let f : (X, τ) →
(Y, σ) be given by f(a) = x and f(b) = y. Then f is clearly weakly semi-θ-open,
but is not semi-θ-open since f(b) is not a semi-θ-open set in Y .

Theorem 2.1. Let X be a regular space. Then f : (X, τ) → (Y, σ) is weakly semi-θ-open
if and only if f is semi-θ-open.

Proof. The sufficiency is clear. Necessity. Let W be a nonempty open subset of X.
For each x in W , let Ux be an open set such that x ∈ Ux ⊂ Cl(Ux) ⊂ W . Hence we
obtain that W = ∪{Ux : x ∈ W} = ∪{Cl(Ux) : x ∈ W} and , f(W ) = ∪{f(Ux) :
x ∈ W} ⊂ ∪{sIntθ(f(Cl(Ux))) : x ∈ W} ⊂ sIntθ(f(∪{Cl(Ux) : x ∈ W}) =
sIntθ(f(W )). Thus f is semi-θ-open. �

Theorem 2.2. For a function f : (X, τ) → (Y, σ), the following conditions are equiva-
lent :

(i) f is weakly semi-θ-open.
(ii) f(Intθ(A)) ⊂ sIntθ(f(A)) for every subset A of X.
(iii) Intθ(f−1(B)) ⊂ f−1(sIntθ(B)) for every subset B of Y.
(iv) f−1(sClθ(B)) ⊂ Clθ(f−1(B)) for every subset B of Y.
(v) For each x ∈ X and each open set U of X containing x, there exists a semi-θ-open

set V containing f(x) such that V ⊂ f(Cl(U)).
(vi) For each closed subset F of X, f(Int(F )) ⊂ sIntθ(f(F )).
(vii) For each open subset U of X, f(Int(Cl(U))) ⊂ sIntθ(f(Cl(U))).
(viii) For each preopen subset U of X, f(Int(Cl(U))) ⊂ sIntθ(f(Cl(U))).
(ix) For every α-open subset U of X, f(U) ⊂ sIntθ(f(Cl(U))).

Proof. (i) → (ii) Let A be any subset of X and x ∈ Intθ(A). Then, there exists an
open set U such that x ∈ U ⊂ Cl(U) ⊂ A. Then, f(x) ∈ f(U) ⊂ f(Cl(U)) ⊂ f(A).
Since f is weakly semi-θ-open, f(U) ⊂ sIntθ(f(Cl(U))) ⊂ sIntθ(f(A)). It implies
that f(x) ∈ sIntθ(f(A)). This shows that x ∈ f−1(sIntθ(f(A))). Thus Intθ(A) ⊂
f−1(sIntθ(f(A))), and so, f(Intθ(A)) ⊂ sIntθ(f(A)).
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(ii) → (i) Let U be an open set in X. As U ⊂ Intθ(Cl(U)) implies, f(U) ⊂
f(Intθ(Cl(U))) ⊂ sIntθ(f(Cl(U))). Hence f is weakly semi-θ-open.

(ii) → (iii) Let B be any subset of Y. Then by (ii), f(Intθ(f−1(B)) ⊂ sIntθ(B).
Therefore Intθ(f−1(B)) ⊂ f−1(sIntθ(B)).

(iii) → (ii) This is obvious.
(iii) → (iv) Let B be any subset of Y. Using (iii), we have X − Clθ(f−1(B)) =

Intθ(X−f−1(B)) = Intθ(f−1(Y −B)) ⊂ f−1(sIntθ(Y −B)) = f−1(Y −sClθ(B)) =
X − (f−1(sClθ(B)). Therefore, we obtain f−1(sClθ(B)) ⊂ Clθ(f−1(B)).

(iv) → (iii) Similarly we obtain, X − f−1(sIntθ(B)) ⊂ X − Intθ(f−1(B)), for
every subset B of Y, i.e., Intθ(f−1(B)) ⊂ f−1(sIntθ(B)).

(i) → (v) Let x ∈ X and U be an open set in X with x ∈ U . Since f is weakly
semi-θ-open. f(x) ∈ f(U) ⊂ sIntθ(f(Cl(U))). Let V = sIntθ(f(Cl(U))). Hence
V ⊂ f(Cl(U)), with V containing f(x).

(v) → (i) Let U be an open set in X and y ∈ f(U). It follows from (ii)
that V ⊂ f(Cl(U)) for some V semi-θ-open in Y containing y. Hence we have,
y ∈ V ⊂ sIntθ(f(Cl(U))). This shows that f(U) ⊂ sIntθ(f(Cl(U))), i.e., f is a
weakly semi-θ-open function.

(i) → (vi) → (vii) → (viii) → (iv) → (i) This is obvious. �
Theorem 2.3. Let f : (X, τ) → (Y, σ) be a bijective function. Then the following
statements are equivalent.

(i) f is weakly semi-θ-open,
(ii) sClθ(f(U)) ⊂ f(Cl(U)) for each U open of X,
(iii) sClθ(f(Int(F )) ⊂ f(F ) for each F closed of X.

Proof. (i) → (iii) Let F be a closed set in X . Then we have f(X−F )=Y −f(F )⊂
sIntθ(f(Cl(X−F ))) and so Y −f(F )⊂Y −sClθ(f(Int(F ))).
Hence sClθ(f(Int(F )))⊂f(F ).

(iii) → (ii) Let U be a open set in X . Since Cl(U) is a closed set and U ⊂
Int(Cl(U)) by (iii) we have sClθ(f(U)) ⊂ sClθ(f(Int(Cl(U))) ⊂ f(Cl(U)).

(ii) → (iii) Similar to (iii) → (ii).
(iii) → (i) Clear. �
Recall that a function f : (X, τ) → (Y, σ) is said to be strongly continuous [18],

if for every subset A of X, f(Cl(A)) ⊂ f(A).

Theorem 2.4. If f : (X, τ) → (Y, σ) is weakly semi-θ-open and strongly continuous,
then f is semi-θ-open.

Proof. Let U be an open subset of X. Since f is weakly semi-θ-open f(U) ⊂
sIntθ(f(Cl(U))). However, because f is strongly continuous, f(U) ⊂ sIntθ(f(U)).
Therefore f(U) is semi-θ-open. �

A function f : (X, τ) → (Y, σ) is said to be contra semi-θ-closed if f(U) is a
semi-θ-open set of Y , for each closed set U in X .

Theorem 2.5. If f : (X, τ) → (Y, σ) is contra semi-θ-closed, then f is a weakly semi-θ-
open function.

Proof. Let U be an open subset of X. Then, we have f(U) ⊂ f(Cl(U))) =
sIntθ(f(Cl(U))). �
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Example 2.2. The converse of Theorem 2.5 does not hold. Example 2.1 shows
that a weakly semi-θ-open function need not be contra semi-θ-closed.

Next, we define a dual form, called complementary weakly semi-θ-open func-
tion as follows:

Definition 2.6. A function f : (X, τ) → (Y, σ) is called complementary weakly
semi-θ-open (written as c.w.sθ.o) if for each open set U of X, f(Fr(U)) is semi-
θ-closed in Y, where Fr(U) denotes the frontier of U.

Example 2.3. A weakly semi-θ-open function need not be c.w.sθ.o.
Let X = {a, b}, τ = {∅, {b}, X}, Y = {x, y} and σ = {∅, {x}, Y }. Let f : (X, τ) →
(Y, σ) be given by f(a) = x and f(b) = y. Then f is clearly weakly semi-θ-open,
but it is not c.w.sθ.o., since Fr({b}) = Cl({b}) − {b} = {a} and f(Fr({b})) = {x}
is not a semi-θ-closed set in Y .

Theorem 2.6. Let SθO(X, τ) be closed under finite intersections. If f : (X, τ) → (Y, σ)
is bijective weakly semi-θ-open and c.w.sθ.o, then f is semi-θ-open.

Proof. Let U be an open subset in X with x ∈ U . Since f is weakly semi-θ-open,
by Theorem 2.4 there exists a semi-θ-open set V containing f(x) = y such that
V ⊂ f(Cl(U)). Now Fr(U) = Cl(U) − U and thus x /∈ Fr(U). Hence y /∈
f(Fr(U)) and therefore y ∈ V − f(Fr(U)). Put Vy = V − f(Fr(U)) a semi-θ-
open set since f is c.w.sθ.o. Since y ∈ Vy , y ∈ f(Cl(U)). But y /∈ f(Fr(U)) and
thus y /∈ f(Fr(U)) = f(Cl(U)) − f(U). It follows that y ∈ f(U). Therefore
f(U) = ∪{Vy : Vy ∈ SθO(Y, σ), y ∈ f(U)}. Hence f is semi-θ-open. �

The following theorem is a variation of a result of Baker [4] in which contra-
closedness is replaced by weakly semi-θ-open and closed by contra-pre-semi-θ-
closed, where, f : (X, τ) → (Y, σ) is said to be contra-pre-semi-θ-closed provided
that f(F ) is semi-θ-open for each semi-θ-closed subset F of X.

Theorem 2.7. If f : (X, τ) → (Y, σ) is weakly semi-θ-open, SθO(Y, σ) closed under
finite unions and if for each semi-θ-closed subset F of X and each fiber f−1(y) ⊂ X −F
there exists an open subset U of X for which F ⊂ U and f−1(y)∩Cl(U) = φ, then f is
contra-pre-semi-θ-closed.

Proof. Assume that F is a semi-θ-closed subset of X and let y ∈ Y − f(F ). Thus
f−1(y) ⊂ X − F . Hence there exists an open subset U of X for which F ⊂ U and
f−1(y) ∩ Cl(U) = φ. Therefore y ∈ Y − f(Cl(U)) ⊂ Y − f(F ). Since f is weakly
semi-θ-open f(U) ⊂ sIntθ(f(Cl(U))). We obtain y ∈ sClθ(Y − f(Cl(U))) ⊂
Y − f(F ). Let By = sClθ(Y − f(Cl(U))). Then By is a semi-θ-closed subset of Y
containing y. Hence Y −f(F ) = ∪{By : y ∈ Y −f(F )} is semi-θ-closed. Therefore
f(F ) is semi-θ-open. �
Theorem 2.8. If f : (X, τ) → (Y, σ) is an a.o.S and closed function, then it is a weakly
semi-θ-open function.

Proof. Let U be an open set in X. Since f is a.o.S and Int(Cl(U)) is regular open,
f(Int(Cl(U))) is open in Y . Since f is closed,

f(U) ⊂ f(Int(Cl(U)) ⊂ Int(f(Cl(U))) ⊂ sIntθ(f(Cl(U))).

This shows that f is weakly semi-θ-open. �
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Lemma 2.3. If f : (X, τ) → (Y, σ) is a continuous function, then for any subset U of
X , f(Cl(U)) ⊂ Cl(f(U)) [32].

Theorem 2.9. If f : (X, τ) → (Y, σ) is a weakly semi-θ-open and continuous function,
then f is a β-open function.

Proof. Let U be an open set in X . Then by weak semi-θ-openness of f ,
f(U) ⊂ sIntθ(f(Cl(U))). Since f is continuous f(Cl(U)) ⊂ Cl(f(U)). Hence
we obtain that, f(U) ⊂ sIntθ(f(Cl(U))) ⊂ sIntθ(Cl(f(U))) ⊂ sInt(Cl(f(U))) ⊂
Cl(Int(Cl(f(U)))). Therefore, f(U) ⊂ Cl(Int(Cl(f(U))) which shows that f(U)
is a β-open set in Y and we are done. �

Since every strongly continuous function is continuous we have the following,

Corollary 2.1. If f : (X, τ) → (Y, σ) is a weakly semi-θ-open and strongly continuous
function. Then f is a β-open function.

Theorem 2.10. If f : (X, τ) → (Y, σ) is a bijective weakly semi-θ-open function from a
space X onto a semi-θ-connected space Y, then X is connected.

Proof. Assume that X is not connected. Then there exist non-empty open sets
U1 and U2 such that U1 ∩ U2 = φ and U1 ∪ U2 = X. Hence we have f(U1) ∩
f(U2) = φ and f(U1) ∪ f(U2) = Y . Since f is bijective weakly semi-θ-open, we
have f(Ui) ⊂ sIntθ(f(Cl(Ui))) for i=1, 2 and since Ui is open and also closed,
we have f(Cl(Ui) = f(Ui) for i=1, 2. Hence f(Ui) is semi-θ-open in Y for i=1,
2. Thus, Y has been decomposed into two non-empty disjoint semi-θ-open sets.
This is contrary to the hypothesis that Y is a semi-θ-connected space. Thus X is
connected. �
Definition 2.7. A space X is said to be hyperconnected [23] if every nonempty
open subset of X is dense in X.

Theorem 2.11. If X is a hyperconnected space, then a function f : (X, τ) → (Y, σ) is
weakly semi-θ-open if and only if f(X) is semi-θ-open in Y.

Proof. The sufficiency is clear. For the necessity observe that for any open subset
U of X, f(U) ⊂ f(X) = sIntθ(f(X) = sIntθ(f(Cl(U))). �

3. WEAKLY SEMI-θ-CLOSED FUNCTIONS

Now, we define the generalized form of semi-θ-closed functions.

Definition 3.8. A function f : (X, τ) → (Y, σ) is said to be weakly semi-θ-closed
if sClθ(f(Int(F ))) ⊂ f(F ) for each closed set F of X.

Clearly, every semi-θ-closed function is weakly semi-θ-closed function, but the
converse is not generally true.

Example 3.4. Let f : (X, τ) → (Y, σ) be the function from Example 2.1. Then it is
shown that f is weakly semi-θ-closed which is not semi-θ-closed.

Theorem 3.12. For a function f : (X, τ) → (Y, σ), the following conditions are equiv-
alent.

(i) f is weakly semi-θ-closed.
(ii) sClθ(f(U)) ⊂ f(Cl(U)) for every open set U of X .



Weak forms of open and closed functions via semi-θ-open sets 27

Proof. (i) → (ii). Let U be any open subset of X. Then
sClθ(f(U)) = sClθ(f(Int(U))) ⊂ sClθ(f(Int(Cl(U))) ⊂ f(Cl(U)).
(ii) → (i). Let F be any closed subset of X. Then,
sClθ(f(Int(F ))) ⊂ f(Cl(Int(F ))) ⊂ f(Cl(F )) = f(F ). �

The proof of the following result is mostly straightforward and is therefore
omitted.

Theorem 3.13. For a function f : (X, τ) → (Y, σ) the following conditions are equiva-
lent:

(i) f is weakly semi-θ-closed,
(ii) sClθ(f(U)) ⊂ f(Cl(U)) for each open set U in X ,
(iii) sClθ(f(Int(F ))) ⊂ f(F ) for each preclosed subset F in X ,
(iv) sClθ(f(Int(F ))) ⊂ f(F ) for every α-closed subset F in X .

Theorem 3.14. For a function f : (X, τ) → (Y, σ) the following conditions are equiva-
lent:

(i) f is weakly semi-θ-closed,
(ii) sClθ(f(U)) ⊂ f(Cl(U)) for each regular open subset U of X ,
(iii) For each subset F in Y and each open set U in X with f−1(F ) ⊂ U , there exists

a semi-θ-open set A in Y with F ⊂ A and f−1(F ) ⊂ Cl(U),
(iv) For each point y in Y and each open set U in X with f−1(y) ⊂ U, there exists a

semi-θ-open set A in Y containing y and f−1(A) ⊂ Cl(U),
(v) sClθ(f(Int(Cl(U)))) ⊂ f(Cl(U)) for each set U in X ,
(vi) sClθ(f(Int(Clθ(U)))) ⊂ f(Clθ(U)) for each set U in X ,
(vii) sClθ(f(U)) ⊂ f(Cl(U)) for each preopen set U in X .

Proof. It is clear that: (i) → (vi), (iii) → (iv), and (i) → (v) → (vii) → (ii) →
(i). To show that (ii) → (iii), let F be a subset in Y and U be open in X with
f−1(F ) ⊂ U . Then f−1(F )∩Cl(X −Cl(U)) = φ and consequently, F ∩ f(Cl(X −
Cl(U))) = φ. Since X − Cl(U) is regular open, F ∩ sClθ(f(X − Cl(U))) = φ by
(ii). Let A = Y − sClθ(f(X − Cl(U))). Then A is semi-θ-open with F ⊂ A and
f−1(A) ⊂ X − f−1(sClθ(f(X − Cl(U)))) ⊂ X − f−1f(X − Cl(U)) ⊂ Cl(U).

(vi) → (i) It suffices to see that Clθ(U) = Cl(U) for every open sets U in X .
(iv) → (i) Let F be closed in X and y ∈ Y − f(F ). Since f−1(y) ⊂ X −F , there

exists a semi-θ-open A in Y with y ∈ A and f−1(A) ⊂ Cl(X − F ) = X − Int(F )
by (iv). Therefore A ∩ f(Int(F )) = φ, so that y ∈ Y − sClθ(f(Int(F ))). Thus
(iv) → (i).

(vi) → (vii) Note that Clθ(U) = Cl(U) for each preopen subset U in X . �

Remark 3.2. By Theorem 2.3, if f : (X, τ) → (Y, σ) is a bijective function, then f
is weakly semi-θ-open if and only if f is weakly semi-θ-closed.

Next we investigate conditions under which weakly semi-θ-closed functions
are semi-θ-closed.

Theorem 3.15. If f : (X, τ) → (Y, σ) is weakly semi-θ-closed and if for each closed
subset F of X and each fiber f−1(y) ⊂ X − F , there exists an open U of X such that
f−1(y) ⊂ U ⊂ Cl(U) ⊂ X − F . Then f is semi-θ-closed.
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Proof. Let F be any closed subset of X and y ∈ Y − f(F ). Then f−1(y) ∩ F = φ
and hence f−1(y) ⊂ X − F . By hypothesis, there exists an open U of X such that
f−1(y) ⊂ U ⊂ Cl(U) ⊂ X − F . Since f is weakly semi-θ-closed by Theorem 3.14,
there exists a semi-θ-open V in Y with y ∈ V and f−1(V ) ⊂ Cl(U). Therefore, we
obtain f−1(V ) ∩ F = φ and thus V ∩ f(F ) = φ, this shows that y /∈ sClθ(f(F )).
Therefore, f(F ) is semi-θ-closed in Y and f is semi-θ-closed. �

Theorem 3.16. (i) If f : (X, τ) → (Y, σ) is preclosed and contra-closed, then f is
weakly semi-θ-closed.

(ii) If f : (X, τ) → (Y, σ) is contra-semi-θ-open, then f is weakly semi-θ-closed.

Proof. (i) Let F be a closed subset of X. Since f is preclosed Cl(Int(f(F ))) ⊂ f(F )
and f is contra-closed, f(F ) is open. Therefore sClθ(f(Int(F ))) ⊂ sClθ(f(F )) ⊂
Cl(Int(f(F ))) ⊂ f(F ).

(ii) Let F be a closed subset of X. Then, sClθ(f(Int(F ))) ⊂ f(Int(F )) ⊂ f(F ).
�

Theorem 3.17. If f : (X, τ) → (Y, σ) is an injective weakly semi-θ-closed function,
then for every subset F in Y and every open set U in X with f−1(F ) ⊂ U , there exists
a semi-θ-closed set B in Y such that F ⊂ B and f−1(B) ⊂ Cl(U).

Proof. Let F be a subset of Y and U be an open subset of X with f−1(F ) ⊂ U .
Put B = sClθ(f(Int(Cl(U)))), then B is a semi-θ-closed set of Y such that F ⊂ B
since F ⊂ f(U) ⊂ f(Int(Cl(U)) ⊂ sClθ(f(Int(Cl(U)))) = B. By weakly semi-θ-
closedness of f , it follows that f−1(B) ⊂ Cl(U). �

Taking the set F in Theorem 3.17 to be y for y ∈ Y we obtain the following
result,

Corollary 3.2. If f : (X, τ) → (Y, σ) is one-one weakly semi-θ-closed, then for every
point y in Y and every open set U in X with f−1(y) ⊂ U , there exists a semi-θ-closed
set B in Y containing y such that f−1(B) ⊂ Cl(U).

Recall that, a set F in a space X is θ-compact [29] if for each cover Ω of F by
open U in X , there is a finite family U1, ..., Un in Ω such that F ⊂ Int(∪{Cl(Ui) :
i = 1, 2, ..., n}).
Theorem 3.18. If f : (X, τ) → (Y, σ) is weakly semi-θ-closed with all fibers θ-closed,
then f(F ) is semi-θ-closed for each θ-compact set F in X .

Proof. Let F be θ-compact set and y ∈ Y − f(F ). Then f−1(y) ∩ F = φ and for
each x ∈ F there is an open Ux containing x in X and Cl(Ux) ∩ f−1(y) = φ.
Clearly Ω = {Ux : x ∈ F} is an open cover of F . Since F is θ-compact, there is
a finite family {Ux1 , ..., Uxn} in Ω such that F ⊂ Int(A) , where A = ∪{Cl(Uxi) :
i = 1, ..., n}. Since f is weakly semi-θ-closed by Theorem 2.2 there exists a semi-
θ-open B in Y with f−1(y) ⊂ f−1(B) ⊂ Cl(X − A) = X − Int(A) ⊂ X − F .
Therefore y ∈ B and B ∩ f(F ) = φ. Thus y ∈ Y − sClθ(f(F )). This shows that
f(F ) is semi-θ-closed. �

Two non empty subsets A and B in X are strongly separated [29], if there exist
open sets U and V in X with A ⊂ U and B ⊂ V and Cl(U) ∩ Cl(V ) = φ. If A and
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B are singleton sets we may speak of points being strongly separated. We will
use the fact that in a normal space, disjoint closed sets are strongly separated.

Recall that a space X is said to be semi-θ-Hausdorff (briefly semi-θ-T2 [8]) if
for every distinct pair of points x and y, there exist two semi-θ-open sets U and
V such that x ∈ U and y ∈ V and U ∩ V = φ.

Theorem 3.19. If f : (X, τ) → (Y, σ) is weakly semi-θ-closed surjection and all pairs
of disjoint fibers are strongly separated, then Y is semi-θ-T2.

Proof. Let y and z be two points in Y . Let U and V be open sets in X such that
f−1(y) ⊂ U and f−1(z) ⊂ V , respectively, with Cl(U) ∩ Cl(V ) = φ. By weak
semi-θ-closedness (Theorem 3.14 (iv)) there are semi-θ-open sets F and B in Y
such that y ∈ F and z ∈ B, f−1(F ) ⊂ Cl(U) and f−1(B) ⊂ Cl(V ). Therefore
F ∩ B = φ , since Cl(U) ∩Cl(V ) = φ and f is a surjection. Therefore Y is semi-θ-
T2. �
Corollary 3.3. If f : (X, τ) → (Y, σ) is weakly semi-θ-closed surjection with all closed
fibers and X is normal, then Y is semi-θ-T2.

Corollary 3.4. If f : (X, τ) → (Y, σ) is continuous weakly semi-θ-closed surjection
with X compact T2 space and Y a T1 space, then Y is compact semi-θ-T2 space.

Proof. Since f is a continuous surjection and Y is a T1 space, Y is compact and all
fibers are closed. Since X is normal Y is also semi-θ-T2. �
Definition 3.9. A topological space X is said to be quasi H-closed [11] (resp. N
sθ-closed), if every open (resp. semi-θ-closed) cover of X has a finite subfamily
whose closures cover X. A subset A of a topological space X is quasi H-closed
relative to X (resp. N sθ-closed relative to X) if every cover of A by open (resp.
N sθ-closed) sets of X has a finite subfamily whose closures cover A.

Lemma 3.4. A function f : (X, τ) → (Y, σ) is open if and only if for each B ⊂ Y ,
f−1(Cl(B)) ⊂ Cl(f−1(B)) [19].

Theorem 3.20. Let X be an extremally disconnected space and SθO(X, τ) closed under
finite intersections. Let f : (X, τ) → (Y, σ) be an open weakly semi-θ-closed function
one-one such that f−1(y) is quasi H-closed relative to X for each y in Y. If G is N sθ-
closed relative to Y then f−1(G) is quasi H-closed.

Proof. Let {Vβ : β ∈ I} , I being the index set be a open cover of f−1(G). Then for
each y ∈ G∩f(X), f−1(y) ⊂ ∪{Cl(Vβ) : β ∈ I(y)} = Hy for some finite subfamily
I(y) of I. Since X is extremally disconnected each Cl(Vβ) is open, hence Hy is
open in X . So by Corollary 3.2, there exists a semi-θ-closed set Uy containing y
such that f−1(Uy) ⊂ Cl(Hy). Then, {Uy : y ∈ G ∩ f(X)} ∪ {Y − f(X)} is a semi-
θ-closed cover of G, G ⊂ ∪{Cl(Uy) : y ∈ K} ∪ {Cl(Y − f(X))} for some finite
subset K of g ∩ f(X). Hence and by Lemma 3.4, f−1(G) ⊂ ∪{f−1(Cl(Uy) : y ∈
K} ∪ {f−1(Cl(Y − f(X))} ⊂ ∪{Cl(f−1(Uy) : y ∈ K}∪ {Cl(f−1(Y − f(X)))} ⊂
{Cl(f−1(Uy)) : y ∈ K}, so f−1(G) ⊂ ∪{Cl(Vβ) : β ∈ I(y), y ∈ K}. Therefore
f−1(G) is quasi H-closed. �
Corollary 3.5. Let f : (X, τ) → (Y, σ) be as in Theorem 3.20. If Y is N sθ-closed, then
X is quasi-H-closed.
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[2] Andrijević, D., Semipreopen sets, Mat. Vesnik 38 (1986), 24-32
[3] Arya, S. P. and Gupta, R., Strongly continuous mappings, Kyungpook Math. J. 14 (1974), 131-143
[4] Baker, C. W., Contra-open functions and contra-closed functions, Math. Today 15 (1997), 19-24
[5] Baker, C. W., Decomposition of openness, Internat. J. Math. & Math. Sci. 17 (1994), 413-415
[6] Caldas, M. and Jafari, S., On θ-semigeneralized closed sets in topology, Kyungpook Math. J. 43 (2003),

135-148
[7] Caldas, M. and Jafari, S., Some applications of semi-θ-open sets, J. Egypt. Math. Soc. 11 (2003), 73-81
[8] Caldas, M., Jafari, S. and Noiri, T., On the class of semi-θ-open sets in topological spaces, East-West J.

of Math. 4 (2002), 137-147
[9] Caldas, M., Jafari, S., Sober regular spaces, Jour. of Inst. of Math. & Comp. Sci. (Math. Ser.) 13

(3)(2002), 297-302.
[10] Caldas, M., Jafari, S., Navalagi, G. and Noiri, T., Properties of weak semi-θ-continuous functions

(under preparation)
[11] Cameron, D. E., Some maximal topologies which are Q.H.C., Proc. Amer. Math. Soc. 75 (1979), 149-

156
[12] Crossley, S. G. and Hildebrand, S. K., Semi-closure, Texas J. Sci. 22 (1971), 99-112
[13] Di Maio, G. and Noiri, T., On s-closed spaces, Indian J. Pure Appl. Math. 18(3)(1987), 226-233
[14] Dontchev, J. and Noiri, T., On properties of spaces defined in terms of semi-regular sets (preprint)
[15] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S. and Noiri, T., On p-regular spaces, Bull. Math. de

la Soc. Sci. Math. de la. R. S. Roumanie 27 (1983), 311-315
[16] Husain, T., Almost continuous mappings, Prace Mat. 10 (1966),1-7
[17] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963),

36-41
[18] Levine, N., Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269
[19] Long, P. E. and Carnahan, D. A. , Comparing almost continuous functions, Proc. Amer. Math. Soc.,

38 (1973), 413-418
[20] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N., Precontinuous and weak precontinuous

mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47-53
[21] Mukherjee, M. N. and Basu, C. K., On semi-θ-closed sets, semi θ-connectedness and some associated

mappings, Bull. Cal. Math. Soc. 83 (1991), 227-238
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