CARPATHIAN J. MATH. **22** (2006), No. 1 - 2, 39-41

A note on a paper of Chatzidakis-Pappas

PETER DANCHEV and KOSTADIN NEDELCHEV

ABSTRACT. In this brief note we give a new algebraic interpretation, which is also a non-elementary extension, of an assertion due to Chatzidakis-Pappas appeared in J. Symbolic Logic (2001).

1. INTRODUCTION

Suppose *G* is an infinite abelian *p*-group and suppose *K* is a field of the first kind with respect to the prime number *p* and is of characteristic different from *p*. Let *K*[*G*] be the *K*-group algebra of *G* and let *SK*[*G*] be the group of all normalized *p*-units in *K*[*G*]. As usual, in what follows, |G| denotes the cardinality of *G*, *B_G* its basic subgroup, and *G*¹ its first Ulm subgroup. All other unexplained notions, notations as well as the terminology from the abelian group theory are standard and follow mainly the reference [6]; for instance $\mathbf{Z}(p^{\infty})$ and $\mathbf{Z}(p^n)$ are the quasi-cyclic group and the cyclic group of order p^n , respectively.

A problem of some interest in the theory of commutative semi-simple group algebras is the so-termed *Classification Problem* for SK[G] (see, e.g., [8] and, more detailed, [4] plus [5]). In more precise words, one must classify SK[G] up to isomorphism only in terms of K and G. A successful attempt for this was made by us in [4] by calculation of the Ulm-Kaplansky invariants of the quotient group SK[G]/G and by giving a realistic strategy for the complete resolution of the problem. There we have also point out and eliminate some errors in the result of Mollov from [9].

Now, for completeness of the exposition, we provide the reader with a little information about certain important achievements in the theme explored.

If G is of countable power, that is $|G| = \aleph_0$, and the first Ulm factor G/G^1 is infinite, then consulting with [8] we detect that $SK[G] \cong SK[H]$ for any abelian group H if and only if |G| = |H| and $|G/G^1| = |H/H^1|$ or, equivalently, H and H/H^1 are both countable groups. In fact, by virtue of [8], |SK[G]| = |G| and |SK[H]| = |H|, hence obviously |G| = |H|. Moreover, owing again to [7], $SK[G] \cong SK[H]$ ensures $SK[G]/S^1K[G] \cong SK[G/G^1] \cong SK[H/H^1] \cong SK[H]/S^1K[H]$ whence H/H^1 must be infinite. Thus the necessity follows. To treat the sufficiency, according to [8] and the second Prufer theorem proved in [6], which guarantees that G/G^1 is a direct sum of cyclic groups, we can write $SK[G] \cong \sum_{|G|} \mathbb{Z}(p^{\infty}) \times \sum_{|G/G^1|} \times_{n < \omega} \mathbb{Z}(p^n)$ and also by a reason of symmetry $SK[H] \cong \sum_{|H|} \mathbb{Z}(p^{\infty}) \times \sum_{|H/H^1|} \times_{n < \omega} \mathbb{Z}(p^n)$. Evidently SK[G] and SK[H] are isomorphic, thus proving the desired claim.

Received: 02.02.2006; In revised form: 16.06.2006; Accepted: 01.11.2006

²⁰⁰⁰ Mathematics Subject Classification: 16U60, 16S34, 20K10.

Key words and phrases: Semi-simple group algebras, normed *p*-units, isomorphic descriptions, nonisomorphic groups, direct sums of co-cycles, ordinals, cardinals.

When G is infinite reduced, we extract that G/G^1 is infinite, so the cardinality |G| of the countable reduced group G is a full system of invariants for SK[G]. In other words, under the above circumstances, the countable groups SK[G] are isomorphic.

In [1], Chatzidakis and Pappas showed that a similar fact is, in general, not possible for the uncountable case by constructing of separable *p*-groups with special properties. We shall confirm below their affirmation by making use of another approach.

When *G* is divisible, complying with [8], $SK[G] \cong \sum_{|G|} \mathbb{Z}(p^{\infty})$ and $SK[H] \cong \sum_{|H|} \mathbb{Z}(p^{\infty})$, so it is clear that the cardinality |G| is a complete set of invariants for the divisible group SK[G].

When G/G^1 is finite no identity (i.e. *G* is indivisible), we shall show further on that |G| is not enough to determine the isomorphism structure of SK[G] even where *G* is countable. Thereby, we will establish in the sequel that there are \aleph_0 non-isomorphic countable groups SK[G] with G/G^1 finite nontrivial.

Specifically, the goal of this short article is to strengthen the statement obtained by Chatzidakis-Pappas (see [1]) to arbitrary infinite cardinals ($\geq \aleph_0$), which are not necessarily regular, by the construction of special direct sums of co-cyclic (= cyclic and quasi-cyclic) *p*-groups. This is done in the next section.

2. MAIN RESULT

The following is essential for the present research exploration.

Theorem 2.1. Let K be the first kind field with respect to p of $char(K) \neq p$. Then, for each cardinal $\kappa \geq \aleph_0$, there exist $\geq \aleph_0$ and $\leq \kappa$ non-isomorphic groups SK[G] where G is an abelian p-group of power κ . In particular, if $\kappa = \aleph_{\delta}$ for any ordinal δ , then the number of non-isomorphic groups of normalized p-elements is \aleph_0 when $0 \leq \delta \leq \omega_0$ and $|\delta|$ when $\delta \geq \omega_0$.

Proof. Assume β is a limit ordinal with $|\beta| \leq |G_{\alpha}|$ (thus $|\beta| = |G_{\alpha}| = \aleph_0$, or $|\beta| < |G_{\alpha}|$ whence $|G_{\alpha}| > \aleph_0$) for the abelian *p*-groups $G_{\alpha} = G_d^{(\alpha)} \times C^{(\alpha)}$, where $G_d^{(\alpha)}$ are divisible groups with $|G_d^{(\alpha)}| = |G_d^{(\alpha+1)}| \geq \aleph_0$ whereas $C^{(\alpha)}$ are direct sums of cycles with $|C^{(\alpha)}| < |C^{(\alpha+1)}|$ and $|G_d^{(\alpha)}| > |C^{(\alpha)}|$, over all ordinals $0 \leq \alpha < \beta$. Moreover, when $\beta = \omega_0$, i.e. when all groups $C^{(\alpha)}$ together with the ordinals α are finite, we shall additionally presume that $C^{(\alpha)}$ are cyclic groups of exponent $p^{c+\alpha}$ whenever c is the constant of K about p defined as in [8] and $0 \leq \alpha < \omega_0$.

Therefore, $|G_{\alpha}| = |G_{\alpha+1}| = |G_d^{(\alpha)}|$. Utilizing [6], the basic subgroups $B_{G_{\alpha}}$ are isomorphic to $C^{(\alpha)}$ hence $|B_{G_{\alpha}}| < |B_{G_{\alpha+1}}|$. Certainly, G_{α} are not isomorphic.

Now, invoking to [3], $B_{SK[G_{\alpha}]} \cong SK[B_{G_{\alpha}}]$ and consequently, since from [8] we have that $|SK[B_{G_{\alpha}}]| = |B_{G_{\alpha}}| \ge \aleph_0$ or otherwise concerning the finite case $SK[B_{G_{\alpha}}] \cong SK[B_{G_{\alpha+1}}]$ implies $|B_{G_{\alpha}}| = |B_{G_{\alpha+1}}|$ (see, for example, [2, formula (4)] plus [8]) only when $B_{G_{\alpha}}$ and $B_{G_{\alpha+1}}$ are cyclic groups with the same exponent p^t so that t lies in the spectrum of K about p (cf. [8]), we deduce in general that $SK[G_{\alpha}]$ are non-isomorphic, as promised.

Let now the substitution $\kappa = \aleph_{\delta}$ holds valid for an arbitrary ordinal number δ . Because of the simple fact, which relies on the construction, that the interval of

indices, that is precisely the wanted number of so-defined groups G_{α} , is of length either \aleph_0 or $|\delta|$, we are done.

This concludes the proof.

Example 2.1. Following the algorithm presented above, plain direct computations lead us to this that, for instance, the putting $\kappa = \aleph_{\omega_1}$ yields that the number of such non-isomorphic groups is equal to \aleph_1 , $\kappa = \aleph_{\omega_2}$ that the number is \aleph_2 , and etc.

We close the work with another treatment of the investigated problem.

Remark 2.1. For some (infinite) ordinal α we may also construct a family of nonisomorphic reduced groups $\{SK[G_{\rho}]\}_{\rho < \alpha}$ in the following manner: Appealing to [7] there are cardinals $\{\chi_{\rho}\}_{\rho < \alpha}$ with the properties $\aleph_0 \le \chi_0 < \chi_1 < \chi_2 < \cdots < \chi_{\rho} < \cdots < \kappa$ and $\kappa \le \chi_{\rho}^{\aleph_0}$ for sufficiently many $\rho < \alpha$ whose number is equal to $|\alpha|$. Thus we can take (the choice is correct by the usage of [6]) reduced abelian *p*-groups $\{G_{\rho}\}_{\rho < \alpha}$ such that $|G_0| = |G_1| = |G_2| = \cdots = |G_{\rho}| = \cdots = \kappa$ while $|B_{G_{\rho}}| = \chi_{\rho}$, for ρ as already described.

Acknowledgment. The authors would like to express their gratitude to the anonymous specialist referee for the helpful suggestions made.

REFERENCES

- Chatzidakis, Z. and Pappas, P., A note on the isomorphism problem for SK[G], J. Symbolic Logic (3) 66 (2001), 1117–1120
- [2] Danchev, P., Normed units in abelian group rings, Glasgow Math. J. (3) 43 (2001), 365–373
- [3] Danchev, P., Sylow p-subgroups of abelian group rings, Serdica Math. J. (1) 29 (2003), 33-44
- [4] Danchev, P., Ulm-Kaplansky invariants of S(KG)/G, Bull. Polish Acad. Sci. Math. (2) 53 (2005), 147–156
- [5] Danchev, P., On the coproducts of cyclics in commutative modular and semisimple group rings, Bull. Mold. Acad. Sci. Math. (2006) (in print)
- [6] Fuchs, L., Infinite Abelian Groups, I, Mir, Moskva 1974 (in Russian)
- [7] Kuratowski, K. and Mostowski, A., Set Theory, Mir, Moskva 1970 (in Russian)
- [8] Mollov, T., Sylow p-subgroups of normed units of semisimple group algebras of uncountable abelian p-groups, Pliska Stud. Math. Bulgar. 8 (1986), 34–46 (in Russian)
- [9] Mollov, T., Ulm-Kaplansky invariants of Sylow *p*-subgroups of the group of normed units of semisimple group algebras of infinite separable abelian *p*-groups, Pliska Stud. Math. Bulgar. 8 (1986), 101–106 (in Russian)

MATHEMATICAL FACULTY ALGEBRA DEPARTMENT UNIVERSITY OF PLOVDIV 4003 PLOVDIV, BULGARIA *E-mail address*: pvdanchev@yahoo.com

3 MARIN TODOROV STREET 2090 Koprivschtiza, Bulgaria \Box