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The SOR method for infinite systems of linear
equations (III)

BÉLA FINTA

ABSTRACT. In [3], [4] we presented the extension of the Jacobi and Gauss-Seidel iterative numeri-
cal method from the case of finite linear systems to the case of infinite systems.

The purpose of this paper is to extend the classical SOR (successiv over relaxation) method, known
for finite linear systems, to infinite systems.

1. VECTOR NORMS

Let x =

⎛
⎜⎜⎜⎜⎜⎜⎝

x0

x1

...
xn

...

⎞
⎟⎟⎟⎟⎟⎟⎠

be a sequence of real numbers represented in the form of

an infinite column vector, and we denote by s the real linear space of these se-

quences. Let us define l1 = {x ∈ s |
∞∑

i=0

|xi| is convergent}. It is well known that

l1 is a real linear subspace of s and for every x ∈ l1 the formula ‖x‖1 =
∞∑

i=0

|xi|

defines a norm on l1. In this way (l1, ‖ · ‖1) is not only a normed linear space,
but a Banach space, too. We will call it vector space, the elements vectors and the
above mentioned norm, vector norm [6], [8]. For this paragraph see also [2].

2. MATRIX NORMS

Let A = (aij)i,j∈N be an infinite matrix of real numbers and we denote by M

the real linear space of these infinite matrices. Let M 1 =
{

A ∈ M | sup
j∈N

∞∑
i=0

|aij |

is finite}. Then M1 is a real linear subspace of M and for every A ∈ M 1 the

formula ‖A‖1 = sup
j∈N

∞∑
i=0

|aij | defines a norm on M1 called column norm. In this

way (M1, ‖ ·‖1) becomes not only a real linear normed space, but a Banach space,
too.
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Corollary 2.1. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,
n ∈ N, then from the above we obtain the results in the finite dimensional space R

n [1],
[5].

This space will be called matrix space and the above mentioned norm, matrix
norm. For this paragraph see also [2], [6], [8].

3. THE COMPATIBILITY OF THE VECTOR AND MATRIX NORMS

Let x ∈ s be a sequence of real numbers, and A = (aij)i,j∈N ∈ M an infinite
matrix of real numbers.

Definition 3.1. We will define the product A · x if for every i ∈ N the series
∞∑

j=0

aijxj is convergent. In this case the resulting vector y = A · x is a column

vector with components y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
j=0

a0jxj

∞∑
j=0

a1jxj

...
∞∑

j=0

aijxj

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3.1. The vector norm ‖ · ‖1 defined on l1 is compatible with the matrix norm
‖ · ‖1 defined on M1, i.e. ‖Ax‖1 ≤ ‖A‖1 · ‖x‖1 for every x ∈ l1 and every A ∈ M 1.

Proof. We have:

‖A · x‖1 =
∞∑

i=0

∣∣∣∣∣∣
∞∑

j=0

aijxj

∣∣∣∣∣∣ ≤
∞∑

i=0

∞∑
j=0

|aij | · |xj | =

=
∞∑

j=0

∞∑
i=0

|aij | · |xj | =
∞∑

j=0

|xj | ·
∞∑

i=0

|aij | ≤

≤
∞∑

j=0

|xj | · sup
j∈N

∞∑
i=0

|aij | = sup
j∈N

∞∑
i=0

|aij | ·
∞∑

j=0

|xj | = ‖A‖1 · ‖x‖1.

�

Corollary 3.2. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,
n ∈ N, then from Theorem 3.1 we reobtain the results in the finite dimensional space R

n

[1], [5].

For this paragraph see also [2], [6], [8].
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4. THE MATRIX NORM SUBORDINATED TO A GIVEN VECTOR NORM

For every x ∈ l1 and A ∈ M1 we have ‖Ax‖1 ≤ ‖A‖1 · ‖x‖1 according to

Theorem 3.1. If x �= θl1 (the null element of the vector space l1), then
‖Ax‖1

‖x‖1
≤

‖A‖1 and we can define sup
{‖Ax‖1

‖x‖1
| x ∈ l1 \ {θl1}

}
.

It is known that this formula defines a matrix norm on M1, which we call the
matrix norm subordinated to the vector norm ‖ · ‖1 defined on l1 and we denote

it by ‖A‖∗1 = sup
{‖Ax‖1

‖x‖1
| x ∈ l1 \ {θl1}

}
. It is immediately that ‖A‖∗1 ≤ ‖A‖1,

for every A ∈ M 1. Actually, we have

Theorem 4.2. ‖A‖∗1 = ‖A‖1.

Proof. We must prove that ‖A‖∗1 ≥ ‖A‖1. From ‖A‖1 = sup
j∈N

∞∑
i=0

|aij | we obtain: for

every ε > 0 there exists j0 ∈ N such that
∞∑

i=0

|aij0 | ≥ ‖A‖1 − ε. Let us choose the

vector x ∈ l1 such that all the components of x are zero except for the component
j0. So

‖A · x‖1 =
∞∑

i=0

∣∣∣∣∣∣
∞∑

j=0

aijxj

∣∣∣∣∣∣ =
∞∑

i=0

|aij0xj0 | =

=
∞∑

i=0

|aij0 | · |xj0 | =

( ∞∑
i=0

|aij0 |
)

· |xj0 | ≥

≥ (‖A‖1 − ε) · |xj0 | = (‖A‖1 − ε) · ‖x‖1.

Consequently
‖Ax‖1

‖x‖1
≥ ‖A‖1 − ε,

i.e.

‖A‖∗1 = sup
{‖Ax‖1

‖x‖1
| x ∈ l1 \ {θl1}

}
≥ ‖A‖1 − ε,

for every ε > 0. This means that ‖A‖∗1 ≥ ‖A‖1. �

Corollary 4.3. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,
n ∈ N, then from Theorem 4.2 we reobtain the results in the finite dimensional space R

n

[1], [5].

For this paragraph see also [2], [6], [8].
The above presented vector and matrix spaces will be used to extend the iter-

ative Jacobi’s and Gauss-Seidel’s methods, from finite linear systems to the case
of infinite systems. In this way we can study the linear stationary processes with
infinite but countable number of parameters.
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5. THE SOR METHOD FOR INFINITE SYSTEMS OF LINEAR EQUATIONS

Let us consider the infinite system of linear equations Ax = b, where A ∈ M
and x, b ∈ s.

Definition 5.2. For a given A ∈ M and b ∈ s we will say that x∗ ∈ s is a solution
of the infinite system of linear equations Ax = b if we have Ax∗ = b.

This means that the series
∞∑

j=0

aijx
∗
j is convergent and we have

∞∑
j=0

aijx
∗
j = bi,

for every i ∈ N.
Let us suppose that aii �= 0 for every i ∈ N and let us consider the constants

ωi ∈ R \ {0} for every i ∈ N. The initial system of linear equations Ax = b is
equivalent to the following iterative system of linear equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = (1 − ω0)x0 − ω0

∞∑
j=1

a0j

a00
xj + ω0

b0

a00

x1 = −ω1
a10

a11
x0 + (1 − ω1)x1 − ω1

∞∑
j=2

a1j

a11
xj + ω1

b1

a11

x2 = −ω2
a20

a22
x0 − ω2

a21

a22
x1 + (1 − ω2)x2 − ω2

∞∑
j=3

a2j

a22
xj + ω2

b2

a22

...

xi = −ωi

i−1∑
j=0

aij

aii
xj + (1 − ωi)xi − ωi

∞∑
j=i+1

aij

aii
xj + ωi

bi

aii

...

Using this system of linear equations, let us choose x0 ∈ s and we generate the
sequence (xk)k∈N ⊂ s by the following iterative formula:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
0 = (1 − ω0)xk

0 − ω0

∞∑
j=1

a0j

a00
xk

j + ω0
b0

a00

xk+1
1 = −ω1

a10

a11
xk+1

0 + (1 − ω1)xk
1 − ω1

∞∑
j=2

a1j

a11
xk

j + ω1
b1

a11

xk+1
2 = −ω2

a20

a22
xk+1

0 −ω2
a21

a22
txk+1

1 +(1−ω2)xk
2−ω2

∞∑
j=3

a2j

a22
xk

j +ω2
b2

a22

...

xk+1
i = −ωi

i−1∑
j=0

aij

aii
xk+1

j + (1 − ωi)xk
i − ωi

∞∑
j=i+1

aij

aii
xk

j + ωi
bi

aii

...

Consequently, starting from the vector xk, we generate the vector xk+1 by the
recursion formula xk+1 = Bω · xk + c.
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Definition 5.3. The matrix A = (aij)i,j∈N is l1 diagonal dominated if there exists
the positive real number λ > 0 such that for every j ∈ N we have

λ|ajj | >
∞∑

i=0
i�=j

|aij |.

It is immediately that A is l1 diagonal dominated if and only if sup
j∈N

∞∑
i=0
i�=j

∣∣∣∣ aij

ajj

∣∣∣∣ is

a finite real number.

Let us denote by λ := sup
j∈N

∞∑
i=0
i�=j

∣∣∣∣ aij

ajj

∣∣∣∣ , ω∗ = sup{|ωi|/ i ∈ N} ∈ R and ω∗∗ =

sup{|1 − ωi|/ i ∈ N} ∈ R. Let us suppose ω∗ · λ < 1.

Theorem 5.3. If
ω∗λ + ω∗∗

1 − ω∗λ
< 1, then the iterative sequence (xk)k∈N generated by

(5.1) is convergent in l1, for every x0 ∈ l1. The limit point x∗ ∈ l1 is the unique solution
of the linear system Ax = b.

Proof. We prove that condition
ω∗λ + ω∗∗

1 − ω∗λ
< 1 implies ‖Bω‖1 < 1. Indeed, if

y = Bωx, then

‖y‖1 =
∞∑

i=0

|yi| =
∞∑

i=0

∣∣∣∣∣∣−ωi

i−1∑
j=0

aij

aii
yj + (1 − ωi)xi − ωi

∞∑
j=i+1

aij

aii
xj

∣∣∣∣∣∣ ≤

≤
∞∑

i=0

⎛
⎝|ωi|

i−1∑
j=0

∣∣∣∣aij

aii

∣∣∣∣ |yj | + |1 − ωi||xi| + |ωi|
∞∑

j=i+1

∣∣∣∣aij

aii

∣∣∣∣ |xj |
⎞
⎠ =

=
∞∑

i=0

⎛
⎝i−1∑

j=0

|ωi|
∣∣∣∣aij

aii

∣∣∣∣ |yj |+
∞∑

j=i+1

|ωi|
∣∣∣∣aij

aii

∣∣∣∣ |xj |
⎞
⎠+

∞∑
i=0

|1−ωi||xi| =

=
∞∑

j=0

⎛
⎝j−1∑

i=0

|ωi|
∣∣∣∣ aij

ajj

∣∣∣∣ |xj |+
∞∑

i=j+1

|ωi|
∣∣∣∣ aij

ajj

∣∣∣∣ |yj |
⎞
⎠+

∞∑
i=0

|1 − ωi||xi|=

=
∞∑

j=0

⎛
⎝|xj |

j−1∑
i=0

|ωi|
∣∣∣∣ aij

ajj

∣∣∣∣+|yj|
∞∑

i=j+1

|ωi|
∣∣∣∣aij

ajj

∣∣∣∣
⎞
⎠+

∞∑
i=0

|1−ωi||xi| ≤

≤
∞∑

j=0

⎛
⎝|xj |

j−1∑
i=0

ω∗
∣∣∣∣ aij

ajj

∣∣∣∣+ |yj |
∞∑

i=j+1

ω∗
∣∣∣∣ aij

ajj

∣∣∣∣
⎞
⎠+

∞∑
i=0

ω∗∗|xi| ≤

≤
∞∑

j=0

(|xj |ω∗λ + |yj |ω∗λ) +
∞∑

i=0

ω∗∗|xi| =

= ω∗λ‖x‖1 + ω∗λ‖y‖1 + ω∗∗‖x‖1.
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Consequently:

‖y‖1 ≤ ω∗λ‖x‖1 + ω∗λ‖y‖1 + ω∗∗‖x‖1,

which is equivalent to
‖y‖1

‖x‖1
≤ ω∗λ + ω∗∗

1 − ω∗λ
.

This means that

‖Bω‖1 = sup
x �=θl1

‖Bωx‖1

‖x‖1
= sup

x �=θl1

‖y‖1

‖x‖1
≤ ω∗λ + ω∗∗

1 − ω∗λ
< 1.

Now we can apply the Banach fixed point theorem for the iteration map Φ :
l1 → l1, Φ(x) = Bωx + c. Indeed, Φ is a contraction, because

‖Φ(x) − Φ(y)‖1 = ‖(Bωx + c) − (Bωy + c)‖1 = ‖Bω(x − y)‖1 ≤ ‖Bω‖1‖x − y‖1.

This means that the sequence (xk)k∈N is convergent in l1 for every x0 ∈ l1 and
its limit point x∗ ∈ l1 is the unique fixed point of Φ in l1, i.e. Φ(x∗) = x∗. So
Bωx∗ + c = x∗, which is equivalent to Ax∗ = b. �

Corollary 5.4. If for the matrix A = (aij)i,j∈N we have aij = 0 when i > n, j > n
and bi = 0 for i > n, n ∈ N, then we reobtain the linear system with finite number of
equations and finite number of unknowns. In this way from Theorem 5.3 we obtain the
classical SOR iterative numerical method to solve finite systems of linear equations [7].

In the following we consider the particular case when ωi = ω, for every i ∈ N.
So, from (5.1) we can deduce: let us choose x0 ∈ s and we generate the sequence
(xk)k∈N ⊂ s by the following iterative formula:

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
0 = (1 − ω)xk

0 − ω

∞∑
j=1

a0j

a00
xk

j + ω
b0

a00

xk+1
1 = −ω

a10

a11
xk+1

0 + (1 − ω)xk
1 − ω

∞∑
j=2

a1j

a11
xk

j + ω
b1

a11

xk+1
2 = −ω

a20

a22
xk+1

0 − ω
a21

a22
xk+1

1 + (1 − ω)xk
2 − ω

∞∑
j=3

a2j

a22
xk

j + ω
b2

a22

...

xk+1
i = −ω

i−1∑
j=0

aij

aii
xk+1

j + (1 − ω)xk
i − ω

∞∑
j=i+1

aij

aii
xk

j + ω
bi

aii

...

In this case from Theorem 5.3 we obtain:

Corollary 5.5. If
|ω|λ + |1 − ω|

1 − |ω|λ < 1, (|ω|λ < 1) then the corresponding iterative

sequence (xk)k∈N given by (5.2) is convergent in l1 for every x0 ∈ l1. The limit point
x∗ ∈ l1 is the unique solution of the linear system Ax = b.
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In the following we consider the particular case, when ωi = ω = 1 for every
i ∈ N. So from (5.2) we can deduce: let us choose x0 ∈ s and we generate the
sequence (xk)k∈N ⊂ s by the following iterative formula:

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
0 = −

∞∑
j=1

a0j

a00
xk

j +
b0

a00

xk+1
1 = −a10

a11
xk+1

0 −
∞∑

j=2

a1j

a11
xk

j +
b1

a11

xk+1
2 = −a20

a22
xk+1

0 − a21

a22
xk+1

1 −
∞∑

j=3

a2j

a22
xk

j +
b2

a22

...

xk+1
i = −

i−1∑
j=0

aij

aii
xk+1

j −
∞∑

j=i+1

aij

aii
xk

j +
bi

aii

...

From Theorem 5.3 and Corollary 5.5 we obtain the author’s result, the Gauss-
Seidel’s iterative method for infinite systems of linear equations [4]:

Corollary 5.6. If λ <
1
2

, then the corresponding iterative sequence (xk)k∈N given by

(5.3) is convergent in l1 for every x0 ∈ l1. The limit point x∗ ∈ l1 is the unique solution
of the linear system Ax = b.

We can obtain similar results if we replace the space l1 by the space l∞ or lp,
for p ∈ (1, +∞).

We mention that all these results are valid in the complex case, too.
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