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Successive approximations for the solution of second
order advanced differential equations

RAZVAN V. GABOR

ABSTRACT. For the initial value problem associated with second order advanced differential equa-
tion on Banach space, it is constructed a numerical method to approximate the solution. The method
uses the sequence of Picard successive approximations and the trapezoidal quadrature rule (adapted
for Lipschitzian functions with values in Banach spaces).

1. INTRODUCTION

Let X be aBanach spaceand f : [a,b] x X x X — X be a continuous function.
We consider the problem:

(11) ' (t) = f (ta T (t> y L (h (t))) , te [(1, b]
m(t):w(t)v te[babl]
where ¢ € C! ([b,b1], X)
(1.2) b<by and h e C([a,b],[a,b1]), with t <h(t) <by, Vt€E]la,b].

In this paper we construct a numerical method which use the sequence of suc-
cesive approximations and the trapezoidal quadrature rule for Lipschitz func-
tions with values in Banach space.

The quadrature rule was obtained in [4] (for real valued functions) and in [5]
(for vector valued functions). A similar quadrature rule for functions with fuzzy
numbers value was obtained in [1].

In C([a,b1],X)NC?([a,b],X) the problem (1.1) is equivalent to the integral
equation:

b
13) (=1 P O+E=D)V ()= / (t=3) f (s,2(s) 2 (h(s)))ds, € [a,0]
P (t), te[bby].
Indeed, let
z € C([a,b1],X)NC?([a,b],X)
be a solution of (1.3), with ¢ € C!([b,b1],X). If we derive in (1.3) by ¢, for
t € [a,b] we obtain:

b
' (t) :w’(b)*/t f(s,x(s), @ (h(s)))ds, V€la,b].
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Differentiating it follows

2 (t)=f(t,z(t),z(h(t))), VteE|a,b].

Then, z is solution of (1.1).

Let

T € C([aabl] aX) N 02 ([avb] aX)
be a solution of (1.1), with
Y e CH([b,b1],X).

For any t € [a, b], integrating in (1.1) on [t, b], we obtain

b
¢%®*w%0:ilQﬂ&w@%xUﬂﬁnd&Vtéth

Integrating again in the equality
b
2O = 1)~ [ () b)) ds
it follows
b b b
z (t) = (b) —I—/t )’ (b)ds—i—/t (/ f v,z (v) ,x(h(v)))dv) ds.

Since integrating by parts,

/tb (Lbf(v’x(“) ,z (h (v)))dv> ds
:/tb [(s—t) (/sbf(v’x(“)’x(h(”)))d“> i’
b

:-/@—@f@ﬂ@@@@Wﬁv

t
we infer that

b
x(t)Zw(b)Jr(t—b)w'(b)—/t (t—s)f(s,2(s),2(h(s)))ds,

so, x is solution of (1.3).

—l—(S—t)f(S, x(s)vx(h(s)))] ds

2. EXISTENCE, UNIQUENESS AND APPROXIMATION

Denote Y := C ([a, b1], X) and consider the Bielecki’s norm,
ol = max { [}z (#)]] =9, ¢ € [a,ba] }

With this norm Y became Banach space.
We define the operator
A:Y -Y,

i L PO+ E=0)y' (b)— [ (t—5)f (5,2(s), 2(h(s)))ds, € [a,b]
2o awn-{ 0 ‘€ b
Since f € C ([a,b] x X x X, X), we inferthat A(Y) C Y.
We will impose the following conditions:
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(i) heC(a,b],la,bi]), andt < h(t) < by, VtE]a,bl
(i) feC(a,b] x X x X, X);
(iii) ¥ € C1([b,b1], X);
(iv) there exists L > 0 such that
2

||f(t,U1,U2) - f(t7vlav2)HX < LZ Hul _U’iHX’

i=1
Vtela,b],Vu,v € X,i=1,2.

Theorem 2.1. Under the conditions (i) — (iv), the integral equation (1.3) has in Y an
unique solution z*. Moreover, z* € C ([a, b1], X)NC? ([a, b] , X ) and it can be obtained
by the method of successive approximations,

(25) Tm+41 = A (l‘m) , M€ N

starting from any xzo € Y. In this approximation, the apriori error estimation is:

. 1 m—1 .
(26) |lz* —zmlg < <§> lz1 — zoll g, Vm e N™.

Proof. We have A (Y') C Y, and elementary computation leads to:
[A (u1) = A(u2)] x

b
S/t (s =) IS (s,un (s), ur (B (s))) = f (s,u2 (s) ,ua (h(s)))llx ds

b
< L/ (5 — t) (Hul (5) — U (S)”X e-@(bl—s)eg(bl_s)
t

s (A (5)) = s (h ()] x O LOR) gi

2L (b — ’ ,
< % |ur — uQ||B/ e (01=5) 4
t
2L (b—
<ZEOZD gy, e a1,
and so,
2L(b—a
14Gm) ~ Al < 220Dy —ally, v, u e v

Choosing 0 = 4L (b —a) + 1, we infer that A is contraction, with a contraction

1
constant less than 7 Applying the Banach’s Fixed Point Principle [6], the equation

(1.3) has an unique solution z* which can be obtained by the method of successive
approximations (2.5) starting from any z, € Y and the estimation (2.6) holds. By
condition (ii) we infer that

r* € C*([a,b], X)
and after elementary calculus z* is the solution of (1.1). d

Similar existence and uniqueness result for second order differential equations
of mixed type can be found in [7].
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Remark 2.1. To approximate the solution of (1.1) we can choose the first term in
the sequence of successive approximations as

x (t): w(b)Jr(t—bW'(b% tE[a,b]
0 Wb (t), te[bb].
Obviously, zg € C* ([a, b1], X).
By (2.5), the sequence of successive approximations is:
O+ E=b) Y (b)), te]a,b
7o () = { (), t € [b,bi]
b
(2.7) Tpg (t)= { w(b>+(t7b)f¢)/(b>7/t (t—5)f(s,2m(8),zm(h(s)))ds, t € [a,b]
Z/J(t)at € [bvbl]a Vm S N

3. MAIN RESULT

We will approximate the terms from (2.7) in the particular case b; = b+ 7, with
7> 0,theadvance,and h (t) =t + 7,V t € [a,b).

Suppose that exist | € N* such that b — a = 7. In this case, (1.1) became:
ey [P O=1(r)a(trn), e o)

' x(t)=v (), () =Y (t), t€[bb+T]
with ¢ € C* ([b,b+ 7], X) and in (2.7) we have

b
(3.9) zpmi1(t) =4 (b)+ (t - b) Y’ (b) - /t (t —s)f (57 T (5) s T (5 4 T)) ds,

Vtéela,b,¥meN.
For (3.9) we use the trapezoidal quadrature rule variant for integrals of Lips-
chitzian functions with values on Banach spaces from [5]

(3.10) /abF(t) == f [F(aJr@) +F (a + W)} +R, (f)

T on <
=0

(b—a)2 LF
(31D [Rn (N = 1 —

where Ly > 0 is the Lipschitz constant of F : [a,b] — X.

Formula (3.10)+(3.11) was used in [2] to approximate the solution of nonlinear
Fuzzy-Fredholm integral equations. Similar method as below, is built in [3] for
first order delay ODE’s.

Consider n € N* and A!, € Div[b,b+ 7] an uniform division,

Al b=ty <tgr1 <..<lggn-1 <tgpn=0b+T
tgri = b+ %, Vi =0,n,
and realize a similar uniform division of [a, ], by
AV ia=ty <ty <..<tg1 <tg=b,

.
with q= nl, and t]' 7t]',1 = —,Vj =1,q.
n



Successive approximations ... 61

Let A, = A UA/ be the obtained uniform division of [a,b + 7]. We see that
T (t) =0 (t:),Vi=¢q,¢+n,Ym eN and

o (t:) = (b) + (t: = b)¥' (b), Vi=0,q.

Moreover,
b
(3.12) @ (ti) = (b)+(ti — b) ¢’ (b)—/t_ (ti =) f(s;2m-1(8),Tm-1 (s +7))ds,

VmeN,Vi=0,gq
Applying in (3.12) the quadrature rule (3.10) we obtain the numerical method
given by:
b—a

S = 6) f (b1 (4) 2t b+ 7))

(313) @ (t:) = ¥ (0) + (t: = 0) ¥ (b) —

q—1
+2 ) (=) f (T (t)  Zm1 (& + 7)) + Ry Vi =0,q.
j=itl

Consider the functions
Foi:[a,b] — X,
Fri(s)=(ti—5) f(s,2m (5),2m (s + 7)), Vs € [a,b], Vi=0,q, Vm eN.

Since f € C([a,b] x X x X,X), ¢ € C'([b,lh],X) and z¢ € C ([a,b],X)
we infer that

Tm € C([a,b1],X), Vm e N.
Impose the Lipschitz condition: 3o > 0 such that
(3.14) [|f (s1,u,v) — f (s2,u,v)||x < a|s1 — 2|,V 51,82 € [a,b],V u,v € X,
and in addition we suppose that
I M >0suchthat ||f (¢, u,v)||y <M, V;t€la,b], Vu,veX.

Then F,, ; are bounded, Vi = 0,q,Vm € N.
Now we investigate the Lipschitz property of the functions F,,;, i = 0,q,

m € N.

(3.15) [[Fm,i(s1) = Fini(s2)llx
= [(ti=s1)f (51, @m(s1), 2m(s1+7)) = (ti—52) f (52, Zm(52), Tm (s52+7))l|x
< (8 = s1)f (s1,2m(s1), Tm (51 + 7)) = (ti — 52) f (51, Tm (1), Tm (51 + 7))
+(ti = 52) f(s1,Zm(51), Tm (51 + 7)) = (ti — 52) f (52, Tm (52), Tm (52+7))| x
< |t = s1) = (8 = s2)[ [/ (s1, 2m(s1), Tm(s1 + 7)) x
+ti = s2| [ f (51, @m(s1), @m (51 4 7)) = f(s2, @m(52), Tm(s2 + 7))l x
<|s1 —s2|M 4+ (b—a) [a|51 — 89|
FL([2m(s1) = 2m(s2) || x + lZm (51 +7) = T (52 + 7)[|x)]
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and
(3.16)

(3.17)
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[2m (s1) = Zm (s2)llx < [l(s1 = )" (b) = (52 = b) ¥’ (Bl x

b
n / (51— 1) £ (1 T (1) s Zons (7 + 7)) iy

b
- / (52— 1) £ (1 T (1) s Zons (0 + 7)) | < J31 — 32| [ (Bl

X

b
+ [ Nsi=n)f2m (), Zm1 (n+7))
—(s2=n) f (M xm—1(n),Tm-1 (n+7))l|xdn

+ / (52— 1) £ (s Zonr () e (0 + 7)) 7

' b
< Js1 — 8ol [ (B)]1x + / 1 (1 () s (14 7)) st — 5ol dn
+ / 52— 1 1 (s @ () s (14 7))l

<s1 = s2| |9 (0)llx + (b—a) M |s1 — s3] +/ (b—a) Mdn
=¥ ®)|lx +2(b—a)M]|s1 — s2|, Vm € N*, Vsq,s2 € [a, ]

[0 (s1) — 2o (s2)llx < 1Yl [s1 — s2l, Vs1,82 € [a,b]

where [[¢/[|; = max {[[" (8)] , ¢ € [b,b1]}.
From (3.16) and (3.17) we infer that

(3.18)

[2m (s1) = 2m (s2) | x < [[¥llc +2(b—a) M]|s1 — s,

V s1, 82 € [a,b],Vm € N.
From (3.15) and (3.18) follows:

[ Fimyi (51) = Fmyi (s2) 5
<M+ (b—a)(a+2L ([ ||c+2(0—a) M))][s1 — s2f,

V 81,82 € [a,b],Vi=0,q,¥m €N,

Let

vi=M+(b-a)la+2L ([ +2(0-a) M),

be the Lipschitz constant of all functions F},, ;,i = 0,q,V m € N.
Then in (3.13) the remainder estimation is:

(3.19)

b—a)? .
-9 53 YmeN.

Roill« <
Bl e < 2

The relations (3.13) and (3.19) lead to the following algorithm:

(3.20) 1 (t;) = v (b) + (t; — b)Y (b) —

b—a
2nl

[(t: = b) f (b, 20 (b) , 0 (b+ 7))
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+2 Z [ (520 () w0 (Ej4n)) + Rai =T1 () + Rai, Vi=1,q.
Jj=i+1
B20) 23(10) = (0)+ (00 (6)~ o 1(1i =)0, Fa(0)+ R T )+ R )

=w@><u—wwwwﬁgfwrww@wmwx@uﬁm>
+2 Z tjvxl (tj)vfl (thrn))]JFEQ,i =73 (ti)+ﬁ2’i, Vi = 1,q.
j=1+1

By induction, for m > 3, we obtain:

(322) wpm (t:) = ¢ (b) + (t: — b) ' (b)
bQZLla [(ti = 0) f (tg; Tm—1 (tg) + Bm—1,0,Tm—1 (tg4n) + Bm—1,n+q)

p— 7_ _ . _ ’j7_ _ . _ 7, 7.
+2 Z (tz tj)f(tj Tm 1(t])+Rm 1,55 Tm l(tj+n)+Rm 1]+n)]+Rm'L

j=i+1
b—
w@%ﬂh*®W®%*%;thwﬂ%ﬁwﬂ%%ﬂwdﬁm»
+2 Z tjazm 1(tj)7fm*1(tj+n))]+§m,i:fm(ti) +Em¢i; Vi:lv‘]-
Jj=t+1

For the remainder estimations we have:

b-—a)Py . ~——
(3:23) [Ruillx < = Vi=0q+n

HRQJ'HX < HRQ,iHX

q—1
L Riglly +LlRignlly +2 D (LIRlx + L IR 1allx)
j=i+1

b—a

+ 2nl

qg—1
xHRgrnllx+2 > ([Ruy
j=it1

(b—a)y  b—a
< —L
—  4nl * 2nl

‘R17q|

X+ B jnllx)

- 4nl 2nl 4nl
(b—a)’y (b—a)y (b—a)’y .,
< +(b—a)2L ™ =[142L (b—a)] VR Vi=0,qg+n

| Rsill < {1 + 2L (b—a) + [2L (b—a)]2} w, Vi=0,q+n
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and by induction we infer that

(324) |[[Rmllx < {1+2L(b—a)+[2L(b—a)]* + ... + [2L(b—a)]" '} (b;#

1L —a)]™ (b—a)’y
 1-2L(b—a) 4nl
VmeNm>2Vi=0,q+n.

Theorem 3.2. In the conditions (i) — (iv) and (3.14), if 2L(b—a) < 1 and
If(t,u,v)|x < M,V t € [a,b],V u,v € X, then the unique solution x* of the
initial value problem (1.1) is approximated on the knots ¢;, i = 0, ¢ + n by the sequence
(T (ti)),men COMputed in (3.20), (3.21), (3.22) and the apriori error estimation is:

m—1 h— 2
629 I () -Tn Wl < (3) o= llp+ oo g

Vi=0,q+n,VmeN*
Proof. We see that

2" (8:) =T (t)ll x < Ml2" (8) = 2m ()l x + [l2m (8) = Tm (8) ] x
and
|Zm (t:) — Tm (8]l x = HRMHX , Vi=0,¢g+n,Vm € N*.
The inequality (3.25) follows now from (2.6) and (3.24). ]
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