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On differences of positive linear operators

HEINER GONSKA, PAULA PIŢUL and IOAN RAŞA

ABSTRACT. We continue our research on the differences of positive linear operators by giving
estimates for such differences. Special emphasis is on the Bernstein operators, Beta operators of the
second kind as introduced by Lupaş, piecewise linear interpolation at equidistant knots and on certain
products of these mappings.

1. INTRODUCTION

One version of Taylor’s formula with remainder is given in Theorem 1.6.6 of
Davis’ book [3] where the remainder term is attributed to Young. This is also
known as the Peano form.

Theorem 1.1. For n ∈ N0 let f(x) be n times differentiable at x = x0. Then

f(x) = f(x0) + f ′(x0)(x − x0) + . . . +
1

(n − 1)!
f (n−1)(x0)(x − x0)n−1

+
(x − x0)n

n!
[f (n)(x0) + ε(x)],

where lim
x→x0

ε(x) = 0.

If we put Rn(f ; x0, x) := (x−x0)
n

n! ε(x), then in this remainder term f does not
appear explicity. Hence it is not possible to derive from this the Lagrange form of
the rest for (n+1)-times differentiable functions or bounds thereof. It is therefore
desirable to have a bound of ε(x) which depends on structural properties of f in
a vicinity of x0.

In our recent note [14] we proved the following version of Taylor’s theorem
with Peano-Young remainder.

Theorem 1.2. For n ∈ N0 let f ∈ Cn[a, b] and x, x0 ∈ [a, b]. Then for the remainder in
Taylor’s formula we have

|Rn(f ; x0, x)| ≤ |x − x0|n
n!

ω̃

(
f (n);

|x − x0|
n + 1

)
,

where ω̃(f (n); ·) is the least concave majorant of the modulus of continuity ω(f (n); ·).

Received: 17.08.2006; In revised form: 29.10.2006; Accepted: 01.11.2006
2000 Mathematics Subject Classification: 41A10, 41A15, 41A25, 41A36.
Key words and phrases: Positive linear operators, least concave majorant of a modulus of continuity,

degree of approximation, Bernstein-type operators, Beta-type operators, composite approximation operators.
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The modulus of continuity of a function f ∈ C[a, b] is defined by

ω(f ; ε) = sup{|f(x) − f(y)| : x, y ∈ [a, b], |x − y| ≤ ε}, ε ≥ 0.

Its least concave majorant can be written as

ω̃(f ; ε) =

⎧⎨
⎩

sup
0≤x≤ε≤y≤b−a

x �=y

(ε−x)ω(f ;y)+(y−ε)·ω(f ;x)
y−x for 0 ≤ ε ≤ b − a,

ω̃(f ; b − a) = ω(f ; b − a) for ε > b − a.

Important for us is the relation between the following K-functional and ω̃.
Define, for f ∈ C[a, b] and ε ≥ 0,

K(ε, f ; C[a, b], C1[a, b]) := inf{‖f − g‖ + ε, ‖g′‖ : g ∈ C1[a, b]}.

Then K and ω̃ are related as in the following result attributed to Brudnyı̌.

Lemma 1.1. Every continuous function on the compact interval [a, b] satisfies the equal-
ity

K(
ε

2
, f ; C[a, b], C1[a, b]) =

1
2

ω̃(f ; ε), ε ≥ 0.

Using the above estimate of the Taylor remainder we proved in [14], among
other things, inequalities for the differences of certain positive linear operators.
These considerations are continued in the present paper.

2. GENERAL INEQUALITIES

Theorem 2.3. Let A, B : C[0, 1] → C[0, 1] be positive linear operators such that

(A − B)((e1 − x)i; x) = 0 for i = 0, 1, . . . , n and x ∈ [0, 1].

Then for f ∈ Cn[0, 1] there holds

|(A−B)(f ; x)| ≤ 1
n!

(A + B)(|e1 − x|n; x) ω̃

(
f (n);

1
n + 1

(A + B)(|e1 − x|n+1; x)
(A + B)(|e1 − x|n; x)

)
.

Proof. Using the Taylor expansion with quantitative Peano remainder we first
have

|(A − B)(f ; x)| = |(A − B)(f(t); x)| =
∣∣∣∣(A − B)

(
(t − x)n

n!
μx(t); x

)∣∣∣∣.
Here we defined

(t − x)n

n!
μx(t) := f(t) −

n∑
k=0

1
k!

f (k)(x) · (t − x)k.
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Hence

|(A − B)(f ; x)|
≤ (A + B)( |t−x|n

n! ω̃(f (n); |t−x|
n+1 ); x)

= (A + B)(2 |t−x|n
n! K(f (n); |t−x|

2(n+1) ); x)

≤ (A+B)(2 |t−x|n
n! {‖ (f − g)(n) ‖+ |t−x|

2(n+1) ‖ g(n+1) ‖}; x), g ∈ Cn+1[0, 1]arbitrary,

= (A + B)(2 |t−x|n
n! ; x) ‖ (f − g)(n) ‖ +(A + B)( |t−x|n+1

(n+1)! ; x) ‖ g(n+1) ‖
= (A + B)(2 |t−x|n

n! ; x) {‖ (f − g)(n) ‖ + 1
2(n+1)

(A+B)(|t−x|n+1;x)
(A+B)(|t−x|n;x) ‖ g(n+1) ‖}.

Passing back to infimum over g ∈ Cn+1[0, 1], and using Brudnyı̌’s lemma again
shows that

|(A − B)(f ; x)| ≤ (A + B)(2 |t−x|n
n! ; x) 1

2 ω̃
(
f (n); 1

n+1
(A+B)(|t−x|n+1;x)
(A+B)(|t−x|n;x)

)
= 1

n! (A + B)(|t − x|n; x) ω̃
(
f (n); 1

n+1
(A+B)(|t−x|n+1;x)
(A+B)(|t−x|n;x)

)
.

�

Corollary 2.1. With L := A + B we have for n + 1 odd

L(|t − x|n+1; x)
L(|t − x|n; x)

≤
√

L((t − x)2n; x)
√

L((t − x)2; x)
L((t − x)n; x)

;

so that the bound in Theorem 2.3 can be modified accordingly.

Proof. Write

L(|t − x|n+1; x) = L(|t − x|n · |t − x|; x)

≤
√

L(|t − x|2n; x)
√

L(|t − x|2; x)

=
√

L((t − x)2n; x)
√

L((t − x)2; x)

which arises from the Cauchy-Schwarz inequality. �

If n is odd the absolute moment L(|t−x|n; x) appears in the denominator. The
operators A and B are such that A(e0, x) = B(e0, x), x ∈ [0, 1]. We assume now
that A(e0, x) = B(e0, x) = 1, x ∈ [0, 1].

So L := 1
2 (A+B) reproduces constant functions. Hence by Hölder’s inequality

for positive linear operators we have for 1 ≤ s < r that

L(|e1 − x|s; x)
1
s ≤ L(|e1 − x|r; x)

1
r , and

thus

(A + B)(|e1 − x|n; x) = 2L(|e1 − x|n; x) ≥ 2
{
L((e1 − x)n−1; x)

n
n−1
}

.

Thus we have
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Corollary 2.2. If under the assumptions of Theorem 2.3 n is odd, we also get

|(A − B)(f ; x)|

≤ 1
n!(A + B)(|e1 − x|n; x)ω̃

(
f (n); 1

2(n+1) · (A+B)((e1−x)n+1;x)

{ 1
2 (A+B)((e1−x)n−1;x)} n

n−1

)

= 1
n!(A + B)(|e1 − x|n; x)ω̃

(
f (n); 2

1
n−1

n+1
(A+B)((e1−x)n+1;x)

(A+B)((e1−x)n−1;x)
n

n−1

)
.

Note that the moments inside ω̃(f(n); ·) are now both of even order and can
thus be evaluated conveniently. The absolute moment in front of ω̃(f (n); ·) can
also be estimated using Hölder’s inequality.

Corollary 2.3. If A and B are given as in Theorem 2.3, then for g ∈ Cn+1[0, 1],
x ∈ [0, 1] there holds

|(A − B)(g; x)| ≤ 1
(n + 1)!

(A + B)(|t − x|n+1; x) ‖ g(n+1) ‖ .

The question remains how to estimate the difference for all functions in C[0, 1].
So we will carry the result over from Cn+1[0, 1] to C[0, 1]. In order to do so we use
the following from [10] where, for k ≥ 0 the symbol ωk denotes the classical k-th
order modulus of smoothness.

Lemma 2.2. Let I = [0, 1] and f ∈ Cr(I), r ∈ IN0. For any h ∈ (0, 1] and s ∈ N there
exists a function fh,r+s ∈ C2r+s(I) with

(i) ‖ f (j) − f
(j)
h,r+s ‖≤ c · ωr+s(f (j); h) for 0 ≤ j ≤ r,

(ii) ‖ f
(j)
h,r+s ‖≤ c · h−j · ωj(f ; h), for 0 ≤ j ≤ r + s,

(iii) ‖ f
(j)
h,r+s ‖≤ c · h−(r+s) · ωr+s(f (j−r−s); h), for r + s ≤ j ≤ 2r + s.

Here the constant c depends only on r and s.

We will use the above lemma for r = 0, s = n + 1, thus obtaining for h ∈ (0, 1]
and f ∈ C[0, 1] functions fh,n+1 with

‖ f − fh,n+1 ‖≤ c · ωn+1(f ; h), ‖ f
(n+1)
h,n+1 ‖≤ c · h−(n+1) · ωn+1(f ; h).

With the aid of Lemma 2.2 we now prove the following

Theorem 2.4. If A and B are given as in Theorem 2.3, also satisfying Ae0 = Be0 = e0,
then for all f ∈ C[0, 1], x ∈ [0, 1] we have

|(A − B)(f ; x)| ≤ c1 · ωn+1

(
f ; n+1

√
1
2
(A + B)(|e1 − x|n+1; x)

)
.

Here c1 is an absolute constant independent of f, x and A and B.

Proof. Let f ∈ C[0, 1] be fixed and g = fh,n+1, 0 < h ≤ 1, be given as above. Then,
with the constant c from Lemma 2.2,

|(A − B)(f ; x)|
≤ |(A − B)(f − g; x)| + |(A − B)(g; x)|
≤ (‖ A ‖ + ‖ B ‖) ‖ f − g ‖ + 1

(n+1)! (A + B)(|e1 − x|n+1; x) ‖ g(n+1) ‖
≤ 2 · c · ωn+1(f ; h) + c 1

(n+1)! (A + B)(|e1 − x|n+1; x) 1
hn+1 ωn+1(f ; h).
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If (A + B)(|e1 − x|n+1; x) = 0, then – h > 0 being arbitrary – we also have
|(A − B)(f ; x)| = 0.

Otherwise we put h = n+1

√
1
2 (A + B)(|e1 − x|n+1; x) ≤ 1 to arrive at

|(A − B)(f ; x)|
≤ c1ωn+1(f ; n+1

√
1
2 (A + B)(|e1 − x|n+1; x).

where c1 = 2 · c + c 2
(n+1)! c (2 + 2

(n+1)! ). �

3. APPROXIMATION OF THE IDENTITY

Example 3.1. Suppose that A = I is the identity operator on C[0, 1] and B = L is
a positive linear operator reproducing linear functions. Then the following hold:

(i) |L(f ; x)−f(x)| ≤ L(|e1−x|; x) ω̃
(
f ′; 1

2
L((e1−x)2;x)
L(|e1−x|;x)

)
, f ∈ C1[0, 1], x ∈ [0, 1].

A similar inequality appeared in [12], Section 4.

(ii) |L(g, x) − g(x)| ≤ 1
2 L((e1 − x)2; x) ‖ g′′ ‖, g ∈ C2[0, 1], x ∈ [0, 1].

This is a well-known inequality in positive linear operator approximation
(see, e.g., [4]).

(iii) |L(f ; x) − f(x)| ≤ c · ω2

(
f ; 2

√
1
2 L((e1 − x)2; x)

)
, f ∈ C[0, 1], x ∈ [0, 1].

To our knowledge such an inequality was first obtained by Esser in [5]
and [6]; more precise estimates were given in [9], see also [20]. �

4. SOME FUNDAMENTAL OPERATORS AND THEIR MOMENTS (UP TO ORDER 4)

In our recent note [14] we used a special case of Theorem 2.4 (case n = 3) to
prove an inequality for the commutator [A, B] := AB − BA of certain positive
linear operators A and B, thus solving a problem of Lupaş concerning the simi-
larity of the two operator products. To be more specific, the operators A and B

considered then were A = Bn and B = Bn, defined as follows:
The Bernstein operators are given by

Bn(f ; x) =
n∑

k=0

f( k
n ) pn,k(x),

pn,k(x) =
(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1].

Moreover, Lupaş’ Beta operators Bn (of the second kind) are

Bn(f ; x) =

⎧⎪⎨
⎪⎩

f(0), x = 0;
1

B(nx,n−nx)

∫ 1

0
tnx−1(1 − t)n−1−nxf(t)dt, 0 < x < 1;

f(1), x = 1.
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Some properties of Bn are given in [17]. This thesis deals mainly with Beta
operators Bn of the first kind which are defined by

Bn(f ; x) =
1

B(nx + 1, n + 1 − nx)

∫ 1

0

tnx(1 − t)n(1−x)f(t)dt.

The operators Bn were considered, for example, in [8], [1], [2]. Further research
is needed to understand the Bn even better.

The inequality given in [14] is as follows.

Proposition 4.1. (see [14], Prop. 8.6) If Sn = Bn ◦ Bn is a (special) Stancu Operator
and Un = Bn ◦ Bn is the genuine Bernstein-Durrmeyer operator, then for n ∈ N,
f ∈ C[0, 1] and x ∈ [0, 1]

|(Sn − Un)(f ; x)| ≤ c1 · ω4

(
f ; 4

√
3x(1 − x)
n(n + 1)

)
.

Here c1 �= c1(f, n, x) is an absolute constant.

In this section we will also consider piecewise linear interpolation at equidis-
tant knots. To be precise, consider the knot sequence

Δn : x−1 = x0 = 0 < x1 < . . . < xn = xn+1 = 1

where xi = i
n , 0 ≤ i ≤ n. Then the piecewise linear interpolant at xi, 0 ≤ i ≤ n,

can be written as

SΔn,1f(x) =
n−1∑

j=−1

f

(
j + 1

n

)
Nj,1(x), 0 ≤ x < 1,

and
SΔn,1f(1) = lim

y↗1
SΔn,1f(y).

Here the normalized B-Splines Nj,1 of piecewise degree 1 are given by

Nj,1(x) = (xj+2 − xj)[xj , xj+1, xj+2](· − x)+
with the usual notation for divided differences and

(t − x)+ = max{0, t− x}.
For simplicity we will write

SΔn(f ; x) =
n∑

j=0

f

(
j

n

)
· Nj(x), x ∈ [0, 1].

This affects only the subscripts of the normalized splines and the definition of
Nn(1).

Bn, Bn and SΔn will be the building blocks for the special operators to be
considered in subsequent sections. We first collect some known facts in

Proposition 4.2. If An ∈ {Bn, Bn, SΔn}, then An : C[0, 1] → C[0, 1] is a positive
linear operator satisfying Anei = ei(i = 0, 1) where ei(x) = xi, i ∈ N0.

In the tables below we collect information concerning the moments of orders
2, 3 and 4.
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Table 4.1.

An An((e1 − x)2; x) An((e1 − x)3; x)

Bn
x(1−x)

n
x(1−x)(1−2x)

n2

Bn
x(1−x)

n+1
2x(1−x)(1−2x)

(n+1)(n+2)

SΔn

(nx−[nx])(1+[nx]−nx)
n2

(nx−[nx])(1+[nx]−nx)[1−2(nx−[nx])]
n3

Table 4.2.

An An((e1 − x)4; x)

Bn
1

n3 {3(n − 2)x2(1 − x)2 + x(1 − x)}
Bn

1
(n+1)(n+2)(n+3){3(n + 1)x2(1 − x)2 + 6x(1 − x)}

SΔn

(nx−[nx])(1+[nx]−nx)[1−3(nx−[nx])(1+[nx]−nx)]
n4

Proof. The moments of the Bernstein operators can be found in [22], Lema 6.24,
for example. Those of the Beta operators are listed on p. 63/64 in [17]. Finally, the
second and the fourth moments for SΔn can be found on p. 46 in [18]. Similarly
one can compute the third moments for SΔn by using the explicit representation
of SΔn((e1 − x)3; x) on the local support

[
k−1

n , k
n

]
. For more detailed information

see also [7]. �

Knowledge about moments of various orders is useful for the proof of
Voronovskaja-type results. In [14] we proved the following

Theorem 4.5. Let L : C[0, 1] → C[0, 1] be a positive linear operator such that Lei =
ei, i = 0, 1. If f ∈ C2[0, 1] and x ∈ [0, 1], then

|L(f ; x)−f(x)−1
2
f ′′(x)L((e1−x)2; x)| ≤ 1

2
L((e1−x)2; x) ω̃

(
f ′′;

√
L((e1−x)4; x)
L((e1−x)2; x)

)
.

Applications of Theorem 4.5 for Bn and B̄n were given in [14]. The application
to SΔn yields

Proposition 4.3. Let SΔn be given as above, f ∈ C2[0, 1], x ∈ [0, 1]. Then

|n2[SΔn(f ; x) − f(x)] − 1
2
· f ′′(x) · zn(x)(1 − zn(x))|(4.1)

≤ 1
2
zn(x)(1 − zn(x)) · ω̃

(
f ′′;

1
3n

)
.

Here zn(x) = nx − [nx], where [nx] denotes the integer part of nx.

Proof. Write zn(x) := nx − [nx]. Then from Tables 4.1 and 4.2 we see that

SΔn((e1 − x)2; x) =
1
n2

zn(x)(1 − zn(x)), and

SΔn((e1 − x)4; x) =
1
n2

zn(x)(1 − zn(x))[1 − 3zn(x)(1 − zn(x))].
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Substituting these into the inequality of Theorem 4.5 yields the result once we
take into account that

SΔn((e1 − x)4; x)
SΔn((e1 − x)2; x)

=
1
n2

[1 − 3zn(x)(1 − zn(x))] ≤ 1
n2

for x ∈ [0, 1].

�

As can be noted from Table 4.1 the second moments of Bn+1 and the Lupaş
operators B̄n agree. Thus Corollary 2.1 and Theorem 2.4 can be applied in this
case with n = 2. An application of the corollary mentioned gives

Proposition 4.4.

|(Bn+1 − B̄n)(f ; x)| ≤ x(1−x)
n+1

ω̃

(
f ′′;

√
(n+1)(6nx(1−x)+7)

18n2

)
, f ∈ C2[0, 1]

≤ x(1−x)
3n

√
n + 1

√
6nx(1 − x) + 7

2n
‖f ′′′‖, f ∈ C3[0, 1].

Proof. Using again the moments listed in Tables 4.1 and 4.2 we arrive at

(Bn+1 + B̄n)((t − x)2; x) =
2x(1 − x)

n + 1
,

(Bn+1 + B̄n)((t − x)4; x) =
(

3(n − 1)
(n + 1)3

+
3

(n + 2)(n + 3)

)
x2(1 − x)2

+
(

1
(n + 1)3

+
6

(n + 1)(n + 2)(n + 3)

)
x(1 − x)

≤
(

3
n2

+
3
n2

)
x2(1 − x)2 +

(
1
n3

+
6
n3

)
x(1 − x)

=
x(1 − x)

n2
· 6nx(1 − x) + 7

n
.

Using the above mentioned corollary and properties of ω̃ we obtain the desired
inequalities. �

For all f ∈ C[0, 1] Theorem 2.4 implies the following

Proposition 4.5.

|(Bn+1 − B̄n(f ; x))| ≤ c · ω3

(
f ; 3

√
1
2
(Bn+1 + B̄n)(|e1 − x|3; x)

)

≤ c · ω3

(
f ; 6

√
x2(1 − x)2

n3
· 6nx(1 − x) + 7

n

)
.

Proof. The first inequality is a direct consequence of Theorem 2.4. The second one
can be obtained via Cauchy-Schwarz:

L(|e1 − x|3; x)
1
3 ≤ L((e1 − x)2; x)

1
6 · L((e1 − x)4; x)

1
6 ,

where L can be replaced in this case by L := (Bn+1+B̄n)
2 . Involving parts of the

proof of the previous proposition we get to the desired result. �
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5. HIGHER ORDER MOMENTS OF (SOME COMPOSITE) OPERATORS

As we observed above, information about higher order moments is needed
in order to arrive at estimates concerning the difference of two positive linear
operators.

Some information concerning An ∈ {Bn, Bn, SΔn} was given in the previous
section.

Normally the computation of higher order moments is tedious, but rather me-
chanical work. It is a recursive job, as we will see to some extent in this section:
once we know the moments of low orders, we know the ones of higher orders.

Another aspect to be considered is the computation of moments (of a fixed
order) of composite operators where information about the factors is available. We
mostly exclude this aspect from our considerations here, but refer the reader to
[15] and [11] for relevant results concerning this direction.

It was already mentioned in Section 4 that certain compositions of the building
blocks discussed there play a prominent role in approximation theory. We will
discuss these and some others in the sequel.

Of particular interest are the mappings Un = Bn ◦ Bn, the so-called genuine
Bernstein-Durrmeyer operators, the explicit form of which is

Un(f ; x) = (Bn ◦ Bn)(f ; x)

= f(0)pn,0(x) + f(1)pn,n(x) + (n − 1)
n−1∑
k=1

pn,k(x)
∫ 1

0

pn−2,k−1(t)f(t)dt.

The opposite operator product, namely Sn := Bn ◦Bn is a special Stancu operator
and is given in explicit form by

Sn(f ; x) = (Bn ◦ Bn)(f ; x) =
2(n!)
(2n)!

n∑
k=0

f

(
k

n

)(
n

k

)
(nx)k(n − nx)n−k,

where (a)0 = 1, (a)b =
b−1∏
k=0

(a − k), a ∈ R, b ∈ N.

This is a special case of the Stancu operator introduced in [21], the case α = 1
n .

More information on Sn can be found in [19].
Another interesting object is

Dn := Bn ◦ Bn+1,

the composition of two Bernstein operators. This is a mapping having some sim-
ilarity with Un from above. This will also be discussed below.

The second moments of composite operators can be computed as follows.

Lemma 5.3. [15] For two linear operators P, Q where Qei = ei, i ∈ {0, 1}, one has

(PQ)((e1 − x)2; x) = Pu(Q((e1 − u)2; u); x) + P ((e1 − x)2; x).

The superscript u indicates that P is applied to functions in the variable u.

Lemma 5.3 can be used to derive the information in the following table. The
moments of Un can also be found in [16], and those of Sn in [19]. It is an easy
computation to find those of Dn.
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Table 5.1.
An An((e1 − x)2; x)

Un := Bn ◦ Bn
2x(1−x)

n+1

Sn := Bn ◦ Bn
2x(1−x)

n+1

Dn := Bn ◦ Bn+1
2x(1−x)

n+1

A further way to derive information on all moments of linear operators (not
necessarily positive) is given in

Proposition 5.6. For a linear operator L and k ∈ N0 one has

L((e1 − x)k; x) = L(ek; x) −
k−1∑
l=0

(
k

l

)
xk−lL((e1 − x)l; x).

Proof. Write

L(ek; x) = L((e1 − x + x)k; x)

= L

(
k∑

l=0

(
k
l

)
xk−l · (e1 − x)l; x

)

=
k∑

l=0

(
k
l

)
xk−l · L((e1 − x)l; x)

= L((e1 − x)k; x) +
k−1∑
l=0

(
k
l

)
xk−l · L((e1 − x)l; x),

which implies the representation of the k-th moment. �

Remark 5.1. (i) Note that the equality of Proposition 5.6 holds without the as-
sumption Lei = ei, i ∈ {0, 1}.

(ii) The proposition means that L((e1 − x)k; x) can be computed if we know
L(ek; x) and the lower order moments L((e1 − x)l; x), 0 ≤ l ≤ k − 1.

Corollary 5.4. For a linear operator L with Lei = ei, i ∈ {0, 1}, we have

L((e1 − x)3; x) = L(e3; x) − x3 − 3xL((e1 − x)2; x).

Proof. Immediate consequence of Proposition 5.6. �

Using the latter equality we derive the following table.

Table 5.2.
An An((e1 − x)3; x)

Un := Bn ◦ Bn
6x(1−x)(1−2x)

(n+1)(n+2)

Sn := Bn ◦ Bn
6x(1−x)(1−2x)

(n+1)(n+2)

Dn := Bn ◦ Bn+1
(5n−1)x(1−x)(1−2x)

n(n+1)2

Proof. (i) The third moments of Un are given in [16], Proposition 3.5.
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(ii) For the Stancu operators Sn we refer again to [19], p. 68, where it is shown
that

Sn(e3; x) = x3 +
6x(1 − x)

(n + 1)(n + 2)
+

6nx2(1 − x)
(n + 1)(n + 2)

Hence, by Corollary 5.4 we find that

Sn((e1 − x)3; x) =
6x(1 − x)

(n + 1)(n + 2)
+

6nx2(1 − x)
(n + 1)(n + 2)

− 3x
2x(1 − x)

n + 1

=
6x(1 − x)(1 − 2x)

(n + 1)(n + 2)
.

(iii) The representation of Dn((e1 − x)3; x) can be derived from Corollary 5.4
using properties of the Bernstein operators. It can also be found in the
forthcoming note [13].

�

Corollary 5.5. For a linear operator L with Lei = ei, i ∈ {0, 1}, the fourth moments
can be computed as

L((e1 − x)4; x) = L(e4; x) − x4 − {4x · L((e1 − x)3; x) + 6x2 · L((e1 − x)2; x)}.
Below is a list of the fourth moments of the composite operators.

Table 5.3.

An An((e1 − x)4; x)

Un := Bn ◦ Bn
1

(n+1)(n+2)(n+3)
{12(n − 7)x2(1 − x)2 + 24x(1 − x)}

Sn := Bn ◦ Bn
1

n(n+1)(n+2)(n+3)
{12(n2 − 7n)x2(1 − x)2 + (26n − 2)x(1 − x)}

Dn := Bn ◦ Bn+1
1

n2(n+1)3
{12(n3−6n2+4n−1)x2(1−x)2+(15n2−9n + 2)x(11−x)}

Proof. The moments of Un were computed in [16], Proposition 3.5, those of Sn can
be found in [19], p. 68, and the ones of Dn are also computed in [13]. �

6. ESTIMATES FOR THE DIFFERENCES OF SOME COMPOSITE OPERATORS

We first give one further application of Theorem 2.4 for the case n = 1.

Proposition 6.7.

|(Bn − Un)

(
f ; x)| ≤ c · ω2(f ; 2

√
3x(1 − x)

2n

)
.

Proof. From Tables 4.1 and 5.1 we see that Bn((e1 − x)2; x) = x(1−x)
n , Un((e1 −

x)2; x) = 2x(1−x)
n+1 . Hence

1
2
· (Bn + Un)((e1 − x)2; x) ≤ 3

2n
x(1 − x),

which implies the claim. �
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We investigate the difference

Dn − Un := Bn ◦ Bn+1 − Un = Bn ◦ Bn+1 − Bn ◦ Bn = Bn ◦ (Bn+1 − Bn)

next in order to give further applications of Theorems 2.3 and 2.4 for n = 2.
All operators involved reproduce linear functions, so

(Dn − Un)((e1 − x)i; x) = 0 for i = 0, 1.

Moreover, Bn+1((e1 − x)2; x) = Bn((e1 − x)2; x) = x(1−x)
n+1 , and hence also

(Dn − Un)((e1 − x)2; x) = 0. Thus Theorem 2.3 is applicable with n = 2, once we
have estimated

(Dn + Un)(|e1 − x|3; x) ≤
√

(Dn + Un)((e1 − x)2; x) ·
√

(Dn + Un)((e1 − x)4; x),

which follows from the Cauchy-Schwarz inequality. All moments needed were
given in Table 5.1 and Table 5.3. Adding them entails

(Dn + Un)((t − x)2; x) =
4x(1 − x)

n + 1
,

(Dn+Un)((t−x)4; x) =
(

12(n3−6n2+4n−1)
n2(n+1)3

+
12(n−7)

(n+1)(n+2)(n+3)

)
x2(1−x)2

+
(

15n2 − 9n + 2
n2(n + 1)3

+
24

(n + 1)(n + 2)(n + 3)

)
x(1 − x)

≤
(

12
n2

+
12
n2

)
x2(1 − x)2 +

(
15
n3

+
24
n3

)
x(1 − x)

=
x(1 − x)

n2

24nx(1 − x) + 39
n

.

This leads to

Proposition 6.8.

|(Dn−Un)(f ; x)| ≤ 2x(1−x)
n+1

ω̃

(
f ′′,

√
(n+1)(8nx(1−x)+13)

12n3

)
, f ∈ C2[0, 1],

≤ x(1 − x)
n
√

n + 1

√
8nx(1 − x) + 13

3n
‖ f ′′′ ‖, f ∈ C3[0, 1].

An application of Theorem 2.4 yields

Proposition 6.9.

|(Dn − Un)(f ; x)| ≤ c · ω3

(
f ; 3

√
1
2
(Dn + Un)(|e1 − x|3; x)

)

≤ c · ω3

(
f ; 6

√
x2(1 − x)2

(n + 1)n3
· (24nx(1 − x) + 39)

)
.

Remark 6.2. For the difference Dn−Sn similar estimates can be given, since the second
moments of both operators are the same (see Table 5.1) and the structures of the second
and fourth moments are analogous to the cases considered before.
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7. CONCLUDING REMARKS

One further interesting mapping to be considered is also motivated by the pre-
vious work of Lupaş.

We put Ln := Bn ◦ SΔn , i.e., for f ∈ C[0, 1], x ∈ [0, 1], consider

Ln(f ; x) =
n∑

k=0

f

(
k

n

)
Bn(Nk; x).

We observed that the operator product Ln = B̄n ◦ SΔn seems to be a very
good approximate and non-trivial decomposition of the Bernstein operator Bn.
We suggest further research concerning this matter.
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UNIVERSITY OF DUISBURG-ESSEN

DEPARTMENT OF MATHEMATICS

FORSTHAUSWEG 2, D-47048 DUISBURG, GERMANY

E-mail address: gonska@math.uni-duisburg.de

UNIVERSITY OF DUISBURG-ESSEN

DEPARTMENT OF MATHEMATICS

FORSTHAUSWEG 2, D-47048 DUISBURG, GERMANY

E-mail address: pitul@math.uni-duisburg.de
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