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Equations involving arithmetic functions

GABRIEL MINCU and LAURENŢIU PANAITOPOL

ABSTRACT. We solve a few equations concerning arithmetic functions. The proofs in the last sec-
tion are based on known (but difficult) inequalities.

1. INTRODUCTION

The notations used in the paper are basically the classical ones, namely:
• π(x): The number of primes not exceeding x
• pn: The nth prime (in increasing order)
• cn: The nth composed number (in increasing order)
• ϕ(n): Euler’s totient function
• τ(n): The number of divisors of n
• σ(n): Sum of divisors function
• ω(n): The number of distinct prime factors of n
• γ: The Euler constant (γ = 0.57721...)

We will use the following results:

(A) π(x) <
x

log x − 1.12
for all x ≥ 4, from [1];

(B) pn > n(log n + log log n − 1) for all n ≥ 2, from [2];

(C) n

(
1+

1
log n

+
1

log2 n

)
< cn < n

(
1+

1
log n

+
3

log2 n

)
for all n ≥ 4, from [2];

(D) log τ(n) <
log n log 2

log log n − 1.39117
for all n ≥ 56, from [4];

(E) ϕ(n) =
n

eγ log log n +
2.50637
log log n

for all n ≥ 3, from [3];

(F) ω(n) ≤ log n

log log n − 1.1714
for all n ≥ 26, from [5];

The methods we will use in Section 2 are independent of the inequalities
(A)–(F) above. For the results presented in Section 3 we will need the mentioned
inequalities, standard techniques employed for their application, as well as some
computer checking. Although all the proofs are elementary, we will only use the
term ”elementary” for the equations in Section 2. We choose to do so because the

Received: 24.10.2005; In revised form: 13.04.2006; Accepted: 01.11.2006
2000 Mathematics Subject Classification: 11A25, 11D99.
Key words and phrases: Arithmetic functions, equations, inequalities, computer checking.

91



92 Gabriel Mincu and Laurenţiu Panaitopol

methods used in the proofs of the inequalities (A)–(F) are non-elementary, giving
the same character to the equations which are solved using them.

2. ELEMENTARY DIOPHANTINE EQUATIONS

Equation 2.1. The equation σ(n) = τ 2(n) has the solutions 1 and 3.

Proof. Let f(n) =
σ(n)
τ2(n)

. The function f is totally multiplicative, so we compute

f(pα) with prime p and integer α ≥ 1; we have

f(pα) =
σ(pα)
τ2(pα)

=
pα + pα−1 + · · · + p + 1

(α + 1)2
.

f(pα) is obviously increasing with respect to p. We will study its monotony with

respect to α. Let gp(α) = f(pα) =
pα+1 − 1

(p − 1)(α + 1)2
, α ≥ 1. The derivative of this

function is g′p(α) =
pα+1((α + 1) ln p − 2) + 2

(p − 1)(α + 1)3
.

If p ≥ 3, then ln p > 1. Since α + 1 ≥ 2, we derive (α + 1) ln p − 2 > 0, so
g′p(α) > 0. Therefore, gp is an increasing function for α ≥ 1.

If p = 2 and α ≥ 2 we have (α + 2) ln 2 − 2 > 3 ln 2 − 2 > 0, so g′
2(α) > 0.

Therefore, g2 is an increasing function for α ≥ 2.
Now, Equation 2.1 is equivalent to f(n) = 1. This relation is verified by n =

1 and n = 3. We will study the existence of other solutions, using the above
monotony information.

Let m be odd, m ≥ 5. If (m, 3) = 1, we have f(m) ≥ f(5) = 6/4 = 3/2. If 32|m,
then f(n) ≥ f(9) = 13/9. If m = 3q, (q, 3) = 1, then q ≥ 5 and f(m) = f(3)f(q) =
f(q) ≥ 3/2. Consequently, for odd m ≥ 5, we have f(m) ≥ 13/9.

Let now n = 2α. We have

f(2) =
3
4

< 1, f(22) =
7
9

< 1, f(23) =
15
16

< 1, while f(24) =
31
25

> 1.

Using the monotony of g2, f(2α) > 1 for all α ≥ 4. Therefore, for n = 2α, we
have f(n) �= 1. If n = 2α · 3, f(n) = f(2α · 3) = f(2α) · f(3) = f(2α) �= 1. If
n = 2α · m with odd m ≥ 5, we have

f(n) = f(2α) · f(m) ≥ f(2) · f(m) ≥ 3
4
· 13

9
> 1.

Since we discarded all the other possibilities, the only solutions of Equation 2.1
are 1 and 3. �
Equation 2.2. The solution of the equation nτ(n)−σ(n)ω(n) = ϕ(n) consists of 1, 10,
and all the prime numbers.

Proof. n = 1 and n = p with prime p are obviously solutions. We will search for
other solutions.

If n = pα with prime p and α ≥ 2 would be a solution, we would derive

pα(α + 1) − (pα + pα−1 + · · · + 1) = pα − pα−1,

whence
(α − 1)pα − pα−2 − · · · − p − 1 = 0,



Equations involving arithmetic functions 93

and the contradiction p|1.
Now let ω(n) = k ≥ 2 and n = pα1

1 pα2
2 · · · pαk

k . Equation 2.2 is equivalent to

(2.1) τ(n) − k
σ(n)

n
=

ϕ(n)
n

,

relation that can also be written as

(2.2) τ(n) − k
k∏

i=1

(
1 +

1
pi

+ · · · + 1
pαi

i

)
=

k∏
i=1

(
1 − 1

pi

)
.

We have

1 +
1
pi

+ · · · + 1
pαi

i

< 1 +
1
pi

+
1
p2

i

+ · · · =
1

1 − 1
pi

= 1 +
1

pi − 1
,

whence
k∏

i=1

(
1 +

1
pi

+ · · · + 1
pαi

i

)
<

k∏
i=1

(
1 +

1
pi − 1

)
(2.3)

<

(
1 +

1
2 − 1

)(
1 +

1
3 − 1

)(
1 +

1
5 − 1

)
· · ·
(

1 +
1

(2k − 1) − 1

)

= 2 · 3
2
· 5
4
· · · 2k − 1

2k − 2
.

One shows by recurrence that for n ≥ 5 the inequality

3
2
· 5
4
· · · 2k − 1

2k − 2
<

7
6

√
k − 1

4
,

holds true, leading to

(2.4)
σ(n)

n
<

7
3

√
k − 1

4
<

7
3

√
k.

Another useful (although simple) relation is

(2.5) τ(n) = (α1 + 1)(α2 + 1) · · · (αk + 1) ≥ 2k.

We will now use the relations established above to determine the other solu-
tions of Equation 2. We will consider the following cases:

Case a) : k ≥ 5. Using relation (2.4), we get

(2.6) k
σ(n)

n
+

ϕ(n)
n

<
7
3
k
√

k + 1.

The relation

(2.7)
7
3
k
√

k + 1 < 2k

holds for all k ≥ 5 (by recurrence again).

Using relations (2.5), (2.6), and (2.7), we derive that τ(n) > k
σ(n)

n
+

ϕ(n)
n

, so,

taking relation (2.1) into account, Equation 2.2 has no solution with k ≥ 5.
Case b) : k = 2. We have n = pαqβ , with p < q primes and α, β ≥ 1.
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Case b1) : α = β = 1. Equation 2.2 becomes

4 = 2
(

1 +
1
p

)(
1 +

1
q

)
+
(

1 − 1
p

)(
1 − 1

q

)
,

so (p − 1)(q − 1) = 4, leading to p = 2 and q = 5, whence n = 10.
Case b2) : α + β = 3. We have n = pq2 or n = p2q, and therefore,

kσ(n)
n

+
ϕ(n)

n
= 2

(
1 +

1
p

)(
1 +

1
q

+
1
q2

)
+
(

1 − 1
p

)(
1 − 1

q

)

= 3 +
1
p

+
1
q

+
3
pq

+
2
q2

(
1 +

1
p

)

≤ 1 +
1
2

+
1
3

+
3
6

+
2
22

(
1 +

1
3

)
< 6 ≤ τ(n),

so Equation 2.2 has no solutions in this case.
Case b3) : α + β ≥ 4. Then we have

(2.8) τ(n) = (α + 1)(β + 1) ≥ 8.

Moreover,

kσ(n)
n

+
ϕ(n)

n
< 2

(
1 +

1
p − 1

)(
1 +

1
q − 1

)
+
(

1 − 1
p

)(
1 − 1

q

)
(2.9)

= 3 +
2

p − 1
− 1

p
+

2
q − 1

− 1
q

+
2

(p − 1)(q − 1)
+

1
pq

= 3 +
p + 1

p(p − 1)
+

q + 1
q(q − 1)

+
2

(p − 1)(q − 1)
+

1
pq

.

Since p ≥ 2, q ≥ 3, and the function f(x) =
x + 1

x(x − 1)
decreases for x ≥ 2, taking

relations (2.8) and (2.9) into account, we get

kσ(n)
n

+
ϕ(n)

n
< 3 +

3
2

+
2
3

+ 1 +
1
6

< 8 ≤ τ(n),

so this case does not provide solutions for Equation 2.2.
Case c): k = 3. We have n = pαqβrγ .
Case c1): α = β = γ = 1. Equation 2.2 becomes

8 = 3
(

1 +
1
p

)(
1 +

1
q

)(
1 +

1
r

)
+
(

1 − 1
p

)(
1 − 1

q

)(
1 − 1

r

)
.

If p, q, r > 2, we obtain

kσ(n)
n

+
ϕ(n)

n
< 3

(
1 +

1
p

)(
1 +

1
q

)(
1 +

1
r

)
+ 1

≤ 3
(

1 +
1
3

)(
1 +

1
5

)(
1 +

1
7

)
+ 1 < 6 + 1 < 8 ≤ τ(n),

so Equation 2.2 has no solutions.
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If p = 2, we will have
ϕ(n)

n
<

1
2

, leading to

kσ(n)
n

+
ϕ(n)

n
< 3

(
1 +

1
2

)(
1 +

1
3

)(
1 +

1
5

)
+

1
2

< 8 ≤ τ(n),

so Equation 2.2 has no solutions.
Case c2): α + β + γ ≥ 4. We then have τ(n) ≥ 12.
If p, q, r > 2, we get

kσ(n)
n

+
ϕ(n)

n
< 3

(
1 +

1
p − 1

)(
1 +

1
q − 1

)(
1 +

1
r − 1

)
+ 1

≤ 3 · 3
2
· 5
4
· 7
6

+ 1 < 7 + 1 < 12 ≤ τ(n),

so Equation 2.2 has no solutions.
If p = 2,

kσ(n)
n

+
ϕ(n)

n
≤ 3 · 2

1
· 3
2
· 5
4

+
1
2

=
47
4

< 12 ≤ τ(n).

We conclude that Equation 2.2 has no solution in Case c).
Case d): k = 4. We have n = pαqβrγsδ with p, q, r, s distinct primes and

α, β, γ, δ ≥ 1, so τ(n) ≥ 16.
If α = β = γ = δ = 1, then

kσ(n)
n

+
ϕ(n)

n
< 4

(
1 +

1
p

)(
1 +

1
q

)(
1 +

1
r

)(
1 +

1
s

)
+ 1

≤ 4 · 3
2
· 4
3
· 6
5
· 8
7

+ 1 < 11 + 1 < 16 ≤ τ(n).

If α + β + γ + δ ≥ 5, then τ(n) ≥ 2 · 2 · 2 · 3 = 24, and

kσ(n)
n

+
ϕ(n)

n
< 4

(
1 +

1
p−1

)(
1 +

1
q−1

)(
1 +

1
r−1

)(
1 +

1
s−1

)
+ 1

≤ 4 · 2
1
· 3
2
· 5
4
· 7
6

+ 1 =
35
2

+ 1 < 24 ≤ τ(n).

Therefore, Case d) does not provide solutions for Equation 2.2.
We conclude that the solution of Equation 2.2 consists of 1,10, and all the prime

numbers. �

3. NON-ELEMENTARY DIOPHANTINE EQUATIONS

Equation 3.3. The solutions of the equation ϕ(n)τ(n) = cn are 11 and 14.

Proof. We first show that for n ≥ 130 we have ϕ(n)τ2(n) > cn.

Let f(n) =
ϕ(n)τ(n)

n
. The function f is obviously multiplicative.

Case a): n = pα. We have

f(n) =
pα−1(p − 1)(α + 1)

pα
=

(p − 1)(α + 1)
p

≥ 2
(

1 − 1
p

)
≥ 1,

equality holding only if p = 2 and α = 1, i.e., n = 2; for the other values of n we
have f(n) > 4/3.
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Case b): ω(n) = k ≥ 2.
Then we have n = pα1

1 pα2
2 · · · pαk

k with p1 < p2 < . . . < pk. Since f(pα) =(
1 − 1

p

)
(α + 1) increases with respect to both p and α,

f(n) = f(pα1
1 )f(pα2

2 ) · · · f(pαk

k ) ≥ f(pαk

k ) ≥ f(3) =
4
3
.

We conclude that for every n ≥ 3 we have f(n) ≥ 4/3.
Now, according to inequality (C), for all n ≥ 2 we have

cn < n

(
1 +

1
log n

+
3

log2 n

)
.

On the other hand, for all n ≥ 130 we have 1 +
1

log n
+

3

log2 n
<

4
3
≤ f(n). Since

Equation 3.3 can be written as f(n) =
cn

n
, the last three relations show that no

value n ≥ 130 can verify Equation 3.3. Computer checking for n < 130 shows
that the solution of Equation 3.3 consists of 11 and 14. �

Equation 3.4. The solutions of equation cn = n + 2τ(n) are 2, 10, 16, 20, 48, and 60.

Proof. We will first prove that for n ≥ 46103 we have

(3.10) cn > n + 2τ(n).

Using inequalities (C) and (D), for n ≥ 56 relation (3.10) is equivalent to

n

(
1 +

1
log n

+
1

log2 n

)
> n + 2 · 2 log n

log log n−1.39177 ,

otherwise written as

(3.11)
n

log n
+

n

log2 n
> 2 · 2 log n

log log n−1.39177 .

Relation (3.11) would obviously be true if
n

log n
> 2 · 2

log n
log log n−1.39177 . By taking

logarithms of both sides, the last relation is equivalent to

log n − log log n >
log n log 2

log log n − 1.39177
+ log 2,

otherwise written as

(3.12) log n >
(log log n + log 2)(log log n − 1.39177)

log log n − 2.085
.

Now, for n > 46103 we have

(3.13)
(log log n + log 2)(log log n − 1.39177)

log log n − 2.085
< 3.4 .

On the other hand, for x ≥ 46103 the function f(x) = log x − 3.4(log log x + log 2
is increasing, and f(46103) > 10.73 − 10.43 > 0. Therefore,

(3.14) log n > 3.4(log log n + log 2)for all n ≥ 46103.
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Relations (3.13) and (3.14) show that relation (3.12) - and, consequently, relation
(3.10) - holds true for all n ≥ 46103. Therefore, Equation 3.3 will have no solution
n ≥ 46103.

Computer checking for n ≤ 46102 shows that the solution of Equation 3.4
consists of 2, 10, 16, 20, 48, and 60. �

Equation 3.5. The solutions of the equation ϕ(n) = π(n) + ω(n) are 5, 15, 22, 54, and
78.

Proof. Let n ≥ 31. We then have (log log n)2 > 1.50334, so 1.6672(log log n)2 >

2.50637, leading to
(

1
0.29

− eγ

)
(log log n)2 > 2.50637, otherwise written as

1

eγ log log n +
2.50637
log log n

>
0.29

log log n
;

taking (E) into account, we find that

(3.15) ϕ(n) >
0.29n

log log n
for all n ≥ 20.

If n ≥ 32000, we have
n

log n
> 3000 and

1
log log n − 1.1714

<
2.1

log log n
, so

log n

log log n − 1.1714
<

0.01n

log log n
; taking (F) into account, we derive that

(3.16) ω(n) <
0.01n

log log n
for all n ≥ 329.

Finally, for n ≥ 32000 we have log n − 25
7

log log n − 1.12 > 0, so

1
log log n − 1.12

<
0.28

log log n
.

Using relation (A), we obtain

(3.17) π(n) <
0.28n

log log n
for all n ≥ 800.

Relations (3.15), (3.16), and (3.17) imply

π(n) + ω(n) <
0.29n

log log n
< ϕ(n) for all n ≥ 32000.

Computer checking for n < 32000 allow us to list the solutions of Equation 3.5:
5, 15, 22, 54, and 78. �

Equation 3.6. The solutions of the equation pn = cnω(n)+1 are 5 and 42. The equation
pn = cnω(n) − 1 has no solution.

Proof. Using relations (C) and (F), we have

cnω(n) < n

(
1 +

1
log n

+
3

log2 n

)
log n

log log n − 1.1714
.
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For n ≥ 12239, we have log log n − 1.1714 > 1.07, so

(3.18) cnω(n) <

n log n

(
1 +

1
log n

+
3

log2 n

)

1.07
.

On the other hand, for n ≥ 12239 we have log n > 6.55, so 0.07 logn >
3

log n
; this

relation and log log n − 1.2 > 1 imply

log n + 1 +
3

log n
< 1.07 logn + 1.07(log log n − 1.2),

otherwise written as

(3.19) n

(
log n + 1 +

3
log n

)
< 1.07

(
n(log n + log log n − 1) − n

5

)
.

Relations (3.18), (3.19), and (B) imply

pn > cnω(n) +
n

5
for all n ≥ 12239.

Therefore, Equations 3.6 have no solution n ≥ 12239.
Computer checking made for n < 12239 led to:
The solution of the equation pn = cnω(n) + 1 consists of 5 and 42.
The equation pn = cnω(n) − 1 has no solutions. �

Remark 3.1. The solution of the equation pn = nω(n) + 1 consists of 2 and 6.
The equation pn = nω(n) − 1 has no solutions.
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