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On the convergence of the Mann iteration in locally
convex spaces

J. O. OLALERU

ABSTRACT. The approximation of fixed points of some quasi contractive operators in arbitrary Ba-
nach spaces using the Mann iterative procedure is generalized to complete metrisable locally convex
spaces. This turns out to be an extension of a result of Berinde [2] which in turn is an extension of a
theorem of Rhoades [12].

1. INTRODUCTION

The Banach Contraction Principle is one of the most important result in fixed
point theory. It states thus:

Theorem A. Let (X, d) be a complete metric space and T : X → X a strict contraction,
i.e. a map satisfying d(Tx, T y) ≤ ad(x, y), for all x, y ∈ X , where 0 ≤ a < 1 is
constant. Then T has a unique fixed point p and the Picard iteration {xn}n=∞

n=0 defined
by xn+1 = Txn, n = 0, 1, 2, ... converges to p, for any x0 ∈ X .

Thus Banach Contraction Principle settles the dual questions in fixed point
theory i.e. the existence of fixed points and the approximation of fixed points
of an operator when X is a complete metric space and the operator is a strict
contraction.

For about four decades, various authors have examined the existence and
approximation of fixed points with various generalizations of strict contraction
in locally convex spaces, complete metric spaces, Banach spaces and their sub-
spaces. For example see [2], [4-14] and [17]. One of the generalizations of various
contractive conditions in [8], [9], and [13] was introduced by Zamfirescu [17].

Theorem B. Let (X, d) be a complete metric space and T : X → X a map for which
there exist the real numbers a,b and c satisfying 0 < a < 1, 0 < b, c < 1/2 such that for
each pair x, y ∈ X , at least one of the following is true:

(i) d(Tx, T y) ≤ ad(x, y);
(ii) d(Tx, T y) ≤ b[d(x, Tx) + d(y, T y)];
(iii) d(Tx, T y) ≤ c[d(x, T y) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}n=∞
n=0 defined by xn+1 =

Txn, n = 0, 1, 2, ... converges to p, for any x0 ∈ X .

This Zamfirescu’s contractive conditions (i)-(iii) in the Theorem B above will
be the subject of our work in this paper because it generalises some well known
quasi contractions (e.g. see [3]).
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As a result of the limitations of Picard iteration, because it fails to converge
to fixed points for many spaces even when the fixed point is unique (e.g. see
Chidume [3, p. 102]), many iteration schemes have been introduced. They in-
clude the Ishikawa iteration, Mann iteration, Bruck iteration, Schu iteration and
Global iteration schemes. For a good review of those schemes including their
limitations see, for example, Chidume[3].

Let X be a metrizable topological space space and C be a nonempty subset
of X . Let T : C → C be a mapping. The iteration scheme called Ishikawa −
type scheme is defined as follows

(1.1) x0 ∈ C,

(1.2) yn = βnTxn + (1 − βn)xn, n ≥ 0,

(1.3) xn+1 = (1 − αn)xn + αnTyn, n ≥ 0

{αn} and {βn} satisfy 0 ≤ αn, βn ≤ 1 for all n, and
∞∑

n=0
αn = ∞.

For other variants of Ishikawa Iteration scheme see Chidume [3]. If βn = 0 for
all n, then the Ishikawa Iteration scheme reduces to Mann Iteration scheme. The
most general Mann type iterative scheme now studied is the following:

(1.4) xn+1 = (1 − αn)xn + αnTxn, n ≥ 0

where {αn} satisfy 0 ≤ αn ≤ 1 for all n. We shall also assume that
∞∑

n=0
αn = ∞.

For other variants of Mann iteration scheme see [3].
Rhoades [12] used Ishikawa iteration scheme to approximate fixed points for

operators satisfying conditions (i)-(iii) of Theorem B when X is a uniformly con-
vex space while Berinde [2] generalized the result to arbitrary Banach spaces. Our
aim in this paper is to generalize Berinde’s result to complete metrisable locally
convex spaces by using his approach. Such locally convex spaces which are com-
plete and metrisable abound and are obviously generalizations of Banach spaces
(see [15], [16]).

For example, the set of all real (or complex) valued indefinitely differentiable
functions on the interval [a, b] becomes a metrisable locally convex space under
the topology defined by the seminorms pm(f) = sup

a≤t≤b
|f (m)(t)|, (m = 0, 1,. . . ).

Also consider the set of all real (or complex) valued indefinitely differentiable
functions on the interval (−∞,∞). Under the topology of compact convergence
for all the derivatives defined by the seminorms pmn(f) = sup

−n≤t≤n
|f (m)(t)|, (m =

0, 1, . . .; n = 1, 2, . . .), the set is a metrisable locally convex space but not normable
(see [15, p. 19]). In fact the duals of those spaces of distributions under their
appropriate strong topologies are also metrisable locally convex spaces [15, p.
75]. Those spaces are also complete [15, p. 63]. Complete metrisable locally
convex spaces are also called Frechet spaces.

A locally convex space (X, u) with topology u is a topological vector space
which has a local base of convex neighborhoods of zero [16, chap. 7]. It is metris-
able if it is Hausdorff and has a countable zero basis. Consequently, it is metrisable
if u can be described by a countable family of continuous seminorms ([15, p. 9],
[16]). Under the topology determined by the set Q of seminorms, X is Hausdorff
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if and only if for each non-zero x ∈ X , there is some p ∈ Q with p(x) > 0 [15,
Proposition 8]. To each absolutely convex absorbent subset U of X corresponds a
seminorm p, called the gauge of U defined by p(x) = inf{λ : λ > 0, x ∈ λU} and
with the property that {x : p(x) < 1} ⊆ U ⊆ {x : p(x) ≤ 1}, U is a neighborhood
of zero if and only if p is continuous. In this case the interior of U is {x : p(x) < 1}
and the closure of U is {x : p(x) ≤ 1} [15, p. 13, Propositions 6 and 7]. We shall
now state and proof the following theorem which is fundamental to our results
in this paper.

Theorem C. [15, Chap. 1, Theorem 4]. The topology of a metrisable locally convex
space can always be defined by a metric which is invariant under translation.

Proof. If X is metrisable, it is certainly Hausdorff and has a countable neighbor-
hoods of the origin.

If X has a countable base, each neighborhood contains an absolutely convex
neighborhood and so there is a base (Un) of absolutely convex neighborhoods.
Let (pn) be the gauge of (Un). Put

fc(x) =
∞∑

n=1

2−n min{pn(x), 1}.

Then fc(x + y) ≤ fc(x) + fc(y), fc(−x) = fc(x), and if fc(x) = 0, pn(x) = 0 for
all n and so x = 0 since X is Hausdorff. Define d by

d(x, y) = fc(x − y)

then d is a metric and d(x + y, y + z) = d(x, y), so that d is invariant under trans-
lation. In the metric topology, the sets

Vn = {fc(x) < 2−n}
form a base of neighborhoods. But Vn is open in the original topology, since each
pn, and so fc, is continuous; also Vn ⊆ Un, for if x /∈ Un, then pn(x) ≥ 1 and so
fc(x) ≥ 2−n. Hence d defines the original topology on X .

It should be observed that if X is a normed linear space, then fc satisfies the
triangle inequality and will also be a norm. It is also easy to see that fc(x) = 0
implies that x = 0 for any x ∈ X .

Henceforth fc will denote the function as defined above whenever X is a
metrisable locally convex space. �

We now state our main result.

2. MAIN RESULT

Theorem 2.1. Let X be a metrisable complete locally convex space, K a closed convex
subset of X , and T : K → K an operator for which there exist the real numbers a, b, c
such that satisfying 0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y ∈ K , at least
one of the following is true:

(i) fc(Tx − Ty) ≤ afc(x − y);
(ii) fc(Tx − Ty) ≤ b[fc(x − Tx) + fc(y − Ty)];
(iii) fc(Tx − Ty) ≤ c[fc(x − Ty) + fc(y − Tx)].
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Let {xn}n=∞
n=0 be the Mann iteration as defined in (0.4) above, then {xn}n=∞

n=0 con-
verges to the fixed point of T .

Proof. Since K is metrisable and complete, it is clear from Theorem B that T has a
unique fixed point in K , which we shall denote p. For any x, y ∈ K , if (ii) holds,
then

fc(Tx − Ty) ≤ b[fc(x − Tx) + fc(y − Ty)]

≤ b{fc(x − Tx) + [fc(y − x) + fc(x − Tx) + fc(Tx − Ty)]}.
Hence

(1 − b)fc(Tx − Ty) ≤ b.fc(x − y) + 2bfc(x − Tx).
Since 0 ≤ b < 1, then

(2.5) fc(Tx − Ty) ≤ b

1 − b
fc(x − y) +

2b

1 − b
fc(x − Tx).

Similarly, if (iii) holds we obtain

(2.6) fc(Tx − Ty) ≤ c

1 − c
fc(x − y) +

2c

1 − c
fc(x − Tx).

Denote

(2.7) δ = max{a,
b

1 − b
,

c

1 − c
} .

Then we have 0 ≤ δ < 1 and, in view of (i), (2.5) and (2.6) it is clear that the
inequality

(2.8) fc(Tx − Ty) ≤ δfc(x − y) + 2δfc(x − Tx)

holds for all x, y ∈ K .
Let {xn}n=∞

n=0 be the Mann iteration defined by (1.4) and x0 ∈ K arbitrary. Then

fc(xn+1 − p) = fc((1 − αn)xn + αnTxn − (1 − αn + αn)p)(2.9)

= fc((1 − αn)(xn − p) + αn(Txn − p))

≤ (1 − αn)fc(xn − p) + αnfc(Txn − p)).

If x = p and y = xn, from (2.8) we obtain

(2.10) fc(Txn − p) ≤ δfc(xn − p)

and hence by (2.9) and 2.10) we obtain

(2.11) fc(xn+1 − p) ≤ [1 − (1 − δ)αn]fc(xn − p), n = 0, 1, 2, ... .

Since 1 − (1 − δ)αn < 1, then {xn} converges to p. �

Corollary 2.1. Let X be a Banach space, K a closed convex subset of X , and T : K → K
an operator for which there exist the real numbers a,b and c satisfying 0 < a < 1, 0 < b,
c < 1/2 such that for each pair x, y ∈ K , at least one of the following is true:

(i) ‖Tx − Ty‖ ≤ a‖x − y‖;
(ii) ‖Tx− Ty‖ ≤ b[‖x − Tx‖ + ‖y − Ty‖];
(iii) ‖Tx− Ty‖ ≤ c[‖x − Ty‖+ ‖y − Tx‖].

Let {xn}n=∞
n=0 be the Mann iteration as defined in (1.4) above, then {xn}n=∞

n=0 converges
strongly to the fixed point of T .
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We now proceed to generalize the theorem by allowing a, b, c, d, e, f to be mono-
tonically decreasing functions of fc(x − y).

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X a map for
which there exist monotonically decreasing functions f = f(d(x,y)), g = g(d(x,y)) and h
= h(d(x,y)), for all x, y ∈ X , from [0,∞) to [0, 1) satisfying 0 < f(t) < 1, 0 < g(t),
h(t) < 1/2 for all t ∈ d(x, y). If for each pair x, y ∈ X , at least one of the following is
true:

(i) d(Tx, T y) ≤ fd(x, y);
(ii) d(Tx, T y) ≤ g[d(x, Tx) + d(y, T y)];
(iii) d(Tx, T y) ≤ h[d(x, T y) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}n=∞
n=0 defined by xn+1 =

Txn, n = 0, 1, 2, ... converges to p, for any x0 ∈ X .

Proof. The proof of the following theorem follows essentially the same method
used by Hardy and Rogers in [7, Theorem 2] to generalize [7, Theorem 1]. For if
a = b = c = 0 in [7, Theorem 2] we have (i); if c = e = f = 0 in [7, Theorem 2] we
have (ii) and if a = b = f = 0 in [7, Theorem 2] we have (iii). �

By substituting a = f(fc(x, y)), b = g(fc(x, y)) and c = h(fc(x, y)) in the proof
of Theorem 2.1 and in view of Theorem 2.2 we now have the following general-
ization of Theorem 1.1.

Theorem 2.3. Let X be a metrisable complete locally convex space, K a closed convex
subset of X , and T : K → K an operator for which there exist monotonically decreasing
functions f = f(fc(x − y)), g = g(fc(x − y)) and h = h(fc(x − y)), for all x, y ∈ X ,
from [0,∞) to [0, 1) satisfying 0 < f(t) < 1, 0 < g(t), h(t) < 1/2 for all t ∈ fc(x− y).
If for each pair x, y ∈ K , at least one of the following is true:

(i) fc(Tx − Ty) ≤ ffc(x − y);
(ii) fc(Tx − Ty) ≤ g[fc(x − Tx) + fc(y − Ty)];
(iii) fc(Tx − Ty) ≤ h[fc(x − Ty) + fc(y − Tx)],

then the Mann iteration {xn}n=∞
n=0 as defined in (1.4) above, converges to the fixed point

of T .

Consequently, we have the following result which we will show later to be
another generalization of Berinde’s [2, Theorem 2] result.

Corollary 2.2. Let X be a Banach space, K a closed convex subset of X , and T : K → K
an operator for which there exist monotonically decreasing functions f = f(‖x − y‖),
g = g(‖x − y‖) and h = h(‖x − y‖), for all x, y ∈ X , from [0,∞) to [0, 1) satisfying
0 < f(t) < 1, 0 < g(t), h(t) < 1/2 for all t ∈ ‖x−y‖, such that for each pair x, y ∈ X ,
at least one of the following is true:

(i) ‖Tx − Ty‖ ≤ f [‖x − y‖];
(ii) ‖Tx− Ty‖ ≤ g[‖x − Tx‖ + ‖y − Ty‖];
(iii) ‖Tx− Ty‖ ≤ h[‖x − Ty‖ + ‖y − Tx‖].

Let {xn}n=∞
n=0 be the Mann iteration as defined in (1.4) above, then {xn}n=∞

n=0 converges
strongly to the fixed point of T .

Remark 2.1. Berinde proved Corollary 2 in [2, Theorem 2] when the iteration
scheme is Ishikawa-type sequence described by (1.1) - (1.3). This was a general-
ization of RhoadesTheorem [12]. In the Ishikawa-type sequence, which has been
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studied extensively for over two decades, it is assumed that αn and βn are inde-

pendent and
∞∑

n=0
αn = ∞. Chidume [3, p. 172] rightly pointed out that in this

case, if the Ishikawa-type sequence converges, then the Mann’s sequence defined
by x0 ∈ K , xn+1 = (1 − αn)xn + αnTxn, n > 0, converges. One simply sets
βn = 0 for all integers n ≥ 0. Thus, since the Mann iteration scheme we used is
simpler and converges faster than Ishikawa iteration scheme, the use of Ishikawa
iteration scheme in [2, Theorem 2] and [12] appears unnecessary.

Remark 2.2. Our Theorem 1 improves on Berinde [2] and consequently on
Rhoades’ Theorem [12], by extending it from Banach spaces to complete metris-
able locally convex spaces. The fact that there are complete metrisable spaces,
including many useful function spaces, that are not normable makes our Theo-
rem a needed generalization of Berinde’s Theorem. Also, our Theorem [3] is an
improvement of Berinde’s Theorem in the sense that the constants a, b and c are
respectively generalized in our Corollary 2 to monotonically decreasing functions
f = f(‖x − y‖), g = g(‖x − y‖) and h = h(‖x − y‖).
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