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A note on the direct limit of a direct system of
multialgebras in a subcategory of multialgebras

COSMIN PELEA

ABSTRACT. We will present some properties of the direct limit of a direct system of multialgebras
in a subcategory of the category of multialgebras obtained by considering as morphisms the ideal
multialgebra homomorphisms.

1. INTRODUCTION

In a previous paper ([10]) we gave a generalization of the direct limit of a direct
system in the case of multialgebras. This construction preserves the identities sat-
isfied on the multialgebras of the given identities of the direct system. This prop-
erty allows us to obtain many of the existing results on direct limits of particular
hyperstructures (see [2, 5, 6, 7, 13]) as consequences of our results. The notion of
multialgebra homomorphism follows from the same notion from the relational
structure theory. The notion of ideal homomorphism is, somehow, more related
to the notion of homomorphism used in the universal algebra theory. In this pa-
per we will prove that the subcategory of multialgebras obtained by considering
as morphisms the ideal homomorphisms of multialgebras is closed with respect
to the construction of the direct limit of a direct system. We mention without
proving it that this makes possible for all the results on identities and direct limits
to be formulated for direct systems with ideal homomorphisms (this follows im-
mediately from the results from [10, Section 5] and Section 4). Since the ideal ho-
momorphisms of semihypergroups are the good homomorphisms and the ideal
homomorphisms of hypergroups are the very good homomorphisms (see [1]),
the properties presented in Section 4 hold for semihypergroups and good homo-
morphisms as well as for hypergroups and very good homomorphisms.

2. PRELIMINARIES

Let τ = (nγ)γ<o(τ) be a sequence of nonnegative integers (with o(τ) ordinal
number), for any γ < o(τ) let fγ be a symbol of an nγ-ary (multi)operation and we
consider the algebra of the n-ary terms (of type τ ) P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

If A is a set, we denote by P ∗(A) the set of the nonempty subsets of A. Let
A = (A, (fγ)γ<o(τ)) be a multialgebra, where, for any γ < o(τ), fγ : Anγ → P ∗(A)
is the multioperation of arity nγ that corresponds to the symbol fγ .
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We obtain a universal algebra P∗(A) on P ∗(A) if we define, for any γ < o(τ)
and for any A0, . . . , Anγ−1 ∈ P ∗(A),

fγ(A0, . . . , Anγ−1) =
⋃

{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}},
(see [11]). As in [4], we can construct the algebra P(n)(P∗(A)) of the n-ary term
functions on P∗(A), for any n ∈ N.

For an equivalence relation ρ on A, the factor multialgebra on A/ρ is obtained
by defining the multioperations on A/ρ as in [3]:

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b ∈ fγ(b0, . . . , bnγ−1), aiρbi, i ∈ {0, . . . , nγ − 1}}
(ρ〈x〉 denotes the class of x modulo ρ).

The fundamental relation of the multialgebra A is the smallest equivalence re-
lation on A for which the factor multialgebra is a universal algebra. The funda-
mental relation of A is the transitive closure α∗ of the relation α defined on A as
follows:

(2.1) xαy ⇔ ∃n ∈ N, ∃p ∈ P(n)(τ), ∃a0, . . . , an−1 ∈ A : x, y ∈ p(a0, . . . , an−1)

where p ∈ P (n)(P∗(A)) is the term function induced by p on P∗(A) (see [8, 9]).
The universal algebra A/α∗ is called the fundamental algebra of the multialgebra
A. We will denote by A the fundamental algebra of A. We also denote by ϕA the
canonical projection of A onto A and by a the class of a modulo α∗.

A map h : A → B between the multialgebras A and B of the same type τ is
called homomorphism if for any γ < o(τ) and a0, . . . , anγ−1 ∈ A we have

h(fγ(a0, . . . , anγ−1)) ⊆ fγ(h(a0), . . . , h(anγ−1)).

The homomorphism h is ideal if for any γ < o(τ) and a0, . . . , anγ−1 ∈ A we have

h(fγ(a0, . . . , anγ−1)) = fγ(h(a0), . . . , h(anγ−1)).

A bijective map h is a multialgebra isomorphism if both h and h−1 are multialge-
bra homomorphisms. As it results from [11], the multialgebra isomorphisms can
be characterized as being the bijective ideal homomorphisms.

The definition of the multioperations of A/ρ allows us to see the canonical map
from A to A/ρ as an homomorphism of multialgebras.

Theorem 2.1. [9, Theorem 1] If A, B are multialgebras and A, B respectively are their
fundamental algebras and if f : A→ B is an ideal homomorphism then there exists only
one homomorphism of universal algebras f : A→ B such that

(2.2) ϕB ◦ f = f ◦ ϕA.

The proof uses only the fact that f is an homomorphism, so the statement holds
if we drop the property of f of being ideal.

Corollary 2.1. [9, Corollaries 1, 2] If A, B, C are multialgebras of the same type τ
then 1A = 1A and if f : A → B, g : B → C are multialgebra (ideal) homomorphisms,
then g ◦ f = g ◦ f.

We can easily construct the category of multialgebras of the same type τ where
the morphisms are considered to be the homomorphisms and the composition of



A note on the direct limit of a direct system of multialgebras 123

two morphisms is the usual map composition. It is known that the universal al-
gebras of the same type τ together with the homomorphisms between them form
a category which is, obviously, a full subcategory in the category of the multial-
gebras introduced above. We denote by Malg(τ) the category of multialgebras of
type τ and by Alg(τ) the category of the universal algebras of type τ mentioned
before. It is easy to observe that if we consider as morphisms only the ideal mul-
tialgebra homomorphisms then we obtain a subcategory Malgi(τ) of Malg(τ)
and Alg(τ) is also a full subcategory of Malgi(τ).

Remark 2.1. Corollary 2.1 allows us to define a functor F : Malg(τ) −→ Alg(τ)
as follows: F (A) = A, for any multialgebra A of type τ, and F (f) = f from (2),
for any homomorphism f between the multialgebras A and B (of type τ ).

3. DIRECT LIMITS OF DIRECT SYSTEMS OF MULTIALGEBRAS

Let A = ((Ai | i ∈ I), (ϕij : Ai → Aj | i, j ∈ I, i ≤ j)) be a direct system of sets
having the carrier (I,≤). Thus, (I,≤) is a directed preordered set and the maps
ϕij (i, j ∈ I, i ≤ j) are such that for any i, j, k ∈ I, with i ≤ j ≤ k, ϕjk ◦ϕij = ϕik

and ϕii = 1Ai , for all i ∈ I. On the disjoint union A of the sets Ai one defines the
relation≡ as follows: for any x, y ∈ A there exist i, j ∈ I, such that x ∈ Ai, y ∈ Aj ,
and x ≡ y if and only if ϕik(x) = ϕjk(y) for some k ∈ I with i ≤ k, j ≤ k. The
relation ≡ is an equivalence relation on A and the factor set A/≡ = {x̂ | x ∈ A}
(denoted here by A∞) is the direct limit of the direct system of sets A (see [4]).

If each set Ai is a support set for a multialgebra Ai of type τ and each ϕij is a
multialgebra homomorphism, the system

A = ((Ai | i ∈ I), (ϕij : Ai → Aj | i, j ∈ I, i ≤ j))

is a direct system of multialgebras. Sometimes we will refer to A as the direct
system (or the direct family) of multialgebras (Ai | i ∈ I).

If γ < o(τ) and x̂0, . . . , x̂nγ−1 ∈ A∞ the equality

fγ(x̂0, . . . , x̂nγ−1) = {x̂′ | ∃m ∈ I, ∀j ∈ {0, . . . , nγ − 1}, ∃x′j ∈ x̂j ∩Am,

such that x′ ∈ fγ(x′0, . . . , x
′
nγ−1)}.

defines a multioperation on A∞, thus we obtain a multialgebra A∞ of type τ on
A∞.

Lemma 3.1. [10, Lemma 15] If γ < o(τ) and x̂0, . . . , x̂nγ−1 ∈ A∞ and for any
j ∈ {0, . . . , nγ − 1} we take ij ∈ I such that xj ∈ Aij , the representative x′ of a
class x̂′ ∈ fγ(x̂0, . . . , x̂nγ−1) can be considered such that

∃ m ∈ I, i0 ≤ m, . . . , inγ−1 ≤ m with x′ ∈ fγ(x′0, . . . , x
′
nγ−1),

where x′j = ϕijm(xj) (j ∈ {0, . . . , nγ − 1}).
Remark 3.2. [10, Remark 16] If for some γ < o(τ), fγ is an operation in all the
multialgebras Ai, then fγ is an operation in A∞. In fact, in order that for a given
γ < o(τ), fγ to be an operation in A∞ it is enough for any two elements from I to
have an upper bound m ∈ I such that in Am, fγ is an operation.



124 Cosmin Pelea

Lemma 3.2. [10, Lemma 28] Let p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A. Then we have

p(â0, . . . , ân−1) = {â | ∃m ∈ I, ∀j ∈ {0, . . . , n− 1}, ∃a′j ∈ âj ∩Am

such that a ∈ p(a′0, . . . , a
′
n−1)}.

If i0, . . . , in−1 ∈ I are such that aj ∈ Aij for all j ∈ {0, . . . , n − 1} then the set
p(â0, . . . , ân−1) is equal to

{â | ∃m ∈ I, i0, . . . , in−1 ≤ m, a ∈ p(ϕi0m(a0), . . . , ϕin−1m(an−1))}.
Remark 3.3. [10, Remark 17] For each i ∈ I , the map ϕi∞ : Ai → A∞, ϕi∞(x) = x̂
is a multialgebra homomorphism and for any i, j ∈ I , with i ≤ j, ϕj∞◦ϕij = ϕi∞.

Theorem 3.2. [10, Theorem 19] If we consider the category I associated to the pre-
ordered set (I,≤) then we can see (as in [12]) the direct system consisting of the multi-
algebras (Ai | i ∈ I) and the homomorphisms (ϕij : Ai → Aj | i, j ∈ I, i ≤ j) as
a covariant functor G : I −→ Malg(τ) and the multialgebra A∞, with the homomor-
phisms (ϕi∞ | i ∈ I), is the direct limit of the functor G.

The multialgebra A∞ is the direct limit of the (direct system of) multialgebras
(Ai | i ∈ I) and it will be denoted by lim−→i∈IAi.

In what follows we will consider that (I,≤) is a directed partially ordered set
(unless we will specify something else). Let A = ((Ai | i ∈ I), (ϕij | i, j ∈
I, i ≤ j)) be a direct system of multialgebras and let us consider J ⊆ I such that
(J,≤) is also a directed partially ordered set. We will denote by AJ the direct
system consisting of the multialgebras (Ai | i ∈ J) whose carrier is (J,≤) and the
homomorphisms are (ϕij | i, j ∈ J, i ≤ j).

Proposition 3.1. [10, Proposition 22] Let A be a direct system of multialgebras with
the carrier (I,≤) and let us consider J ⊆ I such that (J,≤) is a directed partially ordered
set cofinal with (I,≤). Then the multialgebras lim−→A and lim−→AJ are isomorphic.

Let us consider that the support set I of the carrier (I,≤) of the direct system
A = ((Ap | p ∈ I), (ϕij | i, j ∈ I, i ≤ j)) of multialgebras can be written as
I =

⋃
p∈P Ip, where (Ip,≤) is a directed partially ordered subset of (I,≤) for

each p ∈ P and (P,≤) is also a directed partially ordered set such that Ip ⊆ Iq ,
whenever p, q ∈ P, p ≤ q. Denote lim−→A = A∞ = (A∞, (fγ)γ<o(τ)) and lim−→AIp =
Ap∞ = (Ap∞, (fγ)γ<o(τ)) if p ∈ P. Then for any p, q ∈ P, p ≤ q we obtain the map

ψpq : Ap
∞ → Aq

∞, ψpq(x̂Ip) = x̂Iq ,

(where x ∈ Ai, for some i ∈ Ip). In this way we obtain a direct system of sets
denoted by A/P consisting of (P,≤), the multialgebras Ap

∞, and the maps ψpq.

Theorem 3.3. [10, Theorem 23] A/P is a direct system of multialgebras and the mul-
tialgebras lim−→A and lim−→A/P are isomorphic.

We will use the term of algebraic class for those classes of multialgebras which
are closed under the formation of isomorphic images.

Theorem 3.4. [10, Theorem 24] If K is an algebraic class of multialgebras then K is
closed under the formation of direct limits of arbitrary direct systems if and only if K is
closed under the formation of direct limits of well-ordered direct systems.
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Theorem 3.5. [10, Theorem 25] The functor F : Malg(τ) −→ Alg(τ) is a left adjoint
for the inclusion functor U : Alg(τ) −→ Malg(τ).

Let (I, ≤) be a directed preordered set. Since any functor which has a right
adjoint preserves the direct limits, we have:

Corollary 3.2. [10, Corollary 26] If A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a
direct system of multialgebras of type τ then A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤
j)) is a direct system of universal algebras of type τ and the universal algebra lim−→A is

isomorphic to the universal algebra lim−→A.

4. DIRECT LIMITS OF DIRECT SYSTEMS WITH IDEAL HOMOMORPHISMS

The properties presented in Section 3 hold in the subcategory of Malg(τ)
which has the same objects and for which the morphisms are the ideal homo-
morphisms. In other words, the results established in Section 3 hold if we replace
‘homomorphism’ by ‘ideal homomorphism’. As we will see, the definition of the
multioperations in the direct limit will be easier in this case.

Lemma 4.3. Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of
multialgebras and A∞ = lim−→A. If all the homomorphisms ϕij are ideal homomorphisms
then the multioperations from A∞ can be defined as follows: for any γ < o(τ) and for
any x̂0, . . . , x̂nγ−1 ∈ A∞ with x0 ∈ Ai0 , . . . , xnγ−1 ∈ Ainγ−1 we consider an element
m ∈ I , i0, . . . , inγ−1 ≤ m and we define

(4.3) fγ(x̂0, . . . , x̂nγ−1) = {x̂ | x ∈ fγ(ϕi0m(x0), . . . , ϕinγ−1m(xnγ−1))}.
Proof. From Lemma 3.1 it results that it is enough to prove that the definition the
set in the right side of (5) does not depend on m ∈ I . Indeed, taking any other
m′ ∈ I , with ij ≤ m′, for all j ∈ {0, . . . , nγ −1} and x′j = ϕijm(xj), x′′j = ϕijm′(xj)
we have

{x̂′ | x′ ∈ fγ(x′0, . . . , x
′
nγ−1)} = {x̂′′ | x′′ ∈ fγ(x′′0 , . . . , x

′′
nγ−1)}.

For, if q ∈ I such that m ≤ q, m′ ≤ q then

ϕmq(fγ(x′0, . . . , x
′
nγ−1)) = fγ(ϕmq(x′0), . . . , ϕmq(x′nγ−1))

= fγ(ϕi0q(x0), . . . , ϕinγ−1q(xnγ−1))

= fγ(ϕm′q(x′′0 ), . . . , ϕm′q(x′′nγ−1))

= ϕm′q(fγ(x′′0 , . . . , x
′′
nγ−1));

thus for each x′ ∈ fγ(x′0, . . . , x
′
nγ−1) there exists x′′ ∈ fγ(x′′0 , . . . , x

′′
nγ−1) such

that x′ ≡ x′′ and conversely, for each x′′ ∈ fγ(x′′0 , . . . , x
′′
nγ−1) there exists x′ ∈

fγ(x′0, . . . , x′nγ−1) such that x′ ≡ x′′. �

Remark 4.4. In this case is easier to observe that if for some γ < o(τ) we have for
any two elements from I an upper bound m ∈ I such that fγ is an operation in
Am then fγ is an operation in A∞.

From Lemma 3.2 and Lemma 4.3 we deduce the following result.
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Corollary 4.3. Let p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A. If i0, . . . , in−1 ∈ I are such
that aj ∈ Aij for all j ∈ {0, . . . , n− 1} and m ∈ I with i0, . . . , in−1 ≤ m then

p(â0, . . . , ân−1) = {â | a ∈ p(ϕi0m(a0), . . . , ϕin−1m(an−1))}.
Lemma 4.4. Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of
multialgebras and A∞ = lim−→A. If all the homomorphisms ϕij are ideal homomorphisms
then the homomorphisms ϕi∞ : Ai → A∞, ϕi∞(x) = x̂ are ideal homomorphisms.

Proof. For any γ < o(τ) and for all x0, . . . , xnγ−1 ∈ Ai we have

ϕi∞(fγ(x0, . . . , xnγ−1)) = {ϕi∞(x) | x ∈ fγ(x0, . . . , xnγ−1)}
= {x̂ | x ∈ fγ(x0, . . . , xnγ−1)}
= fγ(x̂0, . . . , x̂nγ−1)

= fγ(ϕi∞(x0), . . . , ϕi∞(xnγ−1)),

thus the homomorphism ϕi∞ is ideal. �

Theorem 4.6. The subcategory Malgi(τ) of Malg(τ) is closed under the formation of
the direct limit of a direct system.

Proof. Let us consider the following diagrams:

A∞

Ai

ϕij ��

ϕi∞

��

Aj

ϕj∞
����������

A′

Ai

ϕij ��

αi

����������
Aj

αj

�� A∞
μ �� A′

Ai

ϕi∞

��

αi

����������
.

The first diagram is commutative (see 3.3) and whenever a multialgebra A′ of
type τ , together with a family (αi : Ai → A′ | i ∈ I) of homomorphisms make the
second diagram commutative, there exists a unique homomorphism μ : A∞ → A′

such that the third diagram is commutative. The unique homomorphism μwhich
make the third diagram commutative is defined as follows: for x̂ ∈ A∞ there
exists i ∈ I such that x ∈ Ai, and μ(x̂) = μ(ϕi∞(x)) = αi(x).

If all the homomorphisms ϕij and αi are ideal homomorphisms then, as we
have seen in Lemma 4.4 all the homomorphisms ϕi∞ are ideal homomorphisms,
andμ is an ideal homomorphism, too. Indeed, for any γ<o(τ) and x̂0, . . . , x̂nγ−1∈
A∞ with x0 ∈ Ai0 , . . . , xnγ−1 ∈ Ainγ−1 , let m ∈ I be such that i0, . . . , ınγ−1 ≤ m

and x′0 = ϕi0m(x0), . . . , x′nγ−1 = ϕinγ−1m(xnγ−1); we have

μ(fγ(x̂0, . . . , x̂nγ−1)) = {μ(x′) | x′ ∈ fγ(x′0, . . . , x
′
nγ−1)(⊆ Am)}

= {αm(x′) | x′ ∈ fγ(x′0, . . . , x
′
nγ−1)(⊆ Am)}

= αm(fγ(x′0, . . . , x
′
nγ−1))

= fγ(αm(x′0), . . . , αm(x′nγ−1))

= fγ(μ(x̂′0), . . . , μ(x̂′nγ−1))

= fγ(μ(x̂0), . . . , μ(x̂nγ−1)),

and the theorem is proved. �



A note on the direct limit of a direct system of multialgebras 127

Corollary 4.4. Let p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A. If i0, . . . , in−1 ∈ I are such
that aj ∈ Aij for all j ∈ {0, . . . , n− 1} and m ∈ I with i0, . . . , in−1 ≤ m then

p(â0, . . . , ân−1) = {â | a ∈ p(ϕi0m(a0), . . . , ϕin−1m(an−1))}.
Remark 4.5. If all the homomorphisms from A are ideal homomorphisms then
all the homomorphisms ψpq from Theorem 3.3 are ideal homomorphisms, so The-
orem 3.3 holds in Malgi(τ). Since in the proof of Proposition 3.1 will be no im-
portant changes if the homomorphisms of A are ideal and Theorem 3.4 follows
from Proposition 3.1 and Theorem 3.3 we conclude that Theorem 3.4 also holds
in Malgi(τ).

Indeed, let us take γ < o(τ), p, q ∈ P , p ≤ q and (x̂j)Ip ∈ Ap
∞, j∈{0, . . . , nγ−1};

we can consider that xj ∈ Am with m ∈ Ip, for all j ∈ {0, . . . , nγ − 1} and so we
have

ψpq(fγ((x̂0)Ip , . . . , (x̂nγ−1)Ip)) = {ψpq(x̂Ip) | x ∈ fγ(x0, . . . , xnγ−1)}
= {x̂Iq | x ∈ fγ(x0, . . . , xnγ−1)}
= fγ((x̂0)Iq , . . . , (x̂nγ−1)Iq )

= fγ(ψpq((x̂0)Ip), . . . , ψpq((x̂nγ−1)Ip)).

Remark 4.6. Since any homomorphism of universal algebras is ideal, it is easy to
observe that, in the case of universal algebras, the results in Section 3 lead us to
the results presented in [4, §21].

Remark 4.7. The restriction of F : Malg(τ) −→ Alg(τ) to Malgi(τ) is a left
adjoint for the inclusion functor U : Alg(τ) −→ Malgi(τ). So, if (I, ≤) is a
directed preordered set and A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct
system from Malgi(τ) then A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct
system of universal algebras of type τ and the universal algebras lim−→A and lim−→A
are isomorphic.
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