CARPATHIAN J. MATH. **22** (2006), No. 1 - 2, 137 - 145

On totally $\tilde{g}s$ -continuity, strongly $\tilde{g}s$ -continuity and contra $\tilde{g}s$ -continuity

NEELAMEGARAJAN RAJESH and ERDAL EKICI

ABSTRACT. In this paper, $\tilde{g}s$ -closed sets and $\tilde{g}s$ -open sets are used to define and investigate a new class of functions. Relationships between this new class and other classes of functions are established.

1. INTRODUCTION

Jain [5], Levine [8] and Dontchev [1] introduced totally continuous functions, strongly continuous functions and contra continuous functions, respectively. Leveine [6] also introduced and studied the concepts of generalized closed sets. The notion has been studied extensively in recent years by many topologists. As generalization of closed sets, $\tilde{g}s$ -closed sets were introduced and studied by Sundaram et al. in [15]. This notion was further studied by Rajesh and Ekici [12, 13].

In this paper, we will continue the study of some related functions by using $\tilde{g}s$ -open and $\tilde{g}s$ -closed sets. We introduce and characterize the concepts of totally $\tilde{g}s$ -continuous, strongly $\tilde{g}s$ -continuous and contra $\tilde{g}s$ -continuous functions.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A in X, respectively. We set $C(X, x) = \{V \in C(X) \mid x \in V\}$ for $x \in X$, where C(X) denotes the collection of all closed subsets of (X, τ) . The set of all clopen subsets of (X, τ) is denoted by $CO(X, \tau)$.

We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called:

- (1) semi-open [7] if $A \subseteq cl(int(A))$.
- (2) α -open [10] if A \subseteq int(cl(int(A))).

The complements of the above mentioned sets are called semi-closed and α closed, respectively. The intersection of all semi-closed sets of X containing a subset A is called the semi-closure of A and is denoted by scl(A).

Definition 2.2. A subset A of a space (X, τ) is called:

(1) \widehat{g} -closed [17] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ) . The complement of a \widehat{g} -closed set is called \widehat{g} -open.

Received: 04.05.2006; In revised form: 24.07.2006; Accepted: 01.11.2006 2000 *Mathematics Subject Classification:* 54C10.

Key words and phrases: Totally continuous functions, totally $\tilde{g}s$ -continuous, strongly $\tilde{g}s$ -continuous and contra $\tilde{g}s$ -continuous.

- (2) *g-closed set [16] if cl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open in (X, τ) . The complement of a *g-closed set is called *g-open.
- (3) #g-semi-closed (briefly #gs-closed) set [18] if scl(A) \subseteq U whenever A \subseteq U and U is *g-open in (X, τ) . The complement of a #gs-closed set is called #gs-open.
- (4) \tilde{g} -semi-closed (briefly $\tilde{g}s$ -closed) set[15] if scl(A) \subseteq U whenever A \subseteq U and U is #gs-open in (X, τ) . The complement of a $\tilde{g}s$ -closed set is called $\tilde{g}s$ -open. The class of all $\tilde{g}s$ -open sets of (X, τ) is denoted by $\tilde{G}S(X, \tau)$.

(5) \tilde{gs} -clopen if it is both \tilde{gs} -open and \tilde{gs} -closed. We set $\tilde{G}(\mathbf{X}, \mathbf{x}) = \{\mathbf{V} \in \tilde{GS}(X, \tau) \mid \mathbf{x} \in \mathbf{V}\}$ for $\mathbf{x} \in \mathbf{X}$.

Remark 2.1. From the Definition 2.1 and 2.2, we have the following diagram,

	closed	\rightarrow		$\alpha\text{-closed}$		\rightarrow	semi-closed	
	\sim		/		\mathbf{i}		\checkmark	
*g-closed	—	\widehat{g} -closed		—		$\widetilde{g}s$ -closed	—	#gs-closed

where $A \rightarrow B$ (resp. $A \leftrightarrow B$ or A - B) means A implies B (resp. A and B are independent).

Definition 2.3. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

- (1) totally continuous [5] of the inverse image of every open subset of (Y, σ) is a clopen subset of (X, τ) ;
- (2) strongly continuous [8] if the inverse image of every subset Y is a clopen subset of (X, τ) ;
- (3) contra-continuous [1] (resp. contra-semi-continuous [2], contra- α -continuous [3]) if the inverse image of every open subset of Y is a closed (resp. semi-closed, α -closed) subset of (X, τ) ;
- (4) $\tilde{g}s$ -continuous [12] if the inverse image of every open subset of (Y, σ) is $\tilde{g}s$ -open in (X, τ) .

3. Two classes of functions via $\tilde{g}s$ -clopen sets

We introduce the following definition:

Definition 3.4. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be totally \tilde{g} -semi-continuous (briefly totally $\tilde{g}s$ -continuous) if the inverse image of every open subset of (Y, σ) is a $\tilde{g}s$ -clopen (i.e. $\tilde{g}s$ -open and \tilde{g} -closed) subset of (X, τ) .

It is evident that every totally continuous function is totally $\tilde{g}s$ -continuous. But the converse need not be true as shown in the following example.

Example 3.1. Let $X = \{a, b, c\}$, $Y = \{p, q\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{p\}, Y\}$. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ such that f(a) = p, f(b) = f(c) = q. Then clearly f is totally $\tilde{g}s$ -continuous, but not totally continuous.

Definition 3.5. A function f: $(X, \tau) \to (Y, \sigma)$ is said to be strongly \tilde{g} -semi-continuous (briefly strongly $\tilde{g}s$ -continuous) if the inverse image of every subset of (Y, σ) is a $\tilde{g}s$ -clopen subset of (X, τ) .

It is clear that every strongly \tilde{gs} -continuous function is totally \tilde{gs} -continuous. But the reverse implication is not always true as shown in the following example.

Example 3.2. Let $X = \{a, b, c\} = Y, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then the identity function $f:(X, \tau) \to (Y, \sigma)$ is totally $\tilde{g}s$ -continuous but not strongly $\tilde{g}s$ -continuous.

Theorem 3.1. Every totally $\tilde{g}s$ -continuous function into a T_1 -space is strongly $\tilde{g}s$ -continuous.

Proof. In a T_1 -space, singletons are closed. Hence $f^{-1}(A)$ is $\tilde{g}s$ -clopen in (X, τ) for every subset A of Y.

Remark 3.2. It is clear from the Theorem 3.1 that the classes of strongly $\tilde{g}s$ continuous functions and totally $\tilde{g}s$ -continuous function coincide when the range
is a T_1 -space.

Recall that a space (X, τ) is said to be \tilde{gs} -connected [12] if X cannot be expressed as the union of two non-empty disjoint \tilde{gs} -open sets.

Theorem 3.2. If *f* is a totally $\tilde{g}s$ -continuous function from a $\tilde{g}s$ -connected space *X* onto any space *Y*, then *Y* is an indiscrete space.

Proof. Suppose that Y is not indiscrete. Let A be a proper non-empty open subset of Y. Then $f^{-1}(A)$ is a proper non-empty $\tilde{g}s$ -clopen subset of (X, τ) , which is a contradiction to the fact that X is $\tilde{g}s$ -connected.

Definition 3.6. Let A be a subset of X. The intersection of all \tilde{gs} -closed sets containing A is called the \tilde{gs} -closure of A [13] and is denoted by $\tilde{gscl}(A)$.

Definition 3.7. A space X is said to be $\tilde{g}s$ - T_2 [11] if for any pair of distinct points x, y of X, there exist disjoint $\tilde{g}s$ -open sets U and V such that $x \in U$ and $y \in V$.

Theorem 3.3. [11] A space X is $\tilde{g}s$ - T_2 if and only if for any pair of distinct points x, y of X there exist $\tilde{g}s$ -open sets U and V such that $x \in U$, and $y \in V$ and $\tilde{g}scl(U) \cap \tilde{g}scl(V) = \emptyset$.

Theorem 3.4. If $f: (X, \tau) \to (Y, \sigma)$ be a totally $\tilde{g}s$ -continuous injection and Y is T_0 , then X is $\tilde{g}s$ - T_2 .

Proof. Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$. Since Y is T_0 , there exists an open set U containing say, f(x) but not f(y). Then $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$. Since f is totally $\tilde{g}s$ -continuous, $f^{-1}(U)$ is a $\tilde{g}s$ -clopen subset of X. Also, $x \in f^{-1}(U)$ and $y \in X - f^{-1}(U)$. By Theorem 3.3, it follows that X is $\tilde{g}s$ - T_2 .

Theorem 3.5. A topological space (X, τ) is $\tilde{g}s$ -connected if and only if every totally $\tilde{g}s$ -continuous function from a space (X, τ) into any T_0 -space (Y, σ) is constant.

Proof. Suppose that X is not $\tilde{g}s$ -connected and every totally $\tilde{g}s$ -continuous function from (X, τ) to (Y, σ) is constant. Since (X, τ) is not $\tilde{g}s$ -connected, there exists a proper non-empty $\tilde{g}s$ -clopen subset A of X. Let $Y = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, Y\}$ be a topology for Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function such that $f(A) = \{a\}$ and $f(Y-A) = \{b\}$. Then f is non-constant and totally $\tilde{g}s$ -continuous such that Y is T_0 , which is a contradiction. Hence X must be $\tilde{g}s$ -connected.

Theorem 3.6. Let $f: (X, \tau) \to (Y, \sigma)$ be a totally $\tilde{g}s$ -continuous function and Y is a T_1 -space. If A is a non-empty $\tilde{g}s$ -connected subset of X, then f(A) is a single point.

Definition 3.8. Let (X, τ) be a topological space. Then the set of all points y in X such that x and y cannot be separated by a $\tilde{g}s$ -separation of X is said to be the quasi $\tilde{g}s$ -component of X.

Theorem 3.7. Let $f: (X, \tau) \to (Y, \sigma)$ be a totally $\tilde{g}s$ -continuous function from a topological space (X, τ) into a T_1 -space Y. Then f is constant on each quasi $\tilde{g}s$ -component of X.

Proof. Let x and y be two points of X that lie in the same quasi- $\tilde{g}s$ -component of X. Assume that $f(x) = \alpha \neq \beta = f(y)$. Since Y is T_1 , $\{\alpha\}$ is closed in Y and so $Y-\{\alpha\}$ is an open set. Since f is totally $\tilde{g}s$ -continuous, therefore $f^{-1}(\{\alpha\})$ and $f^{-1}(Y-\{\alpha\})$ are disjoint $\tilde{g}s$ -clopen subsets of X. Further, $x \in f^{-1}(\{\alpha\})$ and $y \in f^{-1}(Y-\{\alpha\})$, which is a contradiction in view of the fact that y belongs to the quasi $\tilde{g}s$ -component of x and hence y must belong to every $\tilde{g}s$ -open set containing x.

4. Contra- \tilde{g} -semi-continuous

We introduce the following definition

Definition 4.9. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called contra- \tilde{g} -semi-continuous (briefly $c\tilde{g}s$ -continuous) if $f^{-1}(V)$ is $\tilde{g}s$ -open in (X, τ) for every closed set V in (Y, σ) .

It is clear that every strongly $\tilde{g}s$ -continuous function is $c\tilde{g}s$ -continuous. But the reverse implication is not always true as shown in the following example.

Example 4.3. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then the identity function f: $(X, \tau) \rightarrow (Y, \sigma)$ is $c\tilde{g}s$ -continuous but it is not strongly $\tilde{g}s$ -continuous.

Definition 4.10. Let *A* be a subset of a topological space (X, τ) . The set $\bigcap \{U \in \tau | A \subset U\}$ is called the Kernal of *A* [9] and is denoted by ker(*A*).

Lemma 4.1. [4] The following properties hold for subsets A, B of a space X:

- (1) $x \in ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$; (2) $A \subset ker(A)$ and A = ker(A) if A is open in X;
- (3) If $A \subset B$, then $ker(A) \subset ker(B)$.

Theorem 4.8. The following are equivalent for a function $f: (X, \tau) \rightarrow (Y, \sigma)$:

- (1) f is $c\tilde{g}s$ -continuous;
- (2) for every closed subset F of Y, $f^{-1}(F) \in \widetilde{GS}(X, \tau)$;
- (3) for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \widetilde{GS}(X, \tau)$ such that $f(U) \subset F$;
- (4) $f(\widetilde{g}scl(A)) \subset ker(f(A))$ for every subset A of X;
- (5) $\widetilde{gscl}(f^{-1}(B)) \subset f^{-1}(ker(B))$ for every subset B of Y.

Proof. The implications $(1) \rightarrow (2)$ and $(2) \rightarrow (3)$ are obvious.

(3) \rightarrow (2): Let *F* be any closed set of *Y* and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in \widetilde{GS}(X, x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \bigcup \{U_x | x \in f^{-1}(F)\} \in \widetilde{GS}(X, \tau)$ [15].

(2) \rightarrow (4): Let *A* be any subset of *X*. Suppose that $y \notin ker(f(A))$. Then by Lemma 4.1 there exists $F \in C(X, y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $\tilde{g}scl(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(\tilde{g}scl(A)) \cap F = \emptyset$ and $y \notin f(\tilde{g}scl(A))$. This implies that $f(\tilde{g}scl(A)) \subset ker(f(A))$.

(4) \rightarrow (5): Let *B* be any subset of *Y*. By (4) and Lemma 4.1, we have $f(\tilde{g}scl(f^{-1}(B))) \subset ker(f(f^{-1}(B))) \subset ker(B)$ and $\tilde{g}scl(f^{-1}(B)) \subset f^{-1}(ker(B))$.

(5) \rightarrow (1): Let *V* be any open set of *Y*. Then by Lemma 4.1 we have $\tilde{g}scl(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$ and $\tilde{g}scl(f^{-1}(V)) = f^{-1}(V)$. This show that $f^{-1}(V)$ is $\tilde{g}s$ -closed in (X, τ) .

Theorem 4.9. Every contra semi-continuous function is $c\tilde{g}s$ -continuous.

Proof. The proof follows from the definitions.

Remark 4.3. Contra $\tilde{g}s$ -continuous need not be contra semi-continuous in general as shown in the following example.

Example 4.4. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is $c\tilde{g}s$ -continuous. However, f is not contra-semi continuous, since for the closed set $F = \{a\}, f^{-1}(F)$ is $\tilde{g}s$ -open but not semi-open in (X, τ) .

Corollary 4.1. Every contra α -continuous (resp. contra-continuous) function is $c\tilde{g}s$ -continuous.

Theorem 4.10. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (1) The function f is $\tilde{g}s$ -continuous;
- (2) For each point x in X and each open set V in (Y, σ) with $f(x) \in V$, there exists a $\tilde{g}s$ -open set U in (X, τ) such that $x \in U$, $f(U) \subset V$.

Proof. (1) \rightarrow (2): Let $f(x) \in V$. Since f is $\tilde{g}s$ -continuous, we have $x \in f^{-1}(V) \in \tilde{G}S(X,\tau)$. Let $U = f^{-1}(V)$. Then $x \in V$ and $f(U) \subset V$.

(2) \rightarrow (1): Let *V* be an open set in (Y, σ) and let $x \in f^{-1}(V)$. Then, $f(x) \in V$ and thus there exists a $\tilde{g}s$ -open set U_x such that $x \in U_x$ and $f(U_x) \subset V$. Now, $x \in U_x \subset f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since union of $\tilde{g}s$ -open sets is $\tilde{g}s$ -open [12], $f^{-1}(V)$ is $\tilde{g}s$ -open in (X, τ) and therefore f is $\tilde{g}s$ -continuous. \Box

Theorem 4.11. If a function $f : (X, \tau) \to (Y, \sigma)$ is $c\tilde{g}s$ -continuous and Y is regular, then f is $\tilde{g}s$ -continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that $cl(W) \subset V$. Since f is $c\tilde{g}s$ -continuous, so by Theorem 4.8 there exists $U \in \tilde{G}S(X,x)$ such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Hence, by theorem 4.10 f is $\tilde{g}s$ -continuous.

Theorem 4.12. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : X \to X \times Y$ the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is $c\tilde{g}s$ -continuous if and only if g is $c\tilde{g}s$ -continuous.

Proof. Let $\mathbf{x} \in X$ and let W be a closed subset of $X \times Y$ containing g(x). Then $W \cap (\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing g(x). Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in \mathbf{Y} | (x, y) \in W\}$ is a closed subset of Y. Since f is $c\tilde{g}s$ -continuous, $\bigcup \{f^{-1}(y) | (x, y) \in W\}$ is a $\tilde{g}s$ -open subset of X. Further, $x \in \bigcup \{f^{-1}(y) | (x, y) \in W\} \in W\} \subset g^{-1}(W)$. Hence $g^{-1}(W)$ is $\tilde{g}s$ -open. Then g is $c\tilde{g}s$ -continuous.

Conversely, let F be a closed subset of Y. Then $X \times F$ is a closed subset of $X \times Y$. Since g is $c\tilde{g}s$ -continuous, $g^{-1}(X \times F)$ is a $\tilde{g}s$ -open subset of X. Also, $g^{-1}(X \times F) = f^{-1}(F)$. Hence f is $c\tilde{g}s$ -continuous.

Theorem 4.13. If X is a topological space and for each pair of distinct points x_1 and x_2 in X there exists a map f into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is $c\tilde{g}s$ -continuous at x_1 and x_2 , then X is $\tilde{g}s - T_2$.

Proof. Let x_1 and x_2 be any distinct points in X. Then by hypothesis there is a Urysohn space Y and a function $f: (X, \tau) \to (Y, \sigma)$, which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open neighborhoods U_{y_1} and U_{y_2} of y_1 and y_2 respectively in Y such that $cl(U_{y_1}) \cap cl(U_{y_2}) = \emptyset$. Since f is $c\tilde{g}s$ -continuous at x_i , there exists a $\tilde{g}s$ -open neighborhoods W_{x_i} of x_i in X such that $f(W_{x_i}) \subset cl(U_{y_i})$ for i = 1, 2. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ because $cl(U_{y_1}) \cap cl(U_{y_2}) = \emptyset$. Then X is $\tilde{g}s$ - T_2 .

Corollary 4.2. If *f* is a $c\tilde{g}s$ -continuous injection of a topological space *X* into a Urysohn space *Y*, then *X* is $\tilde{g}s$ - T_2 .

Proof. For each pair of distinct points x_1 and x_2 in X, f is a $c\tilde{g}s$ -continuous function of X into Urysohn space Y such that $f(x_1) \neq f(x_2)$ because f is injective. Hence by Theorem 4.13, X is $\tilde{g}s$ - T_2 .

Corollary 4.3. If f is a $c\tilde{g}s$ -continuous injection of a topological space X into Ultra Hansdorff space Y, then X is $\tilde{g}s$ - T_2 .

Proof. Let x_1 and x_2 be any distinct points in X. Then since f is injective and Y is Ultra Hansdorff $f(x_1) \neq f(x_2)$ and there exist V_1 , $V_2 \in CO(Y, \sigma)$ such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then $x_1 \in f^{-1}(V) \in \widetilde{GS}(X, \tau)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus, X is $\widetilde{gs}-T_2$.

Lemma 4.2. The product of two $\tilde{g}s$ -open sets is $\tilde{g}s$ -open [11].

Proof. Let $A \in \widetilde{G}SO(X, \tau)$, $B \in \widetilde{G}SO(Y, \sigma)$ and $W = A \times B \subset X \times Y$. Let $F \subset W$ be a #gs-closed set in $X \times Y$, then there exist two #gs-closed sets $F_1 \subset A$, $F_2 \subset B$ and so, $F_1 \subset sint(A)$, $F_2 \subset sint(B)$. Hence $F_1 \times F_2 \subset A \times B$ and $F_1 \times F_2 \subset sint(B) = sint(A \times B)$. Therefore, $A \times B \in \widetilde{G}SO(X \times Y, \tau \times \sigma)$.

Lemma 4.3. Let $A \subset Y \subset X$, $Y \in \widetilde{GS}(X, \tau)$ and $A \in \widetilde{GS}(Y, \sigma)$. Then $A \in \widetilde{GS}(X, \tau)$ [15].

Theorem 4.14. Let $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ be two functions where Y is a Urysohn space and f_1 and f_2 are $c\tilde{g}s$ -continuous. Then $\{(x_1, x_2) \mid f(x_1) = f(x_2)\}$ is $\tilde{g}s$ -closed in the product space $X_1 \times X_2$.

Proof. Let *A* denote the set $\{(x_1, x_2) | f(x_1) = f(x_2)\}$. In order to show that *A* is $\tilde{g}s$ -closed, we show that $(X_1 \times X_2) - A$ is $\tilde{g}s$ -open. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since *Y* is Urysohn, there exist open V_1 and V_2 of $f_1(x_1)$ and $f_2(x_2)$ such that $cl(V_1) \cap cl(V_2) = \emptyset$. Since f_i (i = 1, 2) is $c\tilde{g}s$ -continuous, $f_i^{-1}(cl(V_i))$ is a $\tilde{g}s$ -open set containing x_i in X_i (i = 1, 2). Hence by Lemma 4.2, $f_1^{-1}(cl(V_1)) \times f_2^{-1}(cl(V_2))$ is $\tilde{g}s$ -open. Further $(x_1, x_2) \in f_1^{-1}(cl(V_1)) \times f_2^{-1}(cl(V_2)) \subset ((X_1 \times X_2) - A)$. It follows that $X_1 \times X_2 - A$ is $\tilde{g}s$ -open. Thus, *A* is $\tilde{g}s$ -closed in the product space $X_1 \times X_2$.

Corollary 4.4. If $f : (X, \tau) \to (Y, \sigma)$ is $c\tilde{g}s$ -continuous and Y is a Urysohn space, then $A = \{(x_1, x_2) | f(x_1) = f(x_2)\}$ is $\tilde{g}s$ -closed in the product space $X_1 \times X_2$.

Theorem 4.15. If $f : (X\tau) \to (Y,\sigma)$ is a contra- $\tilde{g}s$ -continuous function and $g : (Y,\sigma) \to (Z,\eta)$ is a continuous function, then $(g \circ f) : (X,\tau) \to (Z,\eta)$ is $c\tilde{g}s$ -continuous.

Theorem 4.16. Let $f : (X, \tau) \to (Y, \sigma)$ be surjective $\tilde{g}s$ -irresolute and $\tilde{g}s$ -open and $g : (Y, \sigma) \to (Z, \eta)$ be any function. Then $(g \circ f) : (X, \tau) \to (Z, \eta)$ is $c\tilde{g}s$ -continuous if and only if g is $c\tilde{g}s$ -continuous.

Proof. The "if "part is easy to prove. To prove the "only if "part, let $(g \circ f)$: $(X, \tau) \rightarrow (Z, \eta)$ be $c\tilde{g}s$ -continuous. Let F be a closed subset of Z. Then $(g \circ f)^{-1}(F)$ is a $\tilde{g}s$ -open subset of X. That is $f^{-1}(g^{-1}(F))$ is $\tilde{g}s$ -open. Since f is $\tilde{g}s$ -open, $f(f^{-1}(g^{-1}(F)))$ is a $\tilde{g}s$ -open subset of Y. So $g^{-1}(F)$ is $\tilde{g}s$ -open in Y. Hence g is $c\tilde{g}s$ -continuous.

Theorem 4.17. Let $\{X_i | i \in \land\}$ be any family of topological spaces. If $f : X \to \Pi X_i$ is a $c\tilde{g}s$ -continuous function. Then $\pi_i \circ f : X \to X_i$ is $c\tilde{g}s$ -continuous for each $i \in \land$, where π_i is the projection of ΠX_i onto X_i .

Definition 4.11. The graph G(f) of a function $f : (X, \tau) \to (Y, \sigma)$ is said to be $c\tilde{g}s$ -closed in $X \times Y$ if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in \tilde{G}S(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.4. The graph $f : (X, \tau) \to (Y, \sigma)$ is $c\widetilde{gs}$ -closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in \widetilde{GS}(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Proof. The proof follows from the definition.

Theorem 4.18. If $f : (X, \tau) \to (Y, \sigma) c\tilde{g}s$ -continuous and Y is Urysohn, then G(f) is contra- $\tilde{g}s$ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V$, $y \in W$ and $cl(U) \cap cl(W) = \emptyset$. Since f is $c\tilde{g}s$ -continuous, there exists $U \in \tilde{G}S(X, x)$ such that $f(U) \subset cl(V)$. Therefore, we obtain $f(U) \cap cl(W) = \emptyset$. This shows that G(f) is contra- $\tilde{g}s$ -closed.

Theorem 4.19. A $c\tilde{g}s$ -continuous image of a $\tilde{g}s$ -connected space is connected.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a contra- $\tilde{g}s$ -continuous function of a $\tilde{g}s$ -connected space X onto a topological space Y. Let Y be disconnected. Let A and B form a disconnected of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is a contra- $\tilde{g}s$ -continuous function $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty $\tilde{g}s$ -open sets in X. Also $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence X is non $\tilde{g}s$ -connected which is a contradiction. Therefore Y is connected.

Theorem 4.20. Let X be $\tilde{g}s$ -connected and Y a T_1 space. If f is $c\tilde{g}s$ -continuous, then f is constant.

Proof. Since *Y* is T_1 space, $\wedge = \{f^{-1}(\{y\}) : y \in Y\}$ is a disjoint $\tilde{g}s$ -open partition of *X*. If $| \wedge | \ge 2$, then *X* is the union of two non-empty $\tilde{g}s$ -open sets. Since *X* is $\tilde{g}s$ -connected, $| \wedge | = 1$. Hence, *f* is constant.

Definition 4.12. A topological space (X, τ) is said to be $\tilde{g}s$ -normal if each pair of non-empty disjoint closed sets can be separated by disjoint $\tilde{g}s$ -open sets.

Definition 4.13. [14] A topological space (X, τ) is said to be ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 4.21. If $f : (X, \tau) \to (y, \sigma)$ is a $c\tilde{g}s$ -continuous, closed injection and Y is ultra-normal, then X is $\tilde{g}s$ -normal.

Proof. Let F_1 and F_2 be a disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultra normal $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 respectively. Hence $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \widetilde{GS}(X, \tau)$ for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus, X is \widetilde{gs} -normal.

REFERENCES

- Dontchev, J., Contra-continuous functions and strongly s-closed spaces, Internat. J. Math & Math. Sci. 19 (1996), 303-310
- [2] Dontchev, J. and Noiri, T., Contra-semicontinuous functions, Math. Pannonica, 10 (1999), 159-168
- [3] Jafari, S. and Noiri, T., Contra-α-continuous functions between topological spaces, Iranian Int. J. Sci., 2(2), 2001, 153-167
- [4] Jafari, S. and Noiri, T., Contra-Super-Continuous functions, Annales Univ. Sci. Budapest, 42 (1999), 27-34
- [5] Jain, R. C., Ph.D. Thesis, Meerut University, India (1980)
- [6] Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96
- [7] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41
- [8] Levine, N., Strong Continuity in topological spaces, Amer. Math. Monthly, 67(1960) 269
- [9] Mrsevic, M., On pairwise R₀ and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **30** (78) (1986), 141-148
- [10] Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970
- [11] Rajesh, N., On Weak Seperation axioms (submitted)
- [12] Rajesh, N. and Ekici, E., On *g̃-semi-continuous functions*, J. of Appl. Functions and Diff. equations, 1 No. 2, 2006 (to appear)
- [13] Rajesh, N. and Ekici, E., On \tilde{g} -locally semi-closed sets, \tilde{g} -LSC* sets and \tilde{g} -LSC** sets, (submitted)

On totally $\widetilde{g}s\text{-continuity}$ strongly $\widetilde{g}s$ -continuity and contra $\widetilde{g}s\text{-continuity}$

- [14] Staum, R., The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169-185
- [15] Sundaram, P., Rajesh, N., Thivagar, M. L. and Duszynski, Z., \tilde{g} -semi-closed sets in topological spaces, (Submitted)
- [16] Veera Kumar, M. K. R. S., Between g^* -closed sets and g-closed sets, Antarctica J. Math, Reprint
- [17] Veera Kumar, M. K. R. S., \hat{g} -closed sets in topological spaces, Bulletin Allahabad Math. Soc., 18 (2003), 99-112
- [18] Veera Kumar, M. K. R. S., #g-Semi-closed sets in topological spaces, Antarctica J. Math, 2(2) (2005), 201-222

DEPARTMENT OF MATHEMATICS KONGU ENGINEERING COLLEGE PERUNDURAI, ERODE-638052 TAMIL NADU, INDIA *E-mail address*: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS CANAKKALE ONSEKIZ MART UNIVERSITY TERZIOGLU CAMPUS 17020 CANAKKALE, TURKEY *E-mail address*: eekici@comu.edu.tr