On totally $\tilde{g}s$-continuity, strongly $\tilde{g}s$ -continuity and contra $\tilde{g}s$-continuity

Neelamegarajan Rajesh and Erdal Ekici

ABSTRACT. In this paper, $\tilde{g}s$-closed sets and $\tilde{g}s$-open sets are used to define and investigate a new class of functions. Relationships between this new class and other classes of functions are established.

1. INTRODUCTION

Jain [5], Levine [8] and Dontchev [1] introduced totally continuous functions, strongly continuous functions and contra continuous functions, respectively. Levine [6] also introduced and studied the concepts of generalized closed sets. The notion has been studied extensively in recent years by many topologists. As generalization of closed sets, $\tilde{g}s$-closed sets were introduced and studied by Sundaram et al. in [15]. This notion was further studied by Rajesh and Ekici [12, 13].

In this paper, we will continue the study of some related functions by using $\tilde{g}s$-open and $\tilde{g}s$-closed sets. We introduce and characterize the concepts of totally $\tilde{g}s$-continuous, strongly $\tilde{g}s$-continuous and contra $\tilde{g}s$-continuous functions.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), $\text{cl}(A)$, $\text{int}(A)$ and A^c denote the closure of A, the interior of A and the complement of A in X, respectively. We set $C(X, x) = \{V \in C(X) | x \in V\}$ for $x \in X$, where $C(X)$ denotes the collection of all closed subsets of (X, τ). The set of all clopen subsets of (X, τ) is denoted by $\text{CO}(X, \tau)$.

We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called:

1. semi-open [7] if $A \subseteq \text{cl}(\text{int}(A))$.
2. α-open [10] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$.

The complements of the above mentioned sets are called semi-closed and α-closed, respectively. The intersection of all semi-closed sets of X containing a subset A is called the semi-closure of A and is denoted by $\text{scl}(A)$.

Definition 2.2. A subset A of a space (X, τ) is called:

1. \tilde{g}-closed [17] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of a \tilde{g}-closed set is called \tilde{g}-open.
(2) g-closed set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ). The complement of a g-closed set is called g-open.

(3) g-semi-closed (briefly g-s-closed) set [18] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ). The complement of a g-s-closed set is called g-open.

(4) gs-closed (briefly gs-closed) set [15] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ). The complement of a gs-closed set is called gs-open. The class of all gs-open sets of (X, τ) is denoted by $^gS(X, \tau)$.

(5) gs-clopen if it is both gs-open and gs-closed.

We set $\tilde{G}(X, x) = \{ V \in \tilde{G}(X, \tau) \mid x \in V \}$ for $x \in X$.

Remark 2.1. From the Definition 2.1 and 2.2, we have the following diagram,

- g-closed \rightarrow gs-closed \rightarrow semi-closed
- g-open \rightarrow gs-open \rightarrow gs-clopen

where $A \rightarrow B$ (resp. $A \leftrightarrow B$ or $A \rightarrow B$) means A implies B (resp. A and B are independent).

Definition 2.3. A function $f: (X, \tau) \to (Y, \sigma)$ is called:

- (1) totally continuous [5] of the inverse image of every open subset of (Y, σ) is a clopen subset of (X, τ);
- (2) strongly continuous [8] if the inverse image of every subset Y is a clopen subset of (X, τ);
- (3) contra-continuous [1] (resp. contra-semi-continuous [2], contra-α-continuous [3]) if the inverse image of every open subset of Y is a closed (resp. semi-closed, α-closed) subset of (X, τ);
- (4) gs-continuous [12] if the inverse image of every open subset of (Y, σ) is gs-open in (X, τ).

3. **TWO CLASSES OF FUNCTIONS VIA gs-CLOPEN SETS**

We introduce the following definition:

Definition 3.4. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be totally gs-semi-continuous (briefly totally gs-continuous) if the inverse image of every open subset of (Y, σ) is a gs-clopen (i.e. gs-open and gs-closed) subset of (X, τ).

It is evident that every totally continuous function is totally gs-continuous. But the converse need not be true as shown in the following example.

Example 3.1. Let $X = \{a, b, c\}$, $Y = \{p, q\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{p\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ such that $f(a) = p$, $f(b) = f(c) = q$. Then clearly f is totally gs-continuous, but not totally continuous.

Definition 3.5. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly gs-semi-continuous (briefly strongly gs-continuous) if the inverse image of every subset of (Y, σ) is a gs-clopen subset of (X, τ).

It is clear that every strongly gs-continuous function is totally gs-continuous. But the reverse implication is not always true as shown in the following example.
Example 3.2. Let \(X = \{a, b, c\} = Y, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, Y\} \). Then the identity function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is totally \(\bar{g}s \)-continuous but not strongly \(\bar{g}s \)-continuous.

Theorem 3.1. Every totally \(\bar{g}s \)-continuous function into a \(T_1 \)-space is strongly \(\bar{g}s \)-continuous.

Proof. In a \(T_1 \)-space, singletons are closed. Hence \(f^{-1}(A) \) is \(\bar{g}s \)-clopen in \((X, \tau) \) for every subset \(A \) of \(Y \).

Remark 3.2. It is clear from the Theorem 3.1 that the classes of strongly \(\bar{g}s \)-continuous functions and totally \(\bar{g}s \)-continuous function coincide when the range is a \(T_1 \)-space.

Recall that a space \((X, \tau) \) is said to be \(\bar{g}s \)-connected [12] if \(X \) cannot be expressed as the union of two non-empty disjoint \(\bar{g}s \)-open sets.

Theorem 3.2. If \(f \) is a totally \(\bar{g}s \)-continuous function from a \(\bar{g}s \)-connected space \(X \) onto any space \(Y \), then \(Y \) is an indiscrete space.

Proof. Suppose that \(Y \) is not indiscrete. Let \(A \) be a proper non-empty open subset of \(Y \). Then \(f^{-1}(A) \) is a proper non-empty \(\bar{g}s \)-clopen subset of \((X, \tau) \), which is a contradiction to the fact that \(X \) is \(\bar{g}s \)-connected.

Definition 3.6. Let \(A \) be a subset of \(X \). The intersection of all \(\bar{g}s \)-closed sets containing \(A \) is called the \(\bar{g}s \)-closure of \(A \) [13] and is denoted by \(\bar{g}scl(A) \).

Definition 3.7. A space \(X \) is said to be \(\bar{g}s \)-T_2 [11] if for any pair of distinct points \(x, y \) of \(X \), there exist disjoint \(\bar{g}s \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \).

Theorem 3.3. [11] A space \(X \) is \(\bar{g}s \)-T_2 if and only if for any pair of distinct points \(x, y \) of \(X \) there exist \(\bar{g}s \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \) and \(\bar{g}scl(U) \cap \bar{g}scl(V) = \emptyset \).

Theorem 3.4. If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a totally \(\bar{g}s \)-continuous injection and \(Y \) is \(T_0 \), then \(X \) is \(\bar{g}s \)-T_2.

Proof. Let \(x \) and \(y \) be any pair of distinct points of \(X \). Then \(f(x) \neq f(y) \). Since \(Y \) is \(T_0 \), there exists an open set \(U \) containing \(x \) but not \(y \). Then \(x \in f^{-1}(U) \) and \(y \notin f^{-1}(U) \). Since \(f \) is totally \(\bar{g}s \)-continuous, \(f^{-1}(U) \) is a \(\bar{g}s \)-clopen subset of \(X \). Also, \(x \in f^{-1}(U) \) and \(y \in X - f^{-1}(U) \). By Theorem 3.3, it follows that \(X \) is \(\bar{g}s \)-T_2.

Theorem 3.5. A topological space \((X, \tau) \) is \(\bar{g}s \)-connected if and only if every totally \(\bar{g}s \)-continuous function from a space \((X, \tau) \) into any \(T_0 \)-space \((Y, \sigma) \) is constant.

Proof. Suppose that \(X \) is not \(\bar{g}s \)-connected and every totally \(\bar{g}s \)-continuous function from \((X, \tau) \) to \((Y, \sigma) \) is constant. Since \((X, \tau) \) is not \(\bar{g}s \)-connected, there exists a proper non-empty \(\bar{g}s \)-clopen subset \(A \) of \(X \). Let \(Y = \{a, b\} \) and \(\tau = \{\emptyset, \{a\}, \{b\}, Y\} \) be a topology for \(Y \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function such that \(f(A) = \{a\} \) and \(f(Y - A) = \{b\} \). Then \(f \) is non-constant and totally \(\bar{g}s \)-continuous such that \(Y \) is \(T_0 \), which is a contradiction. Hence \(X \) must be \(\bar{g}s \)-connected.

Converse is similar.
Theorem 4.8. The following are equivalent for a function f: (briefly $c\tilde{g}s$-continuous)

Let $f: (X, \tau) \to (Y, \sigma)$ be a totally $\tilde{g}s$-continuous function and Y is a T_1-space. If A is a non-empty $\tilde{g}s$-connected subset of X, then $f(A)$ is a single point.

Definition 3.8. Let (X, τ) be a topological space. Then the set of all points y in X such that x and y cannot be separated by a $\tilde{g}s$-separation of X is said to be the quasi $\tilde{g}s$-component of X.

Theorem 3.7. Let $f: (X, \tau) \to (Y, \sigma)$ be a totally $\tilde{g}s$-continuous function from a topological space (X, τ) into a T_1-space Y. Then f is constant on each quasi $\tilde{g}s$-component of X.

Proof. Let x and y be two points of X that lie in the same quasi-$\tilde{g}s$-component of X. Assume that $f(x) = \alpha \neq \beta = f(y)$. Since Y is T_1, $\{\alpha\}$ is closed in Y and so $Y-\{\alpha\}$ is an open set. Since f is totally $\tilde{g}s$-continuous, therefore $f^{-1}(\{\alpha\})$ and $f^{-1}(Y-\{\alpha\})$ are disjoint $\tilde{g}s$-clopen subsets of X. Further, $x \in f^{-1}(\{\alpha\})$ and $y \in f^{-1}(Y-\{\alpha\})$, which is a contradiction in view of the fact that y belongs to the quasi $\tilde{g}s$-component of x and hence y must belong to every $\tilde{g}s$-open set containing x. □

4. CONTRA-\tilde{g}-SEMI-CONTINUOUS

We introduce the following definition

Definition 4.9. A function $f: (X, \tau) \to (Y, \sigma)$ is called contra-\tilde{g}-semi-continuous (briefly $c\tilde{g}s$-continuous) if $f^{-1}(V)$ is $\tilde{g}s$-open in (X, τ) for every closed set V in (Y, σ).

It is clear that every strongly $\tilde{g}s$-continuous function is $c\tilde{g}s$-continuous. But the reverse implication is not always true as shown in the following example.

Example 4.3. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is $c\tilde{g}s$-continuous but it is not strongly $\tilde{g}s$-continuous.

Definition 4.10. Let A be a subset of a topological space (X, τ). The set $\bigcap \{U \in \tau \mid A \subseteq U\}$ is called the Kernel of A [9] and is denoted by $\ker(A)$.

Lemma 4.1. [4] The following properties hold for subsets A, B of a space X:

1. $x \in \ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$;
2. $A \subseteq \ker(A)$ and $A = \ker(A)$ if A is open in X;
3. If $A \subseteq B$, then $\ker(A) \subseteq \ker(B)$.

Theorem 4.8. The following are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$: (briefly $\tilde{g}s$-continuous)

1. f is $c\tilde{g}s$-continuous;
2. For every closed subset F of Y, $f^{-1}(F) \in \tilde{g}sF(X, \tau)$;
3. For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \tilde{g}sF(X, \tau)$ such that $f(U) \subseteq F$;
4. $f(\tilde{g}scl(A)) \subseteq \ker(f(A))$ for every subset A of X;
5. $\tilde{g}scl(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$ for every subset B of Y.

Example 4.4. Let $X = Y = \{1, 2, 3\}$, $\tau = \{\emptyset, \{1\}, \{2, 3\}, X\}$ and $\sigma = \{\emptyset, \{1\}, Y\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is $c\tilde{g}s$-continuous.
Proof. The implications (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (2): Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in GS(X,x)$ such that $f(U_x) \subseteq F$. Therefore, we obtain

$$f^{-1}(F) = \bigcup \{U_x | x \in f^{-1}(F)\} \in GS(X,\tau) \ [15].$$

(2) \Rightarrow (4): Let A be any subset of X. Suppose that $y \notin ker(f(A))$. Then by Lemma 4.1 there exists $F \in C(X,y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $\bar{\text{gscl}}(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(\bar{\text{gscl}}(A)) \cap F = \emptyset$ and $y \notin f(\bar{\text{gscl}}(A))$. This implies that $f(\bar{\text{gscl}}(A)) \subseteq ker(f(A))$.

(4) \Rightarrow (5): Let B be any subset of Y. By (4) and Lemma 4.1, we have $f(\bar{\text{gscl}}(f^{-1}(B))) \subseteq ker(f(f^{-1}(B))) \subseteq ker(B)$ and $\bar{\text{gscl}}(f^{-1}(B)) \subseteq f^{-1}(ker(B))$.

(5) \Rightarrow (1): Let V be any open set of Y. Then by Lemma 4.1 we have $\bar{\text{gscl}}(f^{-1}(V)) \subseteq f^{-1}(ker(V))$. Since union of $\bar{\text{gscl}}$-open sets is $\bar{\text{gscl}}$-open [12], $f^{-1}(V)$ is $\bar{\text{gscl}}$-open and therefore f is $\bar{\text{gscl}}$-continuous.

Corollary 4.1. Every contra α-continuous (resp. contra-continuous) function is $\bar{\text{gs}}$-continuous.

Theorem 4.9. Every contra semi-continuous function is $\bar{\text{gs}}$-continuous.

Proof. The proof follows from the definitions.

Remark 4.3. Contra $\bar{\text{gs}}$-continuous need not be contra semi-continuous in general as shown in the following example.

Example 4.4. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \rightarrow (Y, \sigma)$ is $\bar{\text{gs}}$-continuous. However, f is not contra-semi continuous, since for the closed set $F = \{a\}, f^{-1}(F)$ is $\bar{\text{gs}}$-open but not semi-open in (X, τ).

Theorem 4.10. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent:

1. The function f is $\bar{\text{gs}}$-continuous;
2. For each point x in X and each open set V in (Y, σ) with $f(x) \in V$, there exists a $\bar{\text{gs}}$-open set U in (X, τ) such that $x \in U$, $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2): Let $f(x) \in V$. Since f is $\bar{\text{gs}}$-continuous, we have $x \in f^{-1}(V) \in GS(X,\tau)$. Let $U = f^{-1}(V)$. Then $x \in V$ and $f(U) \subseteq V$.

(2) \Rightarrow (1): Let V be an open set in (Y, σ) and let $x \in f^{-1}(V)$. Then, $f(x) \in V$ and thus there exists a $\bar{\text{gs}}$-open set U_x such that $x \in U_x$ and $f(U_x) \subseteq V$. Now, $x \in U_x \subseteq f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since union of $\bar{\text{gs}}$-open sets is $\bar{\text{gs}}$-open [12], $f^{-1}(V)$ is $\bar{\text{gs}}$-open in (X, τ) and therefore f is $\bar{\text{gs}}$-continuous.

Theorem 4.11. If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is $\bar{\text{gs}}$-continuous and Y is regular, then f is $\bar{\text{gs}}$-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing $f(x)$. Since Y is regular, there exists an open set W in Y containing $f(x)$ such that $cl(W) \subseteq V$. Since f is $\bar{\text{gs}}$-continuous, so by Theorem 4.8 there exists $U \in GS(X,x)$ such that $f(U) \subseteq cl(W)$. Then $f(U) \subseteq cl(W) \subseteq V$. Hence, by theorem 4.10 f is $\bar{\text{gs}}$-continuous.
Theorem 4.12. Let \(f : (X, \tau) \to (Y, \sigma) \) be a function and \(g : X \to X \times Y \) the graph function, given by \(g(x) = (x, f(x)) \) for every \(x \in X \). Then \(f \) is \(cgs \)-continuous if and only if \(g \) is \(cgs \)-continuous.

Proof. Let \(x \in X \) and let \(W \) be a closed subset of \(X \times Y \) containing \(g(x) \). Then \(W \cap \{(x) \times Y \} \) is closed in \(\{x \} \times Y \) containing \(g(x) \). Also \(\{x \} \times Y \) is homeomorphic to \(Y \). Hence \(\{y \in Y | (x, y) \in W \} \) is a closed subset of \(Y \). Since \(f \) is \(cgs \)-continuous, \(\bigcup \{f^{-1}(y) | (x, y) \in W \} \) is a \(gs \)-open subset of \(X \). Further, \(x \in \bigcup \{f^{-1}(y) | (x, y) \in W \} \). Hence \(g^{-1}(W) \) is \(gs \)-open. Then \(g \) is \(cgs \)-continuous.

Conversely, let \(F \) be a closed subset of \(Y \). Then \(X \times F \) is a closed subset of \(X \times Y \). Since \(g \) is \(cgs \)-continuous, \(g^{-1}(X \times F) \) is a \(gs \)-open subset of \(X \). Also, \(g^{-1}(X \times F) = f^{-1}(F) \). Hence \(f \) is \(cgs \)-continuous. \(\square \)

Theorem 4.13. If \(X \) is a topological space and for each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \) there exists a map \(f \) into a Urysohn topological space \(Y \) such that \(f(x_1) \neq f(x_2) \) and \(f \) is \(cgs \)-continuous at \(x_1 \) and \(x_2 \), then \(X \) is \(gs-T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then by hypothesis there is a Urysohn space \(Y \) and a function \(f : (X, \tau) \to (Y, \sigma) \), which satisfies the conditions of the theorem. Let \(y_i = f(x_i) \) for \(i = 1, 2 \). Then \(y_1 \neq y_2 \). Since \(Y \) is Urysohn, there exist open neighborhoods \(U_{y_1} \) and \(U_{y_2} \) of \(y_1 \) and \(y_2 \) respectively in \(Y \) such that \(\text{cl}(U_{y_1}) \cap \text{cl}(U_{y_2}) = \emptyset \). Since \(f \) is \(cgs \)-continuous at \(x_i \), there exists a \(gs \)-open neighborhoods \(V_{x_i} \) of \(x_i \) in \(X \) such that \(f(V_{x_1}) \subset \text{cl}(U_{y_1}) \) for \(i = 1, 2 \). Hence we get \(W = V_{x_1} \cap V_{x_2} = \emptyset \) because \(f(V_{x_1}) \cap f(V_{x_2}) = \emptyset \). Then \(X \) is \(gs-T_2 \). \(\square \)

Corollary 4.2. If \(f \) is a \(cgs \)-continuous injection of a topological space \(X \) into a Urysohn space \(Y \), then \(X \) is \(gs-T_2 \).

Proof. For each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \), \(f \) is a \(cgs \)-continuous function of \(X \) into Urysohn space \(Y \) such that \(f(x_1) \neq f(x_2) \) because \(f \) is injective. Hence by Theorem 4.13, \(X \) is \(gs-T_2 \). \(\square \)

Corollary 4.3. If \(f \) is a \(cgs \)-continuous injection of a topological space \(X \) into Ultra Hansdorff space \(Y \), then \(X \) is \(gs-T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then since \(f \) is injective and \(Y \) is Ultra Hansdorff \(f(x_1) \neq f(x_2) \) and there exist \(V_1, V_2 \subset \text{CO}(Y, \sigma) \) such that \(f(x_1) \in V_1, f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \). Then \(x_1 \in f^{-1}(V_1) \subset \bar{S}(X, \tau) \) for \(i = 1, 2 \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Thus, \(X \) is \(gs-T_2 \). \(\square \)

Lemma 4.2. The product of two \(gs \)-open sets is \(gs \)-open [11].

Proof. Let \(A \in \bar{GS}(X, \tau), B \in \bar{GS}(Y, \sigma) \) and \(W = A \times B \subset X \times Y \). Let \(F \subset W \) be a \#gs-closed set in \(X \times Y \), then there exist two \#gs-closed sets \(F_1 \subset A, F_2 \subset B \) and so, \(F_1 \subset \text{int}(A), F_2 \subset \text{int}(B) \). Hence \(F_1 \times F_2 \subset A \times B \) and \(F_1 \times F_2 \subset \text{int}(AB) = \text{int}(A \times B) \). Therefore, \(A \times B \in \bar{GS}(X \times Y, \tau \times \sigma) \). \(\square \)

Lemma 4.3. Let \(A \subset Y \subset X, Y \in \bar{GS}(X, \tau) \) and \(A \in \bar{GS}(Y, \sigma) \). Then \(A \in \bar{GS}(X, \tau) \) [15].
Theorem 4.14. Let $f_1: X_1 \to Y$ and $f_2 : X_2 \to Y$ be two functions where Y is a Urysohn space and f_1 and f_2 are $\tilde{g}s$-continuous. Then $\{(x_1, x_2) \mid f(x_1) = f(x_2)\}$ is $\tilde{g}s$-closed in the product space $X_1 \times X_2$.

Proof. Let A denote the set $\{(x_1, x_2) \mid f(x_1) = f(x_2)\}$. In order to show that A is $\tilde{g}s$-closed, we show that $(X_1 \times X_2) - A$ is $\tilde{g}s$-open. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since Y is Urysohn, there exist open V_1 and V_2 of $f_1(x_1)$ and $f_2(x_2)$ such that $\text{cl}(V_1) \cap \text{cl}(V_2) = \emptyset$. Since f_i $(i = 1, 2)$ is $\tilde{g}s$-continuous, $f_i^{-1}(\text{cl}(V_i))$ is a $\tilde{g}s$-open set containing x_i in X_i $(i = 1, 2)$. Hence by Lemma 4.2, $f_i^{-1}(\text{cl}(V_i)) \times f_j^{-1}(\text{cl}(V_j))$ is $\tilde{g}s$-open. Further $(x_1, x_2) \in f_1^{-1}(\text{cl}(V_1)) \times f_2^{-1}(\text{cl}(V_2)) \subset ((X_1 \times X_2) - A)$. It follows that $X_1 \times X_2 - A$ is $\tilde{g}s$-open. Thus, A is $\tilde{g}s$-closed in the product space $X_1 \times X_2$.

Corollary 4.4. If $f : (X, \tau) \to (Y, \sigma)$ is $\tilde{g}s$-continuous and Y is a Urysohn space, then $A = \{(x_1, x_2) \mid f(x_1) = f(x_2)\}$ is $\tilde{g}s$-closed in the product space $X_1 \times X_2$.

Theorem 4.15. If $f : (X, \tau) \to (Y, \sigma)$ is a contra-$\tilde{g}s$-continuous function and $g : (Y, \sigma) \to (Z, \eta)$ is a continuous function, then $(g \circ f) : (X, \tau) \to (Z, \eta)$ is $\tilde{g}s$-continuous.

Theorem 4.16. Let $f : (X, \tau) \to (Y, \sigma)$ be surjective \tilde{g}s-irresolute and $\tilde{g}s$-open and $g : (Y, \sigma) \to (Z, \eta)$ be any function. Then $(g \circ f) : (X, \tau) \to (Z, \eta)$ is $\tilde{g}s$-continuous if and only if g is $\tilde{g}s$-continuous.

Proof. The “if” part is easy to prove. To prove the “only if” part, let $(g \circ f) : (X, \tau) \to (Z, \eta)$ be $\tilde{g}s$-continuous. Let F be a closed subset of Z. Then $(g \circ f)^{-1}(F)$ is a $\tilde{g}s$-open subset of X. That is $f^{-1}(g^{-1}(F))$ is $\tilde{g}s$-open. Since f is $\tilde{g}s$-open, $f(f^{-1}(g^{-1}(F)))$ is a $\tilde{g}s$-open subset of Y. So $g^{-1}(F)$ is $\tilde{g}s$-open in Y. Hence g is $\tilde{g}s$-continuous.

Theorem 4.17. Let $\{X_i \mid i \in \Lambda\}$ be any family of topological spaces. If $f : X \to \Pi_{i \in \Lambda} X_i$ is a $\tilde{g}s$-continuous function. Then $\pi_i \circ f : X \to X_i$ is $\tilde{g}s$-continuous for each $i \in \Lambda$, where π_i is the projection of $\Pi_{i \in \Lambda} X_i$ onto X_i.

Definition 4.11. The graph $G(f)$ of a function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\tilde{g}s$-closed in $X \times Y$ if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in \tilde{GS}(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.4. The graph $f : (X, \tau) \to (Y, \sigma)$ is $\tilde{g}s$-closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in \tilde{GS}(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Proof. The proof follows from the definition.

Theorem 4.18. If $f : (X, \tau) \to (Y, \sigma) \tilde{g}$s-continuous and Y is Urysohn, then $G(f)$ is contra-$\tilde{g}s$-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V, y \in W$ and $\text{cl}(U) \cap \text{cl}(W) = \emptyset$. Since f is $\tilde{g}s$-continuous, there exists $U \in \tilde{GS}(X, x)$ such that $f(U) \subset \text{cl}(V)$. Therefore, we obtain $f(U) \cap \text{cl}(W) = \emptyset$. This shows that $G(f)$ is contra-$\tilde{g}s$-closed.
Theorem 4.19. A \tilde{g}-continuous image of a \tilde{g}-connected space is connected.

Proof. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a contra-\tilde{g}s-continuous function of a \tilde{g}s-connected space X onto a topological space Y. Let Y be disconnected. Let A and B form a disconnected of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is a contra-\tilde{g}s-continuous function $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty \tilde{g}s-open sets in X. Also $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence X is non \tilde{g}s-connected which is a contradiction. Therefore Y is connected. \hfill \square

Theorem 4.20. Let X be \tilde{g}s-connected and Y a T_1 space. If f is \tilde{g}s-continuous, then f is constant.

Proof. Since Y is T_1 space, $\wedge = \{f^{-1}(\{y\}) : y \in Y\}$ is a disjoint \tilde{g}s-open partition of X. If $|\wedge| \geq 2$, then X is the union of two non-empty \tilde{g}s-open sets. Since X is \tilde{g}s-connected, $|\wedge| = 1$. Hence, f is constant. \hfill \square

Definition 4.12. A topological space (X, τ) is said to be \tilde{g}s-normal if each pair of non-empty disjoint closed sets can be separated by disjoint \tilde{g}s-open sets.

Definition 4.13. [14] A topological space (X, τ) is said to be ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint \tilde{g}s-open sets.

Theorem 4.21. If $f : (X, \tau) \rightarrow (y, \sigma)$ is a $c\tilde{g}$s-continuous, closed injection and Y is ultra-normal, then X is \tilde{g}s-normal.

Proof. Let F_1 and F_2 be a disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is ultra normal $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 respectively. Hence $F_i \subset f^{-1}(V_i)$, $f^{-1}(V_i) \in GS(X, \tau)$ for $i = 1, 2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus, X is \tilde{g}s-normal. \hfill \square

References

[13] Rajesh, N. and Ekici, E., On \tilde{g}-locally semi-closed sets, \tilde{g}LSC sets and \tilde{g}LSC sets, (submitted)
On totally $\tilde{g}s$-continuity, strongly $\tilde{g}s$-continuity and contra $\tilde{g}s$-continuity

[15] Sundaram, P., Rajesh, N., Thivagar, M. L. and Duszynski, Z., \tilde{g}-semi-closed sets in topological spaces, (Submitted)

[16] Veera Kumar, M. K. R. S., Between g^*-closed sets and g-closed sets, Antarctica J. Math, Reprint

Department of Mathematics
Kongu Engineering College
Perundurai, Erode-638 052
Tamil Nadu, India
E-mail address: nraje@topology@yahoo.co.in

Department of Mathematics
Canakkale Onsekiz Mart University
Terzioglu Campus
17020 Canakkale, Turkey
E-mail address: eekici@comu.edu.tr