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On totally g̃s-continuity, strongly g̃s -continuity and
contra g̃s-continuity

NEELAMEGARAJAN RAJESH and ERDAL EKICI

ABSTRACT. In this paper, g̃s-closed sets and g̃s-open sets are used to define and investigate a new
class of functions. Relationships between this new class and other classes of functions are established.

1. INTRODUCTION

Jain [5], Levine [8] and Dontchev [1] introduced totally continuous functions,
strongly continuous functions and contra continuous functions, respectively. Lev-
eine [6] also introduced and studied the concepts of generalized closed sets. The
notion has been studied extensively in recent years by many topologists. As gen-
eralization of closed sets, g̃s-closed sets were introduced and studied by Sun-
daram et al. in [15]. This notion was further studied by Rajesh and Ekici [12, 13].

In this paper, we will continue the study of some related functions by using
g̃s-open and g̃s-closed sets. We introduce and characterize the concepts of totally
g̃s-continuous, strongly g̃s-continuous and contra g̃s-continuous functions.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) (or X and Y ) represent topological
spaces on which no separation axioms are assumed unless otherwise mentioned.
For a subset A of a space (X, τ), cl(A), int(A) and Ac denote the closure of A, the
interior of A and the complement of A in X, respectively. We set C(X, x) = {V ∈
C(X) | x ∈ V} for x ∈ X, where C(X) denotes the collection of all closed subsets of
(X, τ). The set of all clopen subsets of (X, τ) is denoted by CO(X, τ).

We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called:
(1) semi-open [7] if A⊆cl(int(A)).
(2) α-open [10] if A⊆int(cl(int(A))).

The complements of the above mentioned sets are called semi-closed and α-
closed, respectively. The intersection of all semi-closed sets of X containing a
subset A is called the semi-closure of A and is denoted by scl(A).

Definition 2.2. A subset A of a space (X, τ) is called:
(1) ĝ-closed [17] if cl(A)⊆U whenever A⊆U and U is semi-open in (X, τ). The

complement of a ĝ-closed set is called ĝ-open.
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(2) ∗g-closed set [16] if cl(A)⊆U whenever A⊆U and U is ĝ-open in (X, τ).
The complement of a ∗g-closed set is called ∗g-open.

(3) #g-semi-closed (briefly #gs-closed) set [18] if scl(A)⊆U whenever A⊆U
and U is ∗g-open in (X, τ). The complement of a #gs-closed set is called
#gs-open.

(4) g̃-semi-closed (briefly g̃s-closed) set[15] if scl(A)⊆U whenever A⊆U and
U is #gs-open in (X, τ). The complement of a g̃s-closed set is called g̃s-
open. The class of all g̃s-open sets of (X, τ) is denoted by G̃S(X, τ).

(5) g̃s-clopen if it is both g̃s-open and g̃s-closed.

We set G̃(X, x) = {V ∈ G̃S(X, τ) | x ∈ V} for x ∈ X.

Remark 2.1. From the Definition 2.1 and 2.2, we have the following diagram,

closed → α-closed → semi-closed
↙↘ � � ↙↘

∗g-closed — ĝ-closed — g̃s-closed — #gs-closed

where A→B (resp. A � B or A — B) means A implies B (resp. A and B are
independent).

Definition 2.3. A function f: (X, τ) → (Y, σ) is called:
(1) totally continuous [5] of the inverse image of every open subset of (Y, σ)

is a clopen subset of (X, τ);
(2) strongly continuous [8] if the inverse image of every subset Y is a clopen

subset of (X, τ);
(3) contra-continuous [1] (resp. contra-semi-continuous [2], contra-α-conti-

nuous [3]) if the inverse image of every open subset of Y is a closed (resp.
semi-closed, α-closed) subset of (X, τ);

(4) g̃s-continuous [12] if the inverse image of every open subset of (Y, σ) is
g̃s-open in (X, τ).

3. TWO CLASSES OF FUNCTIONS VIA g̃s-CLOPEN SETS

We introduce the following definition:

Definition 3.4. A function f: (X, τ) → (Y, σ) is said to be totally g̃-semi-continuous
(briefly totally g̃s-continuous) if the inverse image of every open subset of (Y, σ)
is a g̃s-clopen (i.e. g̃s-open and g̃-closed) subset of (X, τ).

It is evident that every totally continuous function is totally g̃s-continuous. But
the converse need not be true as shown in the following example.

Example 3.1. Let X = {a, b, c}, Y = {p, q}, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅,
{p}, Y}. Define a function f: (X, τ) → (Y, σ) such that f(a) = p, f(b) = f(c) = q. Then
clearly f is totally g̃s-continuous, but not totally continuous.

Definition 3.5. A function f: (X, τ) → (Y, σ) is said to be strongly g̃-semi-conti-
nuous (briefly strongly g̃s-continuous) if the inverse image of every subset of
(Y, σ) is a g̃s-clopen subset of (X, τ).

It is clear that every strongly g̃s-continuous function is totally g̃s-continuous.
But the reverse implication is not always true as shown in the following example.
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Example 3.2. Let X = {a, b, c} = Y, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅, {a},
Y}. Then the identity function f:(X, τ) → (Y, σ) is totally g̃s-continuous but not
strongly g̃s-continuous.

Theorem 3.1. Every totally g̃s-continuous function into a T1-space is strongly g̃s-
continuous.

Proof. In a T1-space, singletons are closed. Hence f−1(A) is g̃s-clopen in (X, τ) for
every subset A of Y . �

Remark 3.2. It is clear from the Theorem 3.1 that the classes of strongly g̃s-
continuous functions and totally g̃s-continuous function coincide when the range
is a T1-space.

Recall that a space (X, τ) is said to be g̃s-connected [12] if X cannot be ex-
pressed as the union of two non-empty disjoint g̃s-open sets.

Theorem 3.2. If f is a totally g̃s-continuous function from a g̃s-connected space X onto
any space Y, then Y is an indiscrete space.

Proof. Suppose that Y is not indiscrete. Let A be a proper non-empty open subset
of Y. Then f−1(A) is a proper non-empty g̃s-clopen subset of (X, τ), which is a
contradiction to the fact that X is g̃s-connected. �

Definition 3.6. Let A be a subset of X. The intersection of all g̃s-closed sets con-
taining A is called the g̃s-closure of A [13] and is denoted by g̃scl(A).

Definition 3.7. A space X is said to be g̃s-T2 [11] if for any pair of distinct points
x, y of X, there exist disjoint g̃s-open sets U and V such that x ∈ U and y ∈ V.

Theorem 3.3. [11] A space X is g̃s-T2 if and only if for any pair of distinct points x, y
of X there exist g̃s-open sets U and V such that x ∈ U, and y ∈ V and g̃scl(U) ∩ g̃scl(V)
= ∅.

Theorem 3.4. If f: (X, τ) → (Y, σ) be a totally g̃s-continuous injection and Y is T0,
then X is g̃s-T2.

Proof. Let x and y be any pair of distinct points of X. Then f(x)�=f(y). Since Y is T0,
there exists an open set U containing say, f(x) but not f(y). Then x ∈ f−1(U) and y
/∈ f−1(U). Since f is totally g̃s-continuous, f−1(U) is a g̃s-clopen subset of X. Also,
x ∈ f−1(U) and y ∈ X – f−1(U). By Theorem 3.3, it follows that X is g̃s-T2. �

Theorem 3.5. A topological space (X, τ) is g̃s-connected if and only if every totally
g̃s-continuous function from a space (X, τ) into any T0-space (Y, σ) is constant.

Proof. Suppose that X is not g̃s-connected and every totally g̃s-continuous func-
tion from (X, τ) to (Y, σ) is constant. Since (X, τ) is not g̃s-connected, there exists
a proper non-empty g̃s-clopen subset A of X. Let Y= {a, b} and τ = {∅, {a}, {b},
Y} be a topology for Y. Let f: (X, τ) → (Y, σ) be a function such that f(A) = {a}
and f(Y–A) = {b}. Then f is non-constant and totally g̃s-continuous such that Y is
T0, which is a contradiction. Hence X must be g̃s-connected.
Converse is similar. �
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Theorem 3.6. Let f: (X, τ) → (Y, σ) be a totally g̃s-continuous function and Y is a
T1-space. If A is a non-empty g̃s-connected subset of X, then f(A) is a single point.

Definition 3.8. Let (X, τ) be a topological space. Then the set of all points y in
X such that x and y cannot be separated by a g̃s-separation of X is said to be the
quasi g̃s-component of X .

Theorem 3.7. Let f: (X, τ) → (Y, σ) be a totally g̃s-continuous function from a topo-
logical space (X, τ) into a T1-space Y. Then f is constant on each quasi g̃s-component of
X.

Proof. Let x and y be two points of X that lie in the same quasi-g̃s-component
of X . Assume that f(x) = α �= β = f(y). Since Y is T1, {α} is closed in Y
and so Y–{α} is an open set. Since f is totally g̃s-continuous, therefore f−1({α})
and f−1(Y–{α}) are disjoint g̃s-clopen subsets of X . Further, x ∈ f−1({α}) and
y ∈ f−1(Y–{α}), which is a contradiction in view of the fact that y belongs to the
quasi g̃s-component of x and hence y must belong to every g̃s-open set containing
x. �

4. CONTRA-g̃-SEMI-CONTINUOUS

We introduce the following definition

Definition 4.9. A function f: (X, τ) → (Y, σ) is called contra-g̃-semi-continuous
(briefly cg̃s-continuous) if f−1(V) is g̃s-open in (X, τ) for every closed set V in
(Y, σ).

It is clear that every strongly g̃s-continuous function is cg̃s-continuous. But the
reverse implication is not always true as shown in the following example.

Example 4.3. Let X = Y = {a, b, c}, τ = {∅, {a}, {b, c}, X} and σ = {∅, {a}, Y}. Then
the identity funcion f: (X, τ) → (Y, σ) is cg̃s-continuous but it is not strongly g̃s-
continuous.

Definition 4.10. Let A be a subset of a topological space (X, τ). The set
⋂ {U ∈ τ

|A ⊂ U} is called the Kernal of A [9] and is denoted by ker(A).

Lemma 4.1. [4] The following properties hold for subsets A, B of a space X :

(1) x ∈ ker(A) if and only if A ∩ F �= ∅ for any F ∈ C(X, x);
(2) A ⊂ ker(A) and A = ker(A) if A is open in X ;
(3) If A ⊂ B, then ker(A) ⊂ ker(B).

Theorem 4.8. The following are equivalent for a function f: (X, τ) → (Y, σ):

(1) f is cg̃s-continuous;
(2) for every closed subset F of Y , f−1(F ) ∈ G̃S(X, τ);
(3) for each x ∈ X and each F ∈ C(Y, f(x)), there exists U ∈ G̃S(X, τ) such that

f(U) ⊂ F ;
(4) f(g̃scl(A)) ⊂ ker(f(A)) for every subset A of X ;
(5) g̃scl(f−1(B)) ⊂ f−1(ker(B)) for every subset B of Y .
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Proof. The implications (1)→(2) and (2)→(3) are obvious.

(3)→(2): Let F be any closed set of Y and x ∈ f−1(F ). Then f(x) ∈ F and
there exists Ux ∈ G̃S(X, x) such that f(Ux) ⊂ F . Therefore, we obtain f−1(F ) =⋃{Ux|x ∈ f−1(F )} ∈ G̃S(X, τ) [15].

(2)→(4): Let A be any subset of X . Suppose that y /∈ ker(f(A)). Then by Lemma
4.1 there exists F ∈ C(X, y) such that f(A)∩F = ∅. Thus, we have A∩f−1(F ) =
∅ and g̃scl(A) ∩ f−1(F ) = ∅. Therefore, we obtain f(g̃scl(A)) ∩ F = ∅ and
y /∈ f(g̃scl(A)). This implies that f(g̃scl(A)) ⊂ ker(f(A)).

(4)→(5): Let B be any subset of Y . By (4) and Lemma 4.1, we have f(g̃scl(f −1(B)))
⊂ ker(f(f−1(B))) ⊂ ker(B) and g̃scl(f−1(B)) ⊂ f−1(ker(B)).

(5)→(1): Let V be any open set of Y . Then by Lemma 4.1 we have g̃scl(f −1(V )) ⊂
f−1(ker(V )) = f−1(V ) and g̃scl(f−1(V )) = f−1(V ). This show that f−1(V ) is
g̃s-closed in (X, τ). �
Theorem 4.9. Every contra semi-continuous function is cg̃s-continuous.

Proof. The proof follows from the definitions. �
Remark 4.3. Contra g̃s-continuous need not be contra semi-continuous in general
as shown in the following example.

Example 4.4. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {b, c}, Y }.
Then the identity function f : (X, τ) → (Y, σ) is cg̃s-continuous. However, f is
not contra-semi continuous, since for the closed set F = {a}, f−1(F) is g̃s-open
but not semi-open in (X, τ).

Corollary 4.1. Every contra α-continuous (resp. contra-continuous) function is cg̃s-
continuous.

Theorem 4.10. Let f : (X, τ) → (Y, σ) be a function. Then the following are equivalent:
(1) The function f is g̃s-continuous;
(2) For each point x in X and each open set V in (Y, σ) with f(x) ∈ V , there exists

a g̃s-open set U in (X, τ) such that x ∈ U , f(U) ⊂ V .

Proof. (1)→(2): Let f(x) ∈ V . Since f is g̃s-continuous, we have x ∈ f−1(V ) ∈
G̃S(X, τ). Let U = f−1(V ). Then x ∈ V and f(U) ⊂ V .

(2)→(1): Let V be an open set in (Y, σ) and let x ∈ f−1(V ). Then, f(x) ∈ V
and thus there exists a g̃s-open set Ux such that x ∈ Ux and f(Ux) ⊂ V . Now,
x ∈ Ux ⊂ f−1(V ) and f−1(V ) = ∪x∈f−1(V )Ux. Since union of g̃s-open sets is
g̃s-open [12], f−1(V ) is g̃s-open in (X, τ) and therefore f is g̃s-continuous. �
Theorem 4.11. If a function f : (X, τ) → (Y, σ) is cg̃s-continuous and Y is regular,
then f is g̃s-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y containing f(x).
Since Y is regular, there exists an open set W in Y containing f(x) such that
cl(W ) ⊂ V . Since f is cg̃s-continuous, so by Theorem 4.8 there exists U ∈
G̃S(X, x) such that f(U) ⊂ cl(W ). Then f(U) ⊂cl(W ) ⊂ V . Hence, by theorem
4.10 f is g̃s-continuous. �
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Theorem 4.12. Let f : (X, τ) → (Y, σ) be a function and g : X → X × Y the graph
function, given by g(x) = (x, f(x)) for every x ∈ X . Then f is cg̃s-continuous if and
only if g is cg̃s-continuous.

Proof. Let x ∈ X and let W be a closed subset of X × Y containing g(x). Then
W ∩({x}×Y ) is closed in {x}×Y containing g(x). Also {x}×Y is homeomorphic
to Y . Hence {y ∈Y|(x, y) ∈ W} is a closed subset of Y . Since f is cg̃s -continuous,⋃{f−1(y)|(x, y) ∈ W} is a g̃s-open subset of X . Further, x ∈ ⋃{f−1(y)|(x, y) ∈
W} ⊂ g−1(W ). Hence g−1(W ) is g̃s-open. Then g is cg̃s-continuous.
Conversely, let F be a closed subset of Y . Then X × F is a closed subset of
X × Y . Since g is cg̃s-continuous, g−1(X × F ) is a g̃s-open subset of X . Also,
g−1(X × F ) = f−1(F ). Hence f is cg̃s-continuous. �

Theorem 4.13. If X is a topological space and for each pair of distinct points x1 and x2

in X there exists a map f into a Urysohn topological space Y such that f(x1) �= f(x2)
and f is cg̃s-continuous at x1 and x2, then X is g̃s − T2.

Proof. Let x1 and x2 be any distinct points in X . Then by hypothesis there is a
Urysohn space Y and a function f : (X, τ) → (Y, σ), which satisfies the conditions
of the theorem. Let yi = f(xi) for i = 1, 2. Then y1 �= y2. Since Y is Urysohn,
there exist open neighborhoods Uy1 and Uy2 of y1 and y2 respectively in Y such
that cl(Uy1)∩ cl(Uy2) = ∅. Since f is cg̃s-continuous at xi, there exists a g̃s-open
neighborhoods Wxi of xi in X such that f(Wxi) ⊂ cl(Uyi) for i = 1, 2. Hence we
get Wx1 ∩ Wx2 = ∅ because cl(Uy1)∩ cl(Uy2) = ∅. Then X is g̃s-T2. �

Corollary 4.2. If f is a cg̃s-continuous injection of a topological space X into a Urysohn
space Y , then X is g̃s-T2.

Proof. For each pair of distinct points x1 and x2 in X , f is a cg̃s-continuous func-
tion of X into Urysohn space Y such that f(x1) �= f(x2) because f is injective.
Hence by Theorem 4.13, X is g̃s-T2. �

Corollary 4.3. If f is a cg̃s-continuous injection of a topological space X into Ultra
Hansdorff space Y, then X is g̃s-T2.

Proof. Let x1 and x2 be any distinct points in X. Then since f is injective and Y
is Ultra Hansdorff f(x1) �= f(x2) and there exist V1, V2 ∈ CO(Y, σ) such that f(x1)
∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = ∅. Then x1 ∈ f−1(V) ∈ G̃S(X, τ) for i = 1, 2 and
f−1(V1) ∩ f−1(V2) = ∅. Thus, X is g̃s-T2. �

Lemma 4.2. The product of two g̃s-open sets is g̃s-open [11].

Proof. Let A ∈ G̃SO(X, τ), B ∈ G̃SO(Y, σ) and W = A×B ⊂ X × Y . Let F ⊂ W
be a #gs-closed set in X ×Y , then there exist two #gs-closed sets F1 ⊂ A, F2 ⊂ B
and so, F1 ⊂sint(A), F2 ⊂sint(B). Hence F1 × F2 ⊂A×B and F1 × F2 ⊂sint(B) =
sint(A × B). Therefore, A × B ∈ G̃SO(X × Y , τ × σ). �

Lemma 4.3. Let A ⊂ Y ⊂ X , Y ∈ G̃S(X, τ) and A ∈ G̃S(Y, σ). Then A ∈ G̃S(X, τ)
[15].
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Theorem 4.14. Let f1: X1 → Y and f2 : X2 → Y be two functions where Y is a
Urysohn space and f1 and f2 are cg̃s-continuous. Then {(x1, x2) | f(x1) = f(x2)} is
g̃s-closed in the product space X1 × X2.

Proof. Let A denote the set {(x1, x2) | f(x1) = f(x2)}. In order to show that A is
g̃s-closed, we show that (X1 × X2) – A is g̃s-open. Let (x1, x2) /∈ A. Then f1(x1)
�= f2(x2). Since Y is Urysohn, there exist open V1 and V2 of f1(x1) and f2(x2)
such that cl(V1) ∩ cl(V2) = ∅. Since fi (i = 1, 2) is cg̃s-continuous, f−1

i (cl(Vi)) is
a g̃s-open set containing xi in Xi (i = 1, 2). Hence by Lemma 4.2, f−1

1 (cl(V1)) ×
f−1
2 (cl(V2)) is g̃s-open. Further (x1, x2) ∈ f−1

1 (cl(V1)) × f−1
2 (cl(V2)) ⊂ ((X1 × X2)

– A). It follows that X1 × X2 – A is g̃s-open. Thus, A is g̃s-closed in the product
space X1 × X2. �

Corollary 4.4. If f : (X, τ) → (Y, σ) is cg̃s-continuous and Y is a Urysohn space, then
A = {(x1, x2)|f(x1) = f(x2)} is g̃s-closed in the product space X1 × X2.

Theorem 4.15. If f : (Xτ) → (Y, σ) is a contra-g̃s-continuous function and g :
(Y, σ) → (Z, η) is a continuous function, then (g ◦ f) : (X, τ) → (Z, η) is cg̃s-
continuous.

Theorem 4.16. Let f : (X, τ) → (Y, σ) be surjective g̃s-irresolute and g̃s-open and
g : (Y, σ) → (Z, η) be any function. Then (g ◦ f) : (X, τ) → (Z, η) is cg̃s-continuous
if and only if g is cg̃s-continuous.

Proof. The “if ”part is easy to prove. To prove the “only if ”part, let (g ◦ f) :
(X, τ) → (Z, η) be cg̃s-continuous. Let F be a closed subset of Z . Then (g ◦
f)−1(F ) is a g̃s-open subset of X . That is f−1(g−1(F )) is g̃s-open. Since f is g̃s-
open, f(f−1(g−1(F ))) is a g̃s-open subset of Y . So g−1(F ) is g̃s-open in Y . Hence
g is cg̃s-continuous. �

Theorem 4.17. Let {Xi| i ∈ ∧} be any family of topological spaces. If f : X → ΠXi

is a cg̃s-continuous function. Then πi ◦ f : X → Xi is cg̃s-continuous for each i ∈ ∧,
where πi is the projection of ΠXi onto Xi.

Definition 4.11. The graph G(f) of a function f : (X, τ) → (Y, σ) is said to be
cg̃s-closed in X × Y if for each (x, y) ∈ (X × Y )−G(f), there exist U ∈ G̃S(X, x)
and V ∈ C(Y, y) such that (U × V ) ∩ G(f) = ∅.

Lemma 4.4. The graph f : (X, τ) → (Y, σ) is cg̃s-closed in X × Y if and only if for
each (x, y) ∈ (X × Y ) − G(f), there exists U ∈ G̃S(X, x) and V ∈ C(Y, y) such that
f(U) ∩ V = ∅.

Proof. The proof follows from the definition. �

Theorem 4.18. If f : (X, τ) → (Y, σ) cg̃s -continuous and Y is Urysohn, then G(f) is
contra-g̃s-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y �= f(x) and there exist open sets V ,
W such that f(x) ∈ V , y ∈ W and cl(U)∩ cl(W ) = ∅. Since f is cg̃s-continuous,
there exists U ∈ G̃S(X, x) such that f(U) ⊂ cl(V ). Therefore, we obtain f(U)∩
cl(W ) = ∅. This shows that G(f) is contra-g̃s-closed. �
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Theorem 4.19. A cg̃s-continuous image of a g̃s-connected space is connected.

Proof. Let f : (X, τ) → (Y, σ) be a contra-g̃s-continuous function of a g̃s-connected
space X onto a topological space Y . Let Y be disconnected. Let A and B form
a disconnected of Y . Then A and B are clopen and Y = A ∪ B where A ∩ B =
∅. Since f is a contra-g̃s-continuous function X = f−1(Y ) = f−1(A ∪ B) =
f−1(A) ∪ f−1(B) where f−1(A) and f−1(B) are non-empty g̃s-open sets in X .
Also f−1(A) ∩ f−1(B) = ∅. Hence X is non g̃s-connected which is a contradic-
tion. Therefore Y is connected. �
Theorem 4.20. Let X be g̃s-connected and Y a T1 space. If f is cg̃s-continuous, then f
is constant.

Proof. Since Y is T1 space, ∧ = {f−1({y}) : y ∈ Y } is a disjoint g̃s-open partition
of X . If | ∧ | ≥ 2, then X is the union of two non-empty g̃s-open sets. Since X is
g̃s-connected, | ∧ | = 1. Hence, f is constant. �
Definition 4.12. A topological space (X, τ) is said to be g̃s-normal if each pair of
non-empty disjoint closed sets can be separated by disjoint g̃s-open sets.

Definition 4.13. [14] A topological space (X, τ) is said to be ultra normal if each
pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 4.21. If f : (X, τ) → (y, σ) is a cg̃s-continuous, closed injection and Y is
ultra-normal, then X is g̃s-normal.

Proof. Let F1 and F2 be a disjoint closed subsets of X . Since f is closed and
injective, f(F1) and f(F2) are disjoint closed subsets of Y . Since Y is ultra nor-
mal f(F1) and f(F2) are separated by disjoint clopen sets V1 and V2 respectively.
Hence Fi ⊂ f−1(Vi), f−1(Vi) ∈ G̃S(X, τ) for i = 1, 2 and f−1(V1) ∩ f−1(V2) = ∅.
Thus, X is g̃s-normal. �
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