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Controlling chaos of a dynamical system with
feedback control

GHEORGHE TIGAN

ABSTRACT. The present work is devoted to control chaotic behavior of a three–dimensional dif-
ferential system introduced in [8]. We stabilize the chaotic dynamics of the system to the unstable
equilibrium points. The Lyapunov function method is employed. Using a linear controller, the sys-
tem is controlled to a stable state. Numerical illustrations are presented to show the control process.

1. INTRODUCTION

Controlling chaos is a topic in nonlinear dynamics which attracted a great deal
of work in the last twenty years. Even though there are more definitions of the
chaos [4], a distinctive characteristic of the chaotic behavior of a dynamical sys-
tem is its sensitive dependence on the initial conditions. Generally, chaos is be-
lieved to be harmful because in many cases it can lead to disasters. Chaotical
behavior is observed in practical applications of many fields, from engineering
to biology and economics. Chaos can be suppressed using linear or nonlinear
feedback methods [1], [2], [3], [5], [6].

The present work is organized as follows. In Section 1 we record some ba-
sic details of the system under study. Section 2 describes the methods to control
chaos to the unstable fixed points, while Section 3 presents a linear feedback con-
trol of the system. Numerical illustrations are presented in all the Sections.

2. DESCRIPTION OF THE SYSTEM

The three-dimensional differential system which will be controlled in order to
suppress chaos is [8]:

(2.1)
ẋ = a(y − x)
ẏ = (c− a)x− axz
ż = xy − bz

where a, b, c ∈ R, and a 6= 0. Compared with the Lü system introduced in [11],
in the nonlinear terms, system (2.1) allows a larger possibility in choosing the
parameters and consequently a more complex dynamics. The orbit presented in
Fig.1 is a chaotic orbit. The Lyapunov exponents are λ1 = 0.37, λ2 = 0.00 and
λ3 = −3.07.
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FIGURE 1. Chaotic orbit of the system (2.1), corresponding to the
parameters (a, b, c) = (2.1, 0.6, 30) and initial values
(0.1,−0.3, 0.2).

Some basic properties of the system under study are presented in the following.
More details can be found in [7],[8],[9]. Denote by X the associated vector field,
and by Φt its flow. The divergence of the vector field is div(X) = −a− b. Hence,
for a, b such that a + b > 0, the system is dissipative, with an exponential contrac-
tion rate. That is, a volume element V0 is contracted to Vt = Φt(V0) = V0e

(−a−b)t.
This means that each volume shrinks to zero at an exponential rate, as t tends to
infinity. Therefore, all system orbits are ultimately confined to a specific limit set
of zero volume, and the system asymptotic motion settles onto an attractor [10].
The system (2.1) is conservative if and only if a + b = 0.

If
b

a
(c− a) > 0 the system (2.1) has three isolated equilibria:

O(0, 0, 0),E1
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b
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,

E2

(
−

√
b

a
(c− a),−

√
b
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(c− a),
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and for b 6= 0,
b

a
(c− a) ≤ 0 it has only one isolated equilibrium O(0, 0, 0).

Proposition 2.1. For b 6= 0 the following statements are true:
a) If (a > 0, b > 0, c ≤ a), then O(0, 0, 0) is asymptotically stable ,
b) If (b < 0) or (a < 0) or (a > 0, c > a), then O (0, 0, 0) is unstable.
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Proposition 2.2. The equilibrium point E1

(√
b

a
(c− a),

√
b

a
(c− a),
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)
is asymp-

totically stable if and only if
(
a + b > 0, ab(c− a) > 0, b(2a2 + bc− ac) > 0

)
.

Proposition 2.3. The condition
b

a
(c − a) > 0 along with that which ensures that the

characteristic equation has roots with zero real parts is equivalent to (a, b, c) ∈ Ω, where
Ω =

{
(a, b, c) ∈ R3 | b > 0, a > b, 2a2 + bc = ac

}
. In this case the eigenvalues are

λ1 =
2a2 − 2ac

c
, λ2,3 = ±i

√
ac− 2a2.

The system (2.1) displays a Hopf bifurcation at the point E1.

Proposition 2.4. If b = bs :=
ac− 2a2

c
, the characteristic equation has a negative

solution λ1 =
2a2 − 2ac

c
< 0, as well as a pair of purely imaginary roots λ2,3 =

±i
√

ac− 2a2 such that Re(λ′b (bs)) 6= 0. Therefore, the system (2.1) displays a Hopf
bifurcation at the point E1.

Because the system is invariant under the transformation (x, y, z)→(−x,−y, z),
one only needs to consider the stability type and bifurcation process of the equi-
librium point E1.

Proposition 2.5. If c = 3a and (a, b, c) ∈ Ω the equilibrium point E1
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2a
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,
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, 2

)

of the system (2.1) is unstable and the Hopf bifurcation is subcritical for any a > 0.

In the following we consider that the parameters of the system fulfill the con-
ditions: a, b, c > 0, c > a and 2a2 + bc− ac < 0. By the above Propositions 2.1 and
2.2 we get that the equilibrium points O, E1 and E2 are unstable.

3. CONTROLLING CHAOS TO UNSTABLE FIXED POINTS

We introduce the conventional feedback linear control to drag the chaotic tra-
jectory (x(t), y(t), z(t)) to a desired unstable equilibrium point (x0, y0, z0). As-
sume that controlled system (2.1) is given by:

(3.2)
ẋ = a(y − x)− u1

ẏ = (c− a)x− axz − u2

ż = xy − bz − u3

where u1, u2 and u3 are external laws of input. Since for applications is more
desirable a simple control, consider here:
u1 = k1(x−x0), u2 = k2(y−y0) and u3 = k3(z−z0). Therefore, system (3.2) leads
to:

(3.3)
ẋ = a(y − x)− k1(x− x0)
ẏ = (c− a)x− axz − k2(y − y0)
ẋ = xy − bz − k3(z − z0).
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The controlled system (3.3) has one equilibrium point (x0, y0, z0). Linearizing
(3.3) about this equilibrium point, one get:

(3.4)
Ẋ = −(k1 + a)X + aY

Ẏ = (c− a− az0)X − k2Y − ax0Z

Ż = Xy0 + x0Y − (b + k3)Z.

Consider now the first unstable point (x0, y0, z0) = (0, 0, 0). Then system (3.4)
leads to:

(3.5)
Ẋ = −(k1 + a)X + aY

Ẏ = (c− a)X − k2Y

Ż = −(b + k3)Z.

In order to prove the asymptotic stability of the solution (0, 0, 0) for (3.5), we use
the Lyapunov function method. Define the Lyapunov function for (3.5) by:

(3.6) V (X, Y, Z) =

1
a
X2 +

1
c− a

Y 2 + Z2

2
.

The function V satisfies:
i) V (0, 0, 0) = 0
ii) V (X,Y, Z) > 0 for X, Y, Z in the neighborhood of the origin, therefore V (X,Y, Z)
is positive definite. In addition, we have that the time orbital derivative of the
function V is:

dV

dt
=

1
a
X (−(k1+a)X+aY )+

1
c−a

Y ((c−a)X−k2Y )+(−(b+k3)Z) Z =

− 1
a
X2k1 + 2XY − 1

c− a
Y 2k2 − Z2b− Z2k3 −X2 =

−
(√
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X −

√
k2
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Y

)2

−X2 − Z2 (b + k3)

Therefore the derivative
dV

dt
< 0 whenever,

(3.7) k1k2 = a (c− a) and b + k3 > 0,

i.e
dV

dt
is negative definite under condition (3.7). Consequently, we have the

theorem:

Theorem 3.1. If the feedbacks k1, k2, k3 satisfy k1k2 = a (c− a) and b + k3 > 0 then
the equilibrium solution (0, 0, 0) of the controlled system (3.3) is asymptotically stable.

For the second unstable point E1

(√
b

a
(c− a),

√
b

a
(c− a),

c− a

a

)
, system (3.4)

leads to:
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(3.8)

Ẋ = −(k1 + a)X + aY

Ẏ = −k2Y −
√

ab(c− a)Z

Ż = X

√
b

a
(c− a) + Y

√
b

a
(c− a)− (b + k3)Z.

We chose the Lyapunov function for the system (3.8) given by:

(3.9) V (X, Y, Z) =

2
a
X2 +

2
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Y 2 + Z2

2
.

The function V satisfies:
i) V (0, 0, 0) = 0
ii) V (X,Y, Z)>0 for X, Y, Z in the neighborhood of the origin, therefore V (X,Y, Z)
is positive definite. In addition, we have that the time orbital derivative of the
function V is:

dV

dt
= −

(√
k1

a
X−

√
k2

c− a
Y

)2

−
(√

k1

a
X−Z

√
b

)2

−
(√

k2

c− a
Y +Z

√
k3

)2

−2X2.

Therefore the derivative
dV

dt
< 0 whenever,

(3.10) k1 =
1
4

(c− a) , k2 = 4a, k3 =
1
16

b
(−3a + c)2

a2

i.e
dV

dt
is negative definite under condition (3.10). Therefore we get the second

theorem:

Theorem 3.2. If the feedbacks k1, k2, k3 satisfy k1 =
1
4

(c− a), k2 = 4a and k3 =

1
16

b
(−3a + c)2

a2
, then the equilibrium solution E1

(√
b

a
(c− a),

√
b

a
(c− a),

c− a

a

)
of

the controlled system (3.3) is asymptotically stable.

4. LINEAR FEEDBACK CONTROL

Consider a simple controller u1(t) = −kx. Adding it to the second equation of
the system (2.1), it leads to:

(4.11)
ẋ = a(y − x)
ẏ = (c− a)x− axz − kx
ż = xy − bz

The first equilibrium point of the controlled system (4.11) is the origin O(0, 0, 0).
The Jacobian matrix associated to this system is:

(4.12)




−a a 0
c− a− k 0 0

0 0 −b
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FIGURE 2. The time series x(t) (left), y(t) (right) and z(t) (bel-
low) of the uncontrolled system (2.1), corresponding to the pa-
rameters (a, b, c) = (2.1, 0.6, 30) and initial values (0.1,−0.3, 0.2).
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FIGURE 3. The time series x(t) (left), y(t) (right) and z(t) (bellow)
of the controlled system (3.3) to the first unstable point O(0, 0, 0),
corresponding to the parameters (a, b, c) = (2.1, 0.6, 30), the ini-
tial values (0.1,−0.3, 0.2) and k1 = 1, k2 = a(c− a), k3 = 0.
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FIGURE 4. The time series x(t) (left), y(t) (right) and z(t) (bel-
low) of the controlled system (3.3) to the second unstable point
E1, corresponding to the parameters (a, b, c) = (2.1, 0.6, 30), the

initial values (0.1,−0.3, 0.2) and k1 =
1
4

(c− a), k2 = 4a, k3 =

1
16

b
(−3a + c)2

a2
.

with the eigenvalues: λ1,2 = −1
2

a± 1
2
√−3a2 − 4ak + 4ac, λ3 = −b.

Then, if c − a < k ≤ c − 3
4

a the three eigenvalues are negative real numbers

and if k > c − 3
4

a the eigenvalues λ1,2 are complex but with negative real parts,

such that, the steady state O(0, 0, 0) is asymptotically stable whenever c− a < k.
But in this case the system does not have another fixed point, so the system is
completely controlled. Numerical illustrations can be seen in Figs. 5, 6.

5. CONCLUSIONS

In this paper we present methods to suppress chaos in a dynamical system.
First, applying Lyapunov function we guide the chaotic trajectories to the unsta-
ble fixed points. Simple controls are used. Such controls are desirable in practical
applications. Then, using a linear control, the system is controlled to a stable
state. Analytical results are accompanied by numerical illustrations.
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FIGURE 5. Controlling the chaotic trajectory of the system (2.1)
by the controller u1(t) = −kx, with k = c corresponding to the
parameters (a, b, c) = (2.1, 0.6, 30) and the initial values
(0.1,−0.3, 0.2).
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of the controlled system (4.11), corresponding to the parameters
(a, b, c) = (2.1, 0.6, 30), the initial values (0.1,−0.3, 0.2) and k =
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