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Viscosity approximation methods for nonexpansive
mapping in Banach spaces

XIAOLONG QIN and YONGFU Su

ABSTRACT. Let C be a closed convex subset of a uniformly smooth Banach space E and let
T : C — C be a nonexpansive mapping such that F(T") # 0. The initial guess ¢ € C is chosen
arbitrarily and given sequences {a, }22  in (0,1) and {8, }52, and {vn}22, in [0,1], the following
conditions are satisfied:
() ZZO:O Qan = 00, an — 0;
(ii) (14 Bn)¥n —2Bn > a, forsomea € [0, 1);
(i) D02 g lan+1 — an] < 00, 202 o [Bnt1 — Bn| <ocoand 372 [yn+1 — Yn| < oo
Let {2, }22 ; be the composite process defined by
zZn =YnZn + (1 —yn)Tan
Yn = ﬁnmn + (1 - ﬁn)TZn
Tn+1 = anf(zn) + (1 — an)yn.
Then {z,}52_, converges strongly to a fixed point of T which solves some variational inequality.

1. INTRODUCTION AND PRELIMINARIES

Let £ be a real Banach space, C' a nonempty closed convex subset of £, and
T : C — C amapping. Recall that a self mapping f : C — C'is a contraction on
C if there exists a constant « € (0, 1) such that

1f (@) = FWl < allz —yll, z,yeC.

We use I1 to denote the collection of all contractions on C. That is, Il = {f|f :
C — C acontraction}. Note that each f € I1 has a unique fixed pointin C. Also,
recall that 7" is nonexpansive if

[Tz —Ty[| < |lz -yl forallz,y e C.

A point 2 € C is a fixed point of T provided Tz = x. Denote by F(T') the set of
fixed points of T'; that is, F(T) = {z € C' : Tx = z}. It is assumed throughout
the paper that 7" is a nonexpansive mapping such that F(T') # 0. Given a real
number ¢ € (0, 1) and a contraction f € IIc. We define a mapping Tz = tf(x) +
(1-t)Tx, x € C.Itisobvious that T; is a contraction on C. In fact, for 2,y € C,
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we obtain
[Tex — Thyll < t(f(z) — f(y) + (1 = t)(Tz — Ty)||

<oatfz -yl + (1 =) Tz - Ty||

< atflz —yl|+ (1 = t)]lz -yl

=1 -t =a))lz—yl
Let x; be the unique fixed point of 7;. That is, x; is the unique solution of the
fixed point equation
11) z=tf(xe) + (1 —t)Txy.

A special case has been considered by Browder [1] in a Hilbert space as follows.
Fix v € C and define a contraction S; On C by

Six=tu+(1—1t)Tz, z€C.
We use z; to denote the unique fixed point of S;, which yields that
ze=tu+ (1 —1t)Tz.
In 1967, Browder [1] proves the following
Theorem B. In a Hilbert space, as t — 0, z; converges strongly to a fixed point of 7" that

is closet to u, that is, the nearest point projection of w onto F'(T').
Also, in 1967, Halpern [3] firstly introduced the iteration scheme

(12) xo =x € C, arbitrarily
' Tnt1 = apu+ (1 — )Ty,

which is the special case of

(13) xo =x € C, arbitrarily
' Tnt1 = @ f(zn) + (1 — ap)Tx,.

He pointed out that the conditions lim,, ., a,, = 0 and Z;’f:l o, = 0o are neces-
sary in the sense that, if the iteration scheme (1.2) converges to a fixed point of T,
then these conditions must be satisfied. Ten years later, Lions [5] investigated the
general case in Hilbert space under the conditions

[e%e} 2
lim a, =0, Zan:oo and lim M =0

n— o0 n—oo (o7
n=1 n+1

on the parameters. However, Lions’conditions on the parameters were more re-
strictive and did not include the natural candidate {a;,, = +}. In 1980, Reich
[6] gave the iteration scheme (1.2) in the case when FE is uniformly smooth and
an =n"with0 < § < 1.

In 1992, Wittmann [9] studied the iteration scheme (1.2) in the case when E'is
a Hilbert space and {«,, } satisfies

o0

oo
lim a, =0, Zan =00 and Z |nt1 — an|| < oco.
n—oo

n=1 n=1
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In 1994, Reich [6] obtained a strong convergence of the iterates (1.2) with two
necessary and decreasing conditions on parameters for convergence in the case
when FE is uniformly smooth with a weakly continuous duality mapping.

On the other hand, for a contraction f on C'and ¢ € (0,1), let x; € C be the
unique fixed point of the contraction « — ¢ f(z) + (1 — t)Tx. Xu [8] proposed the
following two iterative process

Ty = tf(:ct) -+ (1 — t)TﬁCt,

Tn+1 = anf(mn) + (1 - an)Txn-

He showed that {x:}, {«,} converges strongly to a fixed point of 7" which
solves some variational inequality in the Hilbert space and uniformly smooth
space, respectively.

In this paper, we use viscosity approximation methods to study strong conver-
gence theorems for nonexpansive mapping.

This paper introduce the composite iteration scheme as follows :

Zn = YnTn + (1 - 'Yn)Txn
(14) Yn = ﬁnxn + (1 - ﬁn)TZn
Tni1 = Oénf(:cn) + (1 - O‘n)ynv

where {a,, } isasequence in (0,1) and {3, }, {7} are sequences in [0,1]. We prove,
under certain appropriate assumptions on the sequences {«,}, {8.} and {y,},
that {z,,} defined by (1.4) converges to Q(f), where Q : IIc — F(T) is defined by
(1.8).

On the other hand, the composite iterations introduced in this paper is a mod-
ified Ishikawa iteration. if v,, = 1 in (1.4) this can be viewed as a modified Mann
iteration

(1 5) Yn = 6nxn + (1 - ﬂn)Txna
. Tnitl = O‘nf(xn> + (1 - O‘n>yn~

Another special case of (1.4) was considered by T. H. Kim and H. K. Xu [4].
They introduced the following iterative process:

(16) {yn = ﬁnmn + (1 - Bn)Txn;

Tnt1 = apu+ (1 — o) yn,

where w« is an arbitrary (but fixed) element in C and sequences «,, 8, in (0,1).
They proved that the sequence {x,,} defined by (1.6) converges strongly to a fixed
point of T'.

It is our purpose in this paper to introduce this composite iteration scheme
for approximating a fixed point of nonexpansive mappings by using viscosity
methods in the framework of uniformly smooth Banach spaces. we establish the
strong convergence of the composite iteration scheme {z,,} defined by (1.4). The
results improve and extend results of Kim and Xu [4], Wittmann [9], Xu [13], Xu
[12] and some others.

Let E be a real Banach space and let .J denote the normalized duality mapping
from E into 2E" given by

J@)={feE (. f) = |«I* = IfI*}, z€E



166 Xiaolong Qin and Yongfu Su

where E* denotes the dual space of F and (-, -) denotes the generalized duality
pairing.
The norm of E is said to be Gateaux differentiable (and FE is said to be smooth)

if
w12l = el
' t—0 t
exists for each z,y in its unit sphere U = {x € E : ||z|| = 1}. It is said to be

uniformly Fréchet differentiable (and FE is said to be uniformly smooth ) if the
limit in (1.7) is attained uniformly for (z,y) € U x U.

We need the following definitions and lemmas for the proof of our main re-
sults.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is
single-valued and norm-to-norm uniformly continuous on bounded sets of E.

Lemma 1.2. In a Banach space F, there holds the inequality
o +yll* < ll2l® + 2{y, j(z +y)), z,y€E

where j(z +y) € J(z +y).

Recall that if C' and D are nonempty subsets of a Banach space £ such that
C is nonempty closed convex and D Cc C,thenamap Q : C — D is sunny
([2], [7]) provided Q(z + t(z — Q(z))) = Q(x) for all z € C and t > 0 whenever
x+t(x—Q(z)) € C. Asunny nonexpansive retraction is a sunny retraction,which
is also nonexpansive. Sunny nonexpansive retractions play an important role in
our argument. They are characterized as follows [10, 11]: if £ is a smooth Banach

space, then Q : C — D is a sunny nonexpansive retraction if and only if there
holds the inequality

(x—Qz,J(y—Qx)) <0 forall z€ C and y € D.

Lemma 1.3. (Xu [13]) Let £ be a uniformly smooth Banach space and let 7' : C' — C
be a nonexpansive mapping with a fixed point z; € C of the contraction C > = —
tu+ (1 —t)Ta converges strongly as ¢ — 0 to a fixed pointof 7. Define Q : Il — F(T)
by

18 Qf=s— %ir%xt, felle.
Then Q(f) solves the variational inequality

19 (I -hHe)J(Q(f)—p) <0, felle,pe F(T).

In particular, if f = w is a constant, then (1.9) is reduced to the sunny nonexpansive
retract from C onto F(T'):

(1.10) (u—Qu,J(p—Qu)) <0, ueC, pe F(T).

Lemma 1.4. ( Xu [10], [11]) Let ioj {a, } be a sequence of nonnegative real numbers
satisfying the property "

ant1 < (1 —vn)an + Ynon,n > 0,
where {~,}52, € (0,1) and {0}, }52, such that
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o0
(1) limy— oo ¥ = 0and > v, = o0,
. n=0 -
(44) either limsup,, ., 0 < 00F > |yn0n| < oc.
n=0
Then {ay, }52, converges to zero.

2. MAIN RESULTS

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth Banach space £
and let T : C' — C be a nonexpansive mapping such that F/(T') # (. The initial guess
xo € C'is chosen arbitrarily and given sequences {o, }5, in (0,1) and {8,}52, and
{’Yn}W() in [0, 1], the following conditions are satisfied

Q) Zan—oo an — 0;
(i) (1 +ﬂn)’yn 206, > a, for some a € [0,1);

(”I) Z |a7L+1 Oénl < 00, Z |ﬁn+1 ﬁn| < ooand Z |’7n+1 '7n| < 0.
=0

Let {xn} be the composne process defined by

n=1
Yn = Bnzn + (1 = Bn)T2n
Tnt+1 = Oénf(xn) + (1 - an)yn-

Then {z,,}5°; converges strongly to Q(f), where Q : I — F(T) is defined by (1.8)
and Q(f) solves the variational inequality

211) (I - HR), J(Q(f) —p)) <0, felle,pe F(T).

In particular, if f = u € C'is a constant, then (2.11) is reduced to the sunny nonexpan-
sive retraction of Reich from C onto F/(T),

(212) (Q(u) —u, J(Q(u) —p)) <0, ue C,pe F(T).

Proof. First we observe that {x,,}22 , is bounded. Indeed, if we take a fixed point
p of T', we have that

213) |lzn —pll € Wllzn —pll + (1 =) [ Tzn — pl| < (|20 —pl|-
It follows from (1.3) and (2.13) that
[yn = pIl < Bnllzn —pll + (1 = Bu)l|T2n — pll
< Ballen —pll+ (1= Bn)llzn — pll
< lzn —pll
we have
[Znt1 —pll < anllf(zn) —pll + (1 — an)llyn — pll
<ol f(z ) = fO + anllf(p) — Pl + (1 = an)llzn = pll

~If®) =2l llzn —pll}-

< maX{
Now, an induction ylelds

(244) ea — pll < max{—

~If®) = 2ll, llzo = pll}. 72 0.
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This implies that {z,,} is bounded, so are {T'z,,}, {f(zn)} {y~} and {z,}.
From (1.3) we have

(215) [|@as1 — yall = anllf(@n) = yal — 0, asn — oo,
Next, we claim that

(2.16) [|zp+1 —anl — 0.
In order to prove (2.16) from

Tni41l = O‘nf(xn) + (1 - an)yn
T = Ap1f(@n-1) + (1 — ap—1)Yn—1
we have
Tp4+1—Tn= (]— *an)(yn 7yn71)+(an71 *an)(ynflff(znfl))*kan (f(xn)ff(xnfl))
It follows that
217) |lzpr1 — znll < (1 = an)l|yn — Yn—1ll + lan—1 — anlllyn-1 — f(xn-1)l
+ ap||Tn — Tpo1]|-

Similarly, from

Yn = ﬂnxn + (1 - ﬂn)TZn
Yn—1 = 671711‘7171 + (]- - 6n71)TZn71

we have
Yn — Yn—1 = (1 - ﬁn)(TZn - Tzn—l) + ﬁn(xn - xn—l)

+ (Tzn—1— 2n—1)(Bn-1 — Bn)-
It follow that
(218) lyn — yn—1ll < (1 = B T2n — Tzn-1ll + Bullzn — zn-1]|
+ 1 T2n—1 — Tn-1||Bn=1 — Bl
< (A =Bu)llzn — 2n-1ll + Bullzn — zn-1|
+ |1 T2n-1 — Zn-1|[Bn-1 — Bal-
On the other hand, from
Zn = Ynn + (1 — )Ty
{Zn1 = Yn-1Tp—1 + (1 = Yn-1)T2p—1
we obtain
Zn — 2n-1 =1 =) (Txn — Txn_1) + yn(Tn — Tn_1)
+ (-1 = ) (T -1 — Tp_1).
It follows that
(219) |lzn — zn—1ll < ll2n — Zp—1ll + [Yn-1 — Wl TZp—1 — T ]|-
Substituting (2.19) into (2.18), we get
220) |lyn = yn-1ll < (1 = Ba)([|2n — -1l + [Yn-1 — Wl TZp-1 — Tn-1]])
+ BullTn — 21|l + |1 T2n—1 — Tpn—1||[Bn—1 — Bl
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that is,
221) lyn — yn-1ll < llzn = -1l + -1 = Wl T2n-1 — 20|

+ | T2n-1 = Zn-1ll|Bn—1 = Bal.

Similarly, substituting (2.21) into (2.17) yields that

(222) |Jzpt1 — |l < (1 —an)(|zn — o1l + [ V-1 — Wl lT20-1 — 201l

+Tzn—1—2n-1l|Bn-1—Bnl) +|on-1—anll|yn—1— f(zn-1)|l

+ aan||Tn — Tp-1|

< (1 (1 - a)an)|zn — 20|

+ M(lan—1 — an| + [Bn-1 = Bal + [1n—1 — M)
where M is a constant such that

M = max{||yn—1 — f(@n-2)l, |Zn—1 = Txnall, [#n-1 — Tznall}

for all n. By assumptions (i)-(iii), we have that

lim «, =0, Z(l — a)ay, = 00,
n—oo n=1
and

LS
Z('ﬁn - 5n—1| + |04n - an—ll + |’7n - 7”—1|) < 0.
n=1

Hence, Lemma 1.4 is applicable to (2.22) and we obtain
(2.23) ||Zpy1 — ]| —0 asn— oo
Again, it follows from (2.23) that
224) ||Tzn — znll < ln — Tog1ll + 1 Zns1 = Ynll + yn — Tznll + T2 — Tan ||
<zn = Zoga |l + |21 = Ynll + Bulln — Tzn|| + ||2n — 240 ||
<an = Zog1 || + |21 — yall + Bullzn — T2y
+ BnllTzn — Tz || + [|2n — zn|
<lzn = zng1ll + l|znt1 — Ynll + Bullzn — Tan|
+ Ballzn — zull + 20 — znl
= |lzn — Tns1ll + [|Tn+1 — Ynll + Bollzn — Ty
+ (14 Bo)lln — 2l
< lzn = zng1ll + l|znt1 — Ynll + Bullzn — Tan|
+ (14 Bn) (X = )@ — Tl
That is,
(Y = 2B + Bl Tzn — zull < [|2n — Tnga || + 2041 — yall-
From condition (ii) and (2.13), (2.23) we know
(2.25) || Txp —zp] — 0.



170 Xiaolong Qin and Yongfu Su

Next, we claim that
(2.26) limsup(f(q) —q,J(zn —q)) <0,

n—oo

where g = Qf = s — PH}) x; With z; being the fixed point of the contraction z +—

tf(z) + (1 —t)Tx (Lemma1.4).
From z; solves the fixed point equation

e =tf (x) + (1 — )Ty
Thus we have
e — 2all = (1 = )(Twe — 20) + t(f(22) — 20)].
It follows from Lemma 1.2 that
(227) |z = zall? < (1= )| T2e — 2all? + 26(f (20) — 2, I (22 — 20))
< (1= 2t + 82)l|ze — 2al + fult)
+2(f (22) — x4, I (22 — 20)) + 21|z — 2|
where
(2.28) fn(t) = 2|zt — znll + |20 — Tan|)||2n — Tzn| — 0, asn — 0.
It follows that
229) (@0~ f(@), I = 20)) < gllee = 2l + 5 falt).
Letting n — oo in (2.29) and noting (2.28) yields
230) Timsup(ar — (), (@1 — ) < 2 My,
where M; > 0 is a constant such that M; > ||z, — 2, ||> forallt € (0,1)and n > 1.
Letting ¢ — 0 from (2.30) we have
lim sup limsup(x; — f(x¢), J(x: — 2,)) < 0.

t—0 n—o00
So, for any e > 0, there exists a positive number ¢, such that, for ¢ € (0,d;) we
get

(2.31) limsup(zs — f(2t), J (21 — 2p)) <

n—oo

DO ™

On the other hand, since z; — g ast — 0, from Lemma 1.1, there exists o > 0
such that, for ¢ € (0, §2) we have

(@) = ¢, T (@0 — @) — (z — f(21), T (21 — 2))
< [f(q) = ¢ J(wn — q)) = (f(q) — ¢, J (@ — ¢))|
+(f(q) — @, J(wn — 21)) — (21 — f(20), J (20 — 70))|
< [f@) —q,J(@n —q) — J(@n — )| + [{f(@) — f(2e) — g+ 2, T (20 — )]

< A @D—=dllllV(zn — @)= J(@n — z) |+ £ (@) — f () =g+l [[2n — qll <
Choosing § = min{dy, d2}, V¢ € (0, 6), we have

(F(@) = ¢ J(@n = q)) < {xe = f(2e), J (2 — 2n)) +

€
5

Do M
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that is,
limsup(f(q) — q, J(zn, — q)) < limsup{xs — f(x¢), J(xs — xp)) +

n—00 n—oo

DN ™

It follows from (2.31) that
limsup(f(q) — ¢, J(zn —q)) <&

n—oo

Since ¢ is chosen arbitrarily, we have
(232) lim Sup(f(q) —q, J(xn - Q)> S 0

n—oo
Finally, we show that x,, — ¢ strongly and this concludes the proof. Indeed,
using Lemma 1.2 again we obtain

[2n41 = all? = 1(1 = an)(yn — @) + an(f(2a) — 9)|?
< (1= an)?llyn — dl” + 200 (f (&) — ¢, J(@ns1 — q))
< (1 an)?llzn —q?
+ 200 (f (xn) = £(q), J (@nt1 — @) + 20 (f(q) — ¢, I (Tnt1 — q))
< (1= an)’[lzn = ql* + 2analn — gl 21— 4]
+ 20, (f(q) — ¢ J(Tny1 — q))
)°
(

< (1= am)? \xn —al* + ana(lzn — qll* + [Jzns1 — all)
+ 20, (f () — ¢, J (@41 — )
Therefore,
1-2-a)a, +a 20
—_ 4?2 < n n 2__27n _ _
lnsr = all* € === = =l = = (@)~ 00 (s — )
1-(2-a)a, 2a,
< ﬁ”fﬂn —ql” - mﬂf@ — ¢, J(Tns1 — q)) + Mo,
2(1 — a)ay, 9
=(1-=2"""Yz, —
(1= Tl —al
2(1 — a)ay, , Ma(1 — aay)an, 1
—q), J(zn +1—19q)).
Now we apply Lemma 1.4 and use (2.32) to see that ||z,, — ¢g|| — 0. This com-
pletes the proof. O
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