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On embedding Fibonacci meshes on Fibonacci cube
networks

IOANA ZELINA

ABSTRACT. The Fibonacci cube was presented as a new topology for interconnection networks.
Due to his strong recursive structure, the Fibonacci cube posses many attractive properties. In this
papers we show how two Fibonacci meshes can be simultaneously embedded in a Fibonacci cube
with dilation 1.

1. INTRODUCTION

The Fibonacci cube is a new interconnection network topology introduced by
Hsu in [3]. This class of interconnection networks is inspired by the Fibonacci
numbers and shows interesting properties due to the important properties of Fi-
bonacci numbers.

A Fibonacci cube of order n ≥ 2, denoted Γn, is an indirected graph with fn

nodes, where fn is the Fibonacci number of order n, consisting recursively of two
disjoint graphs Γn−1 and Γn−2. Each node in Γn−2 is then connected to a node in
Γn−1 and Γn−1 has more nodes than Γn−2.

On the other side, the Fibonacci cubes are a type of incomplete hypercubes.
They are subgraphs of hypercube graphs induced by the nodes that have no two
consecutive 1’s in their binary representation. The size of the Fibonacci cube does
not increase as fast as the hypercube and a Fibonacci cube can be considered as a
hypercube with many faulty nodes.

It has been shown that the diameter and node degree of the Fibonacci cube
with N nodes are O(log N) which are similar to those of the hypercube of O(N)
nodes. The Fibonacci cube contains about 1/5 fewer edges than the hypercube
for the same number of nodes [4].

One of the measures for ”goodness” of a network is the embeddability, the
possibility of simulating other topologies in the Fibonacci cube. An embedding
is defined as a one to one mapping function which maps the vertices of a guest
graph to the vertices of a host graph. An edge of the guest graph corresponds to
a path in the host graph.

The dilation of an embedding is the maximum distance in the host graph be-
tween the images of the adjacent nodes in the guest graph and is a lower bound
for communication delay when the host graph simulates the guest graph.

In [3], the embeddings of linear arrays, meshes, Fibonacci trees and hypercubes
in the Fibonacci cube are studied. In [2], Cong et al. studied the stimulations of
linear arrays, rings and 2D meshes on Fibonacci cubes. In [2], the embedding of
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a Fibonacci mesh into its corresponding optimum Fibonacci cube with dilation 1
is presented.

In this paper we show how two disjoint Fibonacci meshes can be embedded
into a Fibonacci cube with dilation 1.

2. PRELIMINARIES

The Fibonacci numbers are recursively defined as f0 = 0, f1 = 1, fn = fn−1 +
fn−2, n ≥ 2.

According to Zeckendorf’s lemma, any natural number can be uniquely repre-
sented as a sum of Fibonacci numbers. If m is an integer, 0 ≤ m ≤ fn − 1, n ≥ 3,

we define the Fibonacci code of m as (bn−1, bn−2, . . . , b2)F , where m =
n−1∑
j=2

bjfj

and bj is either 0 or 1 and bj · bj+1 = 0 for 2 ≤ j < n − 1.
The Fibonacci code for an integer i ∈ {fn−1, fn−1 + 1, . . . , fn − 1} has n − 2

bits. The Fibonacci codes for the numbers between 0 and 12 = f7 − 1 are: 0 =
(00000)F , 1 = (00001)F , 2 = (00010)F , 3 = (00300)F , 4 = (00101)F , 5 = (01000)F ,
6 = (01001)F , 7 = (01010)F , 8 = (10000)F , 9 = (10001)F , 10 = (10010)F , 11 =
(10100)F , 12 = (10101)F .

Let N be an integer, 1 ≤ N ≤ fn for some n and iF , jF be the Fibonacci codes
of i and j, 0 ≤ i, j < N .

The Fibonacci cube can be defined as follows:

Definition 2.1. [3] The Fibonacci cube of size N is a graph FC(N) = (V (N), E(N))
where V (N) = {0, 1, . . . , N − 1} and E(N) =

{
(i, j) |H(iF , jF ) = 1, i, j ∈ V (N)

}
where H(iF , JF ) is the Hamming distance between the Fibonacci codes of i and j.
Two nodes i, j in the Fibonacci cube are connected if their Fibonacci codes differ
in only one position or |i − j| = fk for some k.

Definition 2.2. [3] The Fibonacci cube of order n, denoted Γn, is a Fibonacci cube
with fn nodes, Γ0 = (∅, ∅).

We denote by Cn the set of order n Fibonacci codes, n ≥ 2. For example C2 =
{λ}, C3 = {0, 1}, C4 = {00, 01, 10}. Then we can easily see that Cn = 0‖Cn−1 ∪
10‖Cn−2, n ≥ 4, where ‖ denote de concatenation of strings and |Cn| = fn for
n ≥ 2.

With this observations we can give a recursive definition for Fibonacci cubes:

Definition 2.3. Assume Γn = (V (n), E(n)), Γn−1 = (V (n − 1), E(n − 1)) and
Γn−2 = (V (n− 2), E(n− 2)). The Fibonacci cube of order n is defined recursively
by V (n) = 0‖V (n − 1) ∪ 10‖V (n − 2) and there is an edge between two nodes in
V (n) only if their binary representation differ exactly in one position.

In figure 1, the Fibonacci cubes Γ1, Γ2, . . . , Γ6 are represented.
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Figure 1

In spite of its asymmetric and relatively sparse interconnections, the Fibonacci
cubes possess attractive topological properties in terms of connectivity. This kind
of properties were studied in [3] and [4], and are listed bellow:

• the Fibonacci cube of order n has [2(n − 1)fn − nfn−1]/5 edges, where fn

denotes the n-th Fibonacci number;

• for n ≥ 2, dn(i) =

⎧⎨
⎩

dn−1(i) + 1, 0 ≤ i < fn−2

dn−1(i), fn−2 ≤ i < fn−1 ,
dn−2(i − fn−1) + 1, fn−1 ≤ i < fn

where dn(i)

denotes the degree of node i in Γn and d0(0) = 0, d1(0) = 1, d1(1) = 1;
• for n ≥ 3, [(n − 2)/3] ≤ dn(i) ≤ (n − 2), where dn(i) denote the degree of

node i in Γn;
• the Fibonacci cube Γn is a connected graph for n ≥ 1 and has the diameter

Dn = n − 2;
• if Ke(Γn) and Kv(Γn) denote de edge, respectively the node connectivity of

Γn, then �n/8	 ≤ Kv(Γn) ≤ Γe(Γn) ≤ �(n − 2)/3	.

3. EMBEDDINGS IN FIBONACCI CUBES

A Hamiltonian path can be embedded in a Fibonacci cube. The construction of
such a path is based on the construction of a Gray code sequence in Γn. The Gray
codes for Γ3 and Γ4 are G3 = {0, 1} and G4 = {01, 00, 10}. If Gn and Gn+1 denote
the Gray codes for Γn and Γn+1 and G′

n and G′
n+1 denote the reversed sequence

of Gn respectively Gn+1, then we can define the Gray code sequence for Γn+2 as
Gn+2 =

{
0‖G′

n+1, 10‖G′
n

}
, for n > 2 [2]. So, it follows that
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Theorem 3.1. A linear array Ln with fn nodes can be embedded with dilation 1 in the
Fibonacci cube Γn.

For example, the linear array embedded in Γ6 is shown in figure 2.

0000 0001 0010 0100 0101 1000 1001 1010

6

Figure 2

In [3], is proved that the Fibonacci cube Γn can be embedded with dilation 1 in
the hypercube of order n− 2, H(n− 2). Because there are no cycles of odd length
in a hypercube, there is no hamiltonian cycle in Γn if |fn| is an odd number.

In [2], Cong proved that a ring with fn nodes can be embedded with dilation
2 in Γn.

The problem of embedding Fibonacci meshes was studied in [3] and [2]. A
Fibonacci mesh Mm,k is defined as a 2D mesh, fm × fk mesh.

Hsu showed that two disjoint Fibonacci meshes Mn,n and Mn+1,n+1 can simul-
taneously be embedded in Γ2n+1 with dilation 1, respectively Mn,n+1 and Mn,n−1

in Γ2n for all n ≥ 1.
In [2] the construction of a Fibonacci mesh Mn,n+1 embedded in its corre-

sponding optimum Fibonacci cube Γ2n is given.
The basic idea of this construction is to label the lines and columns of Fibonacci

mesh, according to the Gray codes for Γn and Γn+1. The columns are labelled ac-
cording to the Gray code Gn+1 and the rows according to the Gray code Gn.
The label for the node in row i and column j is obtained by concatenation be-
tween the label for the j-th column a 0 bit and then the label for the i-th row. The
0 is placed to avoid two consecutive 1’s. The label for a node has [(n+1)−2]+1+
(n−2) = 2n−2 bits and no consecutive 1’s. The dilation is clearly 1, so we have a
dilation 1 embedding of Mn,n+1 Fibonacci mesh into Γ2n. Cong also showed that
Γ2n is the smallest Fibonacci cube with at least fn · fn+1 nodes in which Mn,n+1

can be embedded with dilation 1.
For example, the construction of M4,5 to embed in Γ8 is represented in figure

3.
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Figure 3
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We can use this idea and construct two disjoint Fibonacci meshes Mn,n+1 and
Mn−1,n which can be embedded in Γ2n with dilation 1 and all the nodes of Γ2n

are covered by these meshes.

Theorem 3.2. Two disjoint Fibonacci meshes Mn,n+1 and Mn−1,n can be simultane-
ously embedded in a Fibonacci cube Γ2n with dilation 1 and covering all the nodes of the
cube.

Proof. The 2D Fibonacci mesh Mn,n+1 can be considered as a matrix with fn rows
and fn+1 columns and the 2D Fibonacci mesh Mn−1,n can be considered as a
matrix with fn−1 rows and fn columns.

The columns in Mn,n+1 are labelled according to the Gray code Gn+1 defined
for Fibonacci cube and the rows are labelled according to the Gray code Gn de-
fined for Fibonacci cube. The node located on line i and column j has the label
βj0αi, where βj ∈ Gn+1 and αi ∈ Gn. This label has [(n+1)−2]+1+(n−2) = 2n−2
bits and no consecutive 1’s, so is a Fibonacci code in Γ2n.

The columns in Mn−1,n are labelled according to the Gray code Cn and the
rows according to the Gray cod Gn−1. The node located on line i, column j,
i ∈ {1, . . . , fn−1}, j ∈ {1, . . . , fn} has the label γj010δi where γj ∈ Gn, δi ∈ Gn−1.
This label has (n− 2)+3+ (n− 1)− 2 = 2n− 2 bits and no consecutive 1’s so this
label is a Fibonacci code in Γ2n.

The label of a node in Mn,n+1 has a 0 on its n−1 position and a node in Mn−1,n

has a 1 on its n − 1 position. This means there are two disjoint meshes. The total
number of nodes in those two meshes are fn+1 · fn + fn · fn−1 = f2n, therefore all
the nodes in Γ2n are covered.

The dilation in this embeddings is obviously 1. Each node in Mn,n−1 has a link
to a node in Mn+1,n, their labels differ in (n − 1)-th position.

�
For the Fibonacci cube Γ8 the construction and the embedding of the two

meshes M4,5 and M3,4 are represented in figure 4.
Using a similar construction, for dilation 1 embedding of two square meshes

into Fibonacci cubes, we can state that

Theorem 3.3. Two disjoint square Fibonacci meshes Mn,n and Mn+1,n+1 can be simul-
taneously embedded in a Fibonacci cube Γ2n+1 with dilation 1 and covering all the nodes
of the cube.

The embeddings presented in this paper and in [2], [3] show that the Fibonacci
cube allow efficient simulation of other topologies, almost as efficient as the hy-
percube. The embeddings of the Fibonacci meshes shows that in presence of
faulty links, a Fibonacci cube can be reconfigured using meshes.
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Figure 4
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