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A biased discussion of fixed point theory
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ABSTRACT. This paper contains a discussion of the following topics: contractive conditions,
2-metric spaces, D-metric spaces, maps which have no nontrivial periodic points, contractive con-
ditions involving integrals, Mann and Ishikawa iteration, stability, and iteration with errors.

1. INTRODUCTION

My remarks today are biased for two reasons. First I will be talking about
aspects of fixed point theory of interest to me. Second, some of my remarks will
reflect my personal biases with respect to that particular topic.

Perhaps a subtitle for this talk would be ”Some things which work and some
which don’t”.

I shall begin with a little personal history. I became interested in the subject of
fixed point theory in the spring of 1973, while on sabbatical leave in Germany and
in Israel. Each week I would peruse the contents of the new journals, looking for
any papers in summability. In the course of that activity I began to encounter pa-
pers dealing with fixed points. At first I ignored these. Then, when they became
so frequent, I decided to look at them more closely. I discovered two things. First,
the proof technique used in each paper was the same. Second, no one appeared
to be reading any other person’s work.

The reason there were so many papers on fixed point theory is the appearance
of the 1968 paper of Kannan [29]. Prior to then, the main paper on fixed point
theory was the 1922 paper of Banach [4]. Banach’s contraction principle has been
applied to many problems in analysis and fixed point theory. The main drawback
to his condition is that it requires the map to be Lipschitz of order k < 1. In 1968
Kannan provided an example of a contractive condition that does not require the
continuity of the map at every point, although maps satisfying his condition are
continuous at fixed points. When I returned to Bloomington I examined many
of the journals in our library, and discovered the same two facts. I then decided
that it would be worthwhile to prepare a paper which partially ordered some
of these many definitions. The end result of this endeavor was my Transactions
paper of 1977 [48], which partially ordered 125 contractive definitions for a single
map, and another 125 for a pair of maps, and either stated or proved the most
general fixed point theorem along each of the strands. Apparently others found
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this endeavor to be worthwhile. At last count this paper has been cited over 248
times.

No good deed goes unpunished. As soon as this paper appeared I suddenly
became the world’s expert on contractive definitions, which resulted in my being
asked to referee a large number of fixed point papers every year since.

At this time I would like to mention some work related to that paper, which is
not as well known.

2. CONTRACTIVE DEFINITIONS

The first 25 definitions in [48] involve a single map. I will illustrate by taking
one example. X is a complete metric space, and T is a selfmap of X .

(24) d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X , where k is a constant satisfying 0 ≤ k < 1.
The next 25 definitions involve some fixed iterate of T . for example, corre-

sponding to (24) would be

(49) d(T px, T py) ≤ kmax{d(x, y), d(x, T px), d(y, T py), d(x, T py), d(y, T px)},

where p is a fixed positive integer.
The next 25 definitions deal with the p-th iterate of x and the q-th iterate of y.

For example, if p and q are fixed positive integers,

(74) d(T px, T qy) ≤ kmax{d(x, y), d(x, T px), d(y, T qy), d(x, T py), d(y, T qx)}.

For the next 25 definitions p is a function of x; i.e., p = p(x). Thus, (49) becomes

d(T p(x)x, T p(x)y) ≤ kmax{d(x, y), d(x, T p(x)x), d(y, T p(x)y),(99)

d(x, T p(x)y), d(y, T p(x)x)}.

Finally, for the last 25 definitions p depends on both x and y; i.e., p = p(x, y).

d(T p(x,y)x, T p(x,y)y) ≤ kmax{d(x, y), d(x, T p(x,y)x), d(y, T p(x,y)y),(124)

d(x, T p(x,y)y), d(y, T p(x,y)x)}.

There are a corresponding 125 definitions for two maps. For example, the two-
map version of (24) is

d(Sx, Ty) ≤ kmax{d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)}.

In 1990 Kincses and Totik [30] gave an example of a map satisfying (104), but
which has no fixed points. They also proved that, if T satifies (84), then T has a
unique fixed point. Although [48] partially ordered a large number of definitions,
not every two definitions were compared. In 1997 Collaco and Silva [9] filled in
the table for the basic 25 definitions.

In 1977 [44] Barada Ray and I proved that maps satisfying (221) possess a
unique common fixed point.

Sehie Park also observed that fixed point theorems for many contractive defi-
nitions used the same proof technique. In 1980 [40]he proved the following two
theorems, where O(u) := {u, Tu, T 2u, . . .}.
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Theorem 2.1. Let T be a selfmap of a metric space (X, d). If there exists a point u ∈ X
and a λ ∈ [0, 1) such that O(u) is complete and

(2.1) d(Tx, Ty) ≤ λd(x, y)

holds for any x, y = Tx in O(u), then {Tnu} converges to some ξ ∈ X , and

d(T iu, ξ) ≤ λi

1− λ
d(u, Tu) for i ≥ 1.

Further, if T is orbitally continuous at ξ or if (2.1) holds for any x, y ∈ O(u), then ξ
is a fixed point of T .

Theorem 2.2. Let T be a selfmap of a metric space (X, d). If
(i) there exists a point u ∈ X such that the orbit O(u) has a cluster point ξ ∈ X ,

(ii) T is orbitally continuous at ξ and Tξ, and
(iii) T satisfies

d(Tx, Ty) < d(x, y)
for each x, y = Tx ∈ O(u), x 6= y,

then ξ is a fixed point of T .

These theorems contain as special cases a number of papers involving contrac-
tive conditions not covered by my Transactions paper.

As an example of an application of Theorem 2.1, not previously published, is
the following [63].

Theorem A. Let T be an orbitally continuous selfmap of a metric space M that is T -
orbitally complete. If T satisfies

[d(Tx, Ty)]3 ≤ c1d(x, y)[d(y, Ty)]2 + c2d(x, Tx)[d(Tx, Ty)]2(2.2)

+ c3d(y, T 2x)[d(Tx, T 2x)]2 + c4d(x, Ty)[d(y, Tx)]2

for all x, y ∈M and ci ∈ R such that (c1 + c2)/(1− c3) = h ∈ (0, 1), then T has a fixed
point, which is unique, when 0 < c4 < 1.

Proof. Set y = Tx to get

[d(Tx, T 2x)]3 ≤ c1d(x, Tx)[d(Tx, T 2x)]2 + c2d(x, Tx)[d(Tx, T 2x)]2

+ c3d(Tx, T 2x)[d(Tx, T 2x)]2 + 0,

which implies that

[d(Tx, T 2x)]3 ≤ c1 + c2
1− c3

d(x, Tx)[d(Tx, T 2x)]2.

If x is such that Tx = T 2x, then Tx is a fixed point of T . If not, then we have

d(Tx, T 2x) ≤ hd(x, Tx),

and condition (2.1) of Theorem 2.1 is satisfied. Therefore {Tnx} converges to a
point ξ.

In (2.2) set x = xn, y = ξ to get

[d(xn+1, T ξ)]3 ≤ c1d(xn, ξ)[d(ξ, T ξ)]2 + c2d(x, Tx)[d(xn+1, T ξ)]2

+ c3d(ξ, xn+2)[d(xn+1, xn+2)]2 + c4d(xn, T ξ)[d(ξ, xn+1)]2.
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Taking the limit as n → ∞ yields ξ = Tξ. Condition (2.2) implies the unique-
ness of ξ when c4 < 1. �

In 1969 Meir and Keeler [34] established a fixed point theorem for a selfmap of
a metric space (X, d) satisfying the following condition.

Given an ε > 0, there exists a δ > 0 such that(2.3)

ε ≤ d(x, y) < ε+ δ implies that d(Tx, Ty) < ε.

In 1980 Sehie Park [41] constructed a table of contractive conditions of Meir-
Keeler type, which extended the list in my Transactions paper. A point u in a
metric space X is said to be regular if diam(O(x)) is finite. The most general
fixed point theorem he obtained is the following.

Theorem 2.3. Let T be a selfmap of a metric space (X, d). Suppose there exists a regular
point u ∈ X such that

(i) O(u) has a regular cluster point p ∈ X and
(ii) the following condition holds on O(u) ∪O(p):

Given an ε > 0 there exists a δ > 0 such that, for any x, y ∈ X ,

ε ≤ m(x, y) < ε+ δ0 implies that d(Tx, Ty) ≤ ε0,

where

m(x, y) := max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a unique fixed point p ∈ O(u) and Tnu→ p.

In 1988 [50] I showed that, for the then known contractive conditions, the map
is continuous at the fixed point.

Some papers have been published where the contractive condition is a special
case of one already in print. One such example is the following result of Fisher
[13].

Theorem 2.4. Let T be a selfmap of a complete metric space X satisfying

(2.4) [d(Tx, Ty)]2 ≤ c{d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)}

for all x, y ∈ X , 0 ≤ c < 1/2. Then T has a unique fixed point.

Using the fact that, for any real nonnegative numbers a, b, ab ≤ max{a2, b2},
(2.4) implies that

[d(Tx, Ty)]2 ≤ 2cmax{[d(x, Tx)]2, [d(x, Ty)]2, [d(y, Ty)]2, [d(y, Tx)]2}
= 2c(max{d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)})2

which implies that

d(Tx, Ty) ≤
√

2cmax{d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)}.

Since c < 1/2, the above inequality is a special case of (24), which was defined in
1971 by Ciric [8].
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3. 2-METRIC SPACES

In 1976 Diminie and White [11] defined the concept of a 2-metric space.
A 2-metric space is a space X in which, for each triple of points a, b, c, there

exists a real-valued nonnegative function ρ satisfying:
(1a) for each pair of points a, b, a 6= b, there exists a point c ∈ X such that

ρ(a, b, c) 6= 0,
(1b) ρ(a, b, c) = 0 when at least two of the points are equal,

(2) ρ(a, b, c) = ρ(a, c, b) = ρ(b, c, a), and
(3) ρ(a, b, c) ≤ ρ(a, b, d) + ρ(a, d, c) + ρ(d, b, c).

A sequence {xn} in X is said to be Cauchy if lim ρ(xn, xm, a) = 0 for all a ∈ X .
A sequence {xn} in X is convergent and x ∈ X is the limit, if lim ρ(xn, x, a) = 0
for each a ∈ X .

Following the appearance of this paper, a number of fixed point theorems were
proved in 2-metric spaces, including the following one by me [49].

Theorem 3.5. Let X be a complete 2-metric space, T a selfmap of X satisfying: there
exists an h, 0 ≤ h < 1 such that, for each x, y ∈ X ,

ρ(Tx, Ty, a) ≤ hmax{ρ(x, y, a), ρ(x, Tx, a), ρ(y, Ty, a),
ρ(x, Ty, a), ρ(y, Tx, a)}.

Then T possesses a unique fixed point z and limTnx0 = z for each x0 ∈ X .

In 1986 Hsiao [18] made the following observation. A selfmap of a 2-metric
space X is said to have property (H) if

d(T ix, T jx, T kx) = 0 for all i, j, k ∈ N ∪ {0}.

He then proved that all of the fixed point theorems in the literature, including
Theorem 3.5, have Property (H). Consequently every orbit lies in a straight line.

4. D-METRIC SPACES

In 1984 Dhage [10] defined the concept of a D-metric space.
A nonempty set X , together with a function D : X ×X ×X → [0,∞) is called

a D-metric space if D satisfies
(i) D(x, y, z) = 0 if and only if x = y = z,

(ii) D(x, y, z) = D(p(x, y, z)), where p is a permutation of x, y, z, and
(iii) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z) for all x, , a, z ∈ X .
He claimed that D-metric convergence defines a Hausdorff topology and that

the D-metric is (sequentially) continuous in all three variables. Assuming the
correctness of his dissertation he and several other authors wrote papers dealing
with fixed points for maps defined on D-metric spaces. In 2004, two dissertations
[43] and [36], contained examples which show that : (1) in a D-metric space D-
metric convergence need not always define a topology; (2) even when the D-
metric convergence defines a topology it need not be Hausdorff; and (3) even
when the D-metric convergence defines a metrizable topology the D-metric need
not be continuous even in a single variable.
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5. PROBABILISTIC METRIC SPACES

Beginning in the 70’s a number of papers have been written proving fixed point
theorems in probabilistic metric spaces.

Let H denote the distribution functon defined by H(x) = 0 if x ≤ 0, and
H(x) = 1 for x > 0.

Let X be a set, F a function on X×X such that F(x, y) = Fx,y is a distribution
function. Then the pair (X,F) is called a probabilistic metric space (PM-space) if
the following conditions are satisfied:

I. Fx,y(0) = 0 for all x, y ∈ X ,
II. Fx,y = H if and only if x = y,

III. Fx,y = Fy,x, and,
IV. if Fx,y(ε) = 1 and Fy,z(δ) = 1, then Fx,z(ε+ δ) = 1.

If, in addition,
V Fx,z(ε+ δ) ≥ T (Fx,y(ε), Fyz(δ)),

where T is a 2-place function on the unit square satisfying
(1) T (0, 0) = 0 and T (a, 1) = a,
(2) T (a, b) = T (b, a), and
(3) T (T (a, b), c) = T (a, T (b, c)),

then (X,F , T ) is called a Menger space.
Extending some of the work of Schweizer and Sklar [61], Hicks [17] has shown

that, for many probabilistic inequalities defined on a complete Menger space
whose T -norm satisfies properties (1) -(3), there is an equivalent metric d on the
space which converts the probabilistic inequality to a contractive type condition,
thereby essentially eliminating the need to consider probabilistic metric spaces.

6. GENERALIZATIONS OF COMMUTATIVITY

Many fixed point theorems have also being proved for two maps S and T ,
where the iteration process is defined by intertwining the two maps; i.e., let
x0 ∈ X and define x2n+1 = Sx2n, x2n+2 = Tx2n+1.

In 1976 Jungck [25] proved the following.

Theorem 6.6. Let I be a continuous selfmap of a complete metric space (X, d). Then I
has a fixed point in X iff there exists an α ∈ (0, 1) and a mapping T : X → X which
commutes with I and which satisfies

I(X) ⊂ T (X) and d(Tx, Ty) ≤ αd(Ix, Iy) for all x, y ∈ X.
Moreover, the common fixed point is unique.

A large number of fixed point papers then appeared, which replaced x and y
on the right hand side of a contractive condition with continuous functions I and
J . For example, condition (21) in this context would take the following form,

d(Sx, Ty) ≤ kmax{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), [d(Ix, Ty) + d(Jy, Sx)]/2}
Recognizing that commutativity was too restrictive a condition, Sessa, in 1982

defined weakly commuting. Two maps S and I are said to be weakly commuting
if

d(SIx, ISx) ≤ d(S, Ix) for each x ∈ X.
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This definition was soon generalized to R-weakly commuting [38]. Two maps
S and I are said to be R-weakly commuting if there exists a positive number R
such that, for each x ∈ X ,

d(SIx, ISx) ≤ Rd(Sx, Ix).

In 1986 Jungck [26] defined the concept of compatibility. Two maps S and I are
said to be compatible if lim d(SIxn, ISxn) = 0 whenever {xn} is a sequence in X
such that limSxn = lim Ixn = t for some t ∈ X . Jungck [26], in 1986, extended
the concept of compatibility to weakly compatible. Two maps S and I are said to
be weakly compatible if they commute at coincidence points. A further extension
was made by Jungck [27] in 1996 to weakly biased maps. Two maps S and I are
said to be weakly I biased if Sx = Ix implies d(IAx, Ix) ≤ d(SIx, Sx).

In 1997 Jeong and I [22] established a version of Park’s result for four maps.
Specifically, we proved the following.

Theorem 6.7. Let S, T, I, and J be selfmaps of a metric space (X, d) such that

I(X) ⊂ T (X), J(X) ⊂ S(X).

Assume that {yn} is complete, where {xn} is defined by Tx2n+1 = Ix2n, Sx2n+2 =
Jx2n+1, and {yn} is defined by y2n = Sx2n, y2n+1 = Tx2n+1. Suppose that there
exists a λ ∈ [0, 1) such that

d(yn, yn+1) ≤ λd(yn−1, yn) forall yn 6= yn+1.

Then either
(a) I and S have a coincidence point,
(b) J and T have a coincidence point,
(c) I, S, and T have a common coincidence point,
(d) J, S, and T have a coincidence point, or
(e) {yn} converges to a point z ∈ X , and

d(yi, z) ≤
λi

1− λ
d(y0, y1) for each i > 0.

We then obtained results of Ahmad and Imdad [3], Ahmad, Imdad, and Khan
[2], Imdad and Ahmad [19], Divicarrio and Sessa [12], Murthy and Sharma [35],
Chourasia [7], and Gajic and Stojakovic [15] as special cases.

Two maps S and I are said to be pointwise R-weakly commuting if, given an
x ∈ X , there exists an R > 0 such that

d(SIx, ISx) ≤ Rd(Sx, Ix).

Pant [39] proved the following.

Theorem 6.8. Let (S, I) and (T, J) be pointwiseR-weakly commuting pairs of selfmap-
pings of a complete metric space (X, d) satisfying

(i) SX ⊂ JX, TX ⊂ IX ,
(ii) d(Sx, Ty) ≤ hM(x, y), for 0 ≤ h < 1, x, y,∈ X .

where

M(x, y) := max{d(Ix, Jy), d(Sx, Ix), d(Jy, Ty), [d(Sx, Jy) + d(Ty, Is)]/2}.
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Suppose that (S, I) or (T, J) is weakly compatible. Then S, T, I, and J have a unique
common fixed point.

Pant [39] provides the following example. X = [2, 20], d is the usual metric on
X .

S2 = 2, Sx = 3 if x > 2,

I2 = 2, Ix = 6 if x > 2,

Tx = 2 for x = 2, x > 5, Tx = 6 if 2 < x ≤ 5,

J2 = 2, Jx = 12 if 2 < x ≤ 5, Jx = x− 3 if x > 5.

These four maps satisfy the hypotheses of his theorem, but they are not continu-
ous at the common fixed point.

Earlier this year [28] Jungck and I defined the concept of occasionally weakly
commuting. Two maps S and I are said to be occasionally weakly commuting
(owc) if there is a point x ∈ X at which S and I commute.

Proofs of fixed point theorems for four compatible or weakly compatible maps
all have the same pattern. Step one is to show that there exists a common coinci-
dence point for one pair of maps. The second step is to show that step one gives
rise to a common coincidence point for the second pair of maps. In step three
it is shown that these pairwise coincidence points are equal. In step four it is
shown that this common coincidence point is a common fixed point. Uniqueness
is established in step five.

Here is one of our results.

Theorem 6.9. Let X be a set with a symmetric r. Suppose that I, J, S, T are selfmaps of
X and that the pairs {I, S} and {J, T} are each owc. If

(6.5) r(Sx, Ty) < M(x, y)

for each x, y ∈ X for which Sx 6= Ty, where

M(x, y) := max{r(Ix, Jy), r(Ix, Sx), r(Jy, Ty), r(Ix, Ty), r(Jy, Sx)}.

Then there is a unique point w ∈ X such that Sw = Tw = w and a unique point
z ∈ X such that Tz = Jz = z. Moreover, z = w, so that there is a unique common fixed
point of I, J, S, and T .

As a consequence of our work, to prove a fixed point theorem involving four
maps, it is sufficient to prove that there exists a common coincidence point for
one pair of maps. The existence of a common fixed point then follows from our
theorems.

In 2002 Aamri and Moutawakil [1] defined property (E,A). Two maps S and
I satisfy property (E,A) if there exists a sequence {xn} such that limSxn =
lim Ixn = t for some t ∈ X . In other words property (E,A) hypothesizes the
existence of a common coincidence point.

Our theorem then contains the results of [1] as a special case.
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7. MAPS FOR WHICH F (T ) = F (Tn)

Let T be a selfmap which has a fixed point z. Then z is a fixed point of Tn for
every positive integer n. Is the converse true; i.e., if z is a fixed point of Tn for
some positive integer n > 1, is z a fixed point of T ?

The answer is no in general as the following example shows. Let X = [0, 1], T
defined by Tx = 1−x. Then T has one fixed point at x = 1/2. However, T 2 is the
identity map, so every point is a fixed point.

The conjecture is, if T satisfies a contractive condition that does not include
nonexpansive mappings, then F (Tn) = F (T ) for every positive integer n. Jeong
and I have written a long paper [28], which has just appeared, verifying this con-
jecture for every contractive condition, involving a single map, in the literature.
We have submitted a second paper [24], which verifies the conjecture for pairs of
maps for which either some form of commutativity is not required, or for which
the maps commute.

We shall say that a pair of maps S and I have property Q if F (S) ∩ F (I) =
F (Sn) ∩ F (In) for each positive integer n. The following is a simple example.

Theorem 7.10. Let S and I be two commuting selfmaps of a complete metric space
(X, d) satisfying

d(Sx, Sy) ≤ kd(Ix, Iy)

for each x, y ∈ X , where 0 ≤ k < 1. Then S and I satisfy property Q.

Proof. Let u ∈ F (Sn) ∩ F (In). Then

d(u, Su) = d(Snu, Sn+1u) ≤ kd(ISn−1u, ISnu)

= kd(Sn−1Iu, SnIu) ≤ k2d(ISn−2Iu, ISn−1Iu)

≤ · · · ≤ knd(Inu, SInu) = knd(u, Su),

which implies that u = Su.
In a similar manner

d(u, Iu) = d(Snu, SnIu) ≤ kd(ISn−1u, ISn−1Iu)

≤ · · · ≤ knd(Inu, In=1u) = knd(u, Iu),

and u = Iu. �

For contractive conditions involving maps for which compatibility, or some
similar condition, is required, the question is still open.

8. INTEGRAL CONDITIONS

In 2002 Branciari [5] proved the following theorem.

Theorem 8.11. Let (X, d) be a compete metric space, c ∈ [0, 1), T a selfmap of X such
that, for each x, y ∈ X , ∫ d(Tx,Ty)

0

ϕ(t)dt ≤ c

∫ d(x,y)

0

ϕ(t)dt,
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where ϕ : R+ → R+ os a Lebesgue integrable mapping which is summable, nonnegative,
and such that, for each ε > 0, ∫ ε

0

ϕ(t)dt > 0.

Then T as a unique fixed point z ∈ X , and, for each x ∈ X , limTnx = z.

There are obvious generalizations of this theorem, and several papers have ap-
peared containing such generalizations. Clearly these integral conditions contain
the corresponding definitions by setting ϕ(t) ≡ 1. However, in some cases one
has equivalence. The following result appeared in a paper I was recently sent to
referee.

Theorem 8.12. Let (X, d) be a compact metric space, S, T selfmaps of X satisfying, for
each x, y ∈ X ,

ψ
( ∫ d(Sx,Ty)

0

ϕ(t)dt
)
< aψ

( ∫ d(fx,gy)

0

ϕ(t)dt
)
+ bψ

( ∫ d(fx,Sx)

0

ϕ(t)dt
)

(8.6)

+ cψ
( ∫ d(gy,Ty)

0

ϕ(t)dt
)
+
e

2

[
ψ

( ∫ d(fx,Ty)

0

ϕ(t)dt
)

+ ψ
( ∫ d(gy,Sx)

0

ϕ(t)dt
)]

whenever the right hand side of (8.6) is positive, where 0 ≤ a+ b+ c+ e/2 < 1, ψ is a
nonnegative increasing function such that ψ(t) < t for each t > 0, and ϕ : R+ → R+ is
a Lebesgue integrable mapping which is summable, nonnegative, and such that, for each
ε > 0, ∫ ε

0

ϕ(t)dt > 0.

Then S and T have a unique common fixed point in X .

First of all (8.6) implies that

ψ
( ∫ d(Sx,Ty)

0

ϕ(t)dt
)
< (a+ b+ c+ e) max

{
ψ

( ∫ d(fx,gy)

0

ϕ(t)dt
)
,

ψ
( ∫ d(fx,Sx)

0

ϕ(t)dt
)
, ψ

( ∫ d(gy,Ty)

0

ϕ(t)dt
)
,[

ψ
( ∫ d(fx,Ty)

0

ϕ(t)dt
)

+ ψ
( ∫ d(gy,Sx)

0

ϕ(t)dt
)]
/2

}
.

But, for any nonnegative real numbers a and b, since ψ is increasing,

max{ψ(a), ψ(b)} = ψ(max{a, b}).

Therefore the above inequality implies that

ψ
( ∫ d(Sx,Ty)

0

ϕ(t)dt
)
< (a+ b+ c+ e)ψ

( ∫ m(x,y)

0

ϕ(t)dt
)

(8.7)

< ψ
( ∫ m(x,y)

0

ϕ(t)dt
)
,
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where

m(x, y) := max{d(fx, gy), d(fx, Sx), d(gy, Ty),
[d(fx, Ty) + d(gy, Sx)]/2}.

Again using the fact that ψ is increasing, (8.7) implies that

(8.8)
∫ d(Sx,Ty)

0

ϕ(t)dt ≤
∫ m(x,y)

0

ϕ(t)dt.

But equality in (8.8) contradicts (8.7). Therefore we must have

(8.9)
∫ d(Sx,Ty)

0

ϕ(t)dt <
∫ m(x,y)

0

ϕ(t)dt.

But, since

h(s) :=
∫ s

0

ϕ(t)dt

implies that h is positive and nondecreasing, (8.9) implies that

d(Sx, Ty) ≤ m(x, y).

But equality contradicts (8.7). Therefore we have

(8.10) d(Sx, Ty) < m(x, y).

Suppose that (8.10) is true for all x and y in X . Define

(8.11) j(x, y) =
d(Sx, Ty)
m(x, y)

.

Then j is continuous on the compact set X × X and so attains its maximum
value. Call it c. Inequality (8.10) implies that c < 1. Then (8.11) implies that

d(Sx, Ty) ≤ cm(x, y),

and the existence of a unique common fixed point follows from a result of Singh
and Mishra [62].

If there exists a point (x, y) for which m(x, y) = 0, then we have fx = gy =
Sx = Ty. Since (f, S) are weakly compatible,

Sfx = S2x = fSx.

If S2x 6= Sx, then, from (8.10),

d(S2x, Ty) < max{d(fSx, gy), d(fSx, S2x), d(gy, Ty),

[d(fSx, Ty) + d(gy, S2x)]/2};
i.e.,

d(S2x, Sx) < max{d(S2x, Sx), 0, 0, [d(S2x, Sx) + d(Sx, S2x)]/2}
= d(S2x, Sx),

a contradiction. Therefore Sx is a common fixed point of f and S.
Similarly, the assumption that TSx 6= Sx leads to a contradiction. Therefore

Sx is also a common fixed point of g and T . The uniqueness of the fixed point
follows from (2.3).
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9. FIXED POINT ITERATIONS

I now wish to talk about fixed point iteration processes.
Consider the function T defined by Tx = 1 − x over X = [0, 1]. Suppose we

choose x = a, 0 ≤ a ≤ 1, a 6= 1/2. Then repeated function iteration of a yields the
sequence {a, 1− a, a, 1− a, . . .} which does not converge. However, T has a fixed
point at 1/2. Therefore some other iteration process is needed in order to obtain
the fixed point. One of the first ones, and one of the most popular ones is that of
Mann [33]. Let x0 ∈ X , and define

xn+1 = (1− cn)xn + cnTxn,

where cn = 1/(n+ 1).
In 1955 Krasnoselskij [31] defined the special case of Mann iteration with each

cn = 1/2. In 1957 Schaefer [60] defined an iteration method, which he named the
Krasnoselskij method, by choosing each cn = λ, where 0 < λ < 1.

Mann proved that, if T is a continuous selfmap of a finite interval [a, b] with
exactly one fixed point, then his iteration scheme converges to that fixed point.
Reinerman [45], in 1969, extended this result to {cn} satisfying c0 = 1, 0 < cn < 1
for n ≥ 1, and

∑
cn = ∞. In 1971 Franks and Marzec [14] extended the result of

Mann to include maps with more than one fixed point. In 1974 [46] I extended
the Franks and Marzec result to the {cn} of Reinermann.

In 1974 Ishikawa [20] defined the following iteration process.

x0 = y0 ∈ X, yn = (1− βn)xnTxn, xn+1 = (1− αn)xn + αnTyn,

where 0 ≤ αn ≤ βn ≤ 1, limβn = 0,
∑
αnβn = ∞.

Let H be a Hilbert space, E a convex compact subset of H , T a Lipschitzian
pseudo-contractive selfmap ofE. He proved that this process converges to a fixed
point of T . In 2001 Chidume and Mutangadura [6] gave an example of a Lipschitz
continuous pseudocontractive map for which no Mann iteration converges.

The Ishikawa process does not contain Mann iteration as a special case, since,
setting each βn = 0 eliminates all of the αn. I observed [47], in 1976, that if one
replaces the condition

0 ≤ αn ≤ βn ≤ 1
with

0 ≤ αn, βn ≤ 1
then this modified Ishikawa iteration would include Mann iteration. Many math-
ematicians spent the next 30 years extending results for Mann iteration to this
modified Ishikawa iteration, and then recovering the original theorem for Mann
iteration by setting each βn = 0.

In 1992 Wittmann [64] defined the following iteration process for Hilbert spaces.
Let x ∈ H ,

x0 = x, xn+1 = αnxn + (1− αn)Txn.

He then proved that, if T is a nonexpansive map with fF (T ) 6= ∅, limαn =
0,

∑
αn = ∞, and

∑
|αn+1 − αn| < ∞, then, for any x ∈ H , {xn} converges

strongly to a fixed point of T .
It is known that the Mann iteration process converges to a fixed point of any

continuous selfmap of a closed an bounded interval on the real line. Linda Saliga
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and I [53] have shown that the Wittmann process for certain continuous nonin-
creasing selfmaps need not converge.

Beginning in 2003 Stefan Soltuz and I wrote a series of papers demonstrating
that Mann and Ishikawa iterations are equivalent for many different classes of
mappings.([54], [55], [56], [57], [58], and [59])

Unfortunately any iteration process is apt to introduce computational errors.
A serious practical question is whether these errors will destroy the convergence
to a fixed point. In an attempt to address this question, Troy Hicks and his student
Alberta Harder [16], based on a theorem of Ostrowski ([21], page 101), made the
following definition of stability.

Let X be a metric space, T a selfmap of X , x0 ∈ X . Suppose that xn+1 =
f(T, xn) is some iteration procedure, involving T , which yields a sequence {xn}
of points of X . Further, suppose that {xn} converges to a fixed point p of T .
Let {yn} be an arbitrary sequence in X , and define εn = d(yn+1, f(T, yn)) for
n = 0, 1, . . .. If lim εn = 0 implies that lim yn = p, then the iteration process xn+1 =
f(T, xn) is said to be T -stable, or stable with respect to T . They then showed that
a number of contractive conditions are T -stable with respect to function iteration.

In 1990 [51] I showed stability for a wider class of maps, and for some fixed
point iteration procedures. The most general results in this direction were estab-
lished by Osilike. In 1995 [37] He proved the following.

Theorem 9.13. LetX be a Banach space, T a selfmap ofX satisfying, for each x, y ∈ X ,

‖Tx− Ty} ≤ a‖x− y‖+ L‖x− Tx‖,
where 0 ≤ a < 1, L ≥ 0. Suppose that T has a fixed point p. Let x0 ∈ X,xn+1 = Txn.
Let {yn} ⊂ X , and define εn = d(yn+1, T yn). Then

‖yn+1 − p‖ ≤ ‖xn+1 − p‖+ L

n∑
j=0

an−j‖xj − Txj‖

+ an+1‖x0 − y0‖+
n∑

j=0

an−jεj

and lim yn = p iff lim εn = 0.

He proved a similar result for Mann and Ishikawa iterations.
An iteration scheme is said to be weakly T stable if {ε} also satisfies

∑
εn <∞.

It is a reasonable conjecture that every iteration scheme is weakly T stable.
In 1995 Liu [32] defined Mann and ishikawa processes with errors. The Mann

process with errors is defined as follows.
Let K be a nonempty subset of a normed linear space E, T : K → E. Let

x0 ∈ K, and define

xn+1 = (1− αn)xn + αnTxn + un,

where {αn} ⊂ [0, 1) satisfies appropriate conditions and un is a vector in K such
that

∑
‖un‖ <∞.

Xu objected to the process of Liu on the grounds that the condition
∑
‖un‖ <

∞ is not compatible with the randomness of the occurrence of errors. In 1998 Xu
[65] made the following definition.
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Let X0 ∈ K,
xn+1 = anxn + bnTxn + cnun,

where {un} is a bounded sequence and {an}, {bn}, {cn} ⊂ [0, 1] with

an + bn + cn = 1

for each n.
Define αn = bn + cn. Then we have

xn+1 = anxn + bnTxn + cnun

= (1− αn)xn + αnxn + cn(un − Txn),

so that, if R(T ) is bounded, then vn := un−Txn is a bounded sequence, and Xu’s
definition reduces to that of Liu, since, in using the definition of Xu, it is always
assumed that

∑
cn <∞.

As I pointed out in 2004, [52], the construction of Xu cannot be carried out.
For, in order to determine the values of an, bn, and cn, it is necessary to know the
value of un for each n. But, if un is an arbitrary bounded sequence, its values are
not known.
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