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Non-steady Navier-Stokes Equations with
Homogeneous Mixed Boundary Conditions and
Arbitrarily Large Initial Condition

MICHAL BENEŠ, PETR KUČERA

ABSTRACT. Let Ω ⊂ R2 be a bounded domain, ∂Ω ∈ C0,1 and ∂Ω = Γ1 ∪ Γ2 such that Γ1 and Γ2

are closed, sufficiently smooth, 1-dimensional measure of Γ1 ∩Γ2 is zero and 1-dimensional measure
of Γ1 is positive. Further let (0, T ) be a time interval. We prescribe the non-slip boundary conditions
on Γ1 × (0, T ) and the boundary condition

−Pn +
∂u

∂n
= 0

on Γ2 × (0, T ). Here u = (u1, u2) is velocity, P represents pressure and n = (n1, n2) is an outer
normal vector.

Our aim is to prove the existence and uniqueness of this problem on some time interval (0, T ∗)
for sufficiently small T ∗, 0 < T ∗ ≤ T .

1. INTRODUCTION

Let Ω be a bounded domain in R2 with a Lipschitz boundary, ∂Ω ∈ |C0,1 and
let Γ1, Γ2 be open disjoint subsets of ∂Ω such that ∂Ω = Γ1 ∪ Γ2, Γ1 6= ∅ and
the 1-dimensional measure of ∂Ω− (Γ1 ∪ Γ2) is zero. The domain Ω represents a
channel filled up with a fluid, Γ1 is a fixed wall and Γ2 is both the input and the
output of the channel.

The authors in [2] and [14] use the Neumann condition on the output of the
channel. Some qualitative properties of the Navier–Stokes equations with the
mixed boundary conditions are studied in [3], [4], [5], [6], [7], [8], [9], [10].

Let T ∈ (0,∞], Q = Ω × (0, T ). The classical formulation of our problem is as
follows:

∂u

∂t
− ν∆u + (u · ∇)u +∇P = g in Q,(1.1)

div u = 0 in Q,(1.2)

u = 0 in Γ1 × (0, T ),(1.3)

−Pn + ν
∂u

∂n
= 0 in Γ2 × (0, T ),(1.4)

u(0) = γ in Ω,(1.5)

γ = 0 on Γ1.(1.6)
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Functions u, P , g, γ are smooth enough, u = (u1, u2) is velocity, P represents
pressure, ν denotes the viscosity, g is a body force and n = (n1, n2) is an outer
normal vector. The problem (1.1)− (1.6) will be called the nonsteady Navier−Stokes
problem with the mixed boundary conditions. For simplicity we suppose that
ν = 1 throughout this paper.

We solve also the problem, in which (1.2)−(1.6) hold and (1.1) is replaced with

(1.7)
∂u

∂t
−∆u +∇P = g in Q.

The problem (1.2)−(1.6) and (1.7) will be called the nonsteady Stokes problem
with the mixed boundary conditions.

The Dirichlet boundary condition (1.3) expresses a non-slip behaviour of the
fluid on fixed walls of the channel.

Our aim is to prove the existence and uniqueness of this problem on some time
interval (0, T ∗) for sufficiently small T ∗, 0 < T ∗ ≤ T .

2. DEFINITION OF SOME FUNCTION SPACES AND GENERALIZED FORMULATION
OF THE PROBLEM

We shall denote by c a generic constant, i.e. a constant whose value may change
from line to line. On the other hand, numbered constants will have a fixed value
throughout the paper. Constants will always depend only on domain Ω.
Let

E(Ω) =
{
u ∈ C∞(Ω)2; divu ≡ 0, supp u ∩ Γ2 ≡ ∅} .

Let V k,p be a closure of E(Ω) in the norm of W k,p(Ω)2, k ≥ 0 (k need not be an
integer) and 1 ≤ p < ∞. Then V k,p is a Banach space with the norm of the space
W k,p(Ω)2. For simplicity, we denote V 1,2 and V 0,2, respectively, as V and H .
Note, that V and H , respectively, are Hilbert spaces with scalar products

((
. , .

))
V

and
((

. , .
))

H
,

((
. , .

))
V

=
((
Φ,Ψ

))
V

=
∫

Ω

∇Φ · ∇Ψ d(Ω) =
∫

Ω

∂Φi

∂xj

∂Ψi

∂xj
d(Ω)

and ((
. , .

))
H

=
((
Φ,Ψ

))
H

=
∫

Ω

Φ ·Ψ d(Ω) =
∫

Ω

ΦiΨi d(Ω)

and they are closed subspaces of spaces W 1,2(Ω)2 and L2(Ω)2.
Let

(2.8)
D = {w ∈ V ; there exists f ∈ H such that

((
w,v

))
V

=
((

f , v
))

H
for every v ∈ V }

and
‖w‖D = ‖f‖H ,

where w, f are corresponding functions via (2.8). Let wi and f i are correspond-
ing functions via (2.8). Note that D is the Hilbert space with the scalar product((

., .))D such that ((
w1, w2))D =

((
f1, f2

))
H

.
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Similarly it can be shown as in ([16], Chapter I.,2.6) that there exist functions
φ1, φ2, . . . , φk, · · · ∈ V ⊂ H and real positive numbers λ1, λ2, . . . , λk, · · · → ∞ for
k →∞, such that ((

φk,v
))

V
= λk

((
φk,v

))
H

for every v ∈ V . φ1, φ2, . . . is a system that is complete in both H and V , or-
thonormal in H and orthogonal in V . Note that

(2.9) H =
{

v; v =
∞∑

k=1

akφk, ak ∈ R and
∞∑

k=1

a2
k < ∞

}
,

(2.10) V =
{

v; v =
∞∑

k=1

akφk, ak ∈ R and
∞∑

k=1

λka2
k < ∞

}

and

(2.11) D =
{

v; v =
∞∑

k=1

akφk, ak ∈ R and
∞∑

k=1

λ2
ka2

k < ∞
}

.

LetX be an arbitrary Banach space and p ∈ [1,∞). As usual Lp(α, β; X ) and L∞(α, β; X )
(for −∞ ≤ α < β ≤ ∞) denote the Banach spaces

{
φ; φ(t) ∈ X for almost every t ∈ (α, β),

∫ β

α

‖φ(t)‖p
X dt < ∞

}

and {
φ; φ(t) ∈ X for almost every t ∈ (α, β), ess sup

t∈(α,β)

‖φ(t)‖X < ∞
}

with the norms

‖φ‖Lp(α,β;X ) =
(∫ β

α

‖φ(t)‖p
X dt

)1/p

and
‖φ‖L∞(α,β;X ) = ess sup

t∈(α,β)

‖φ(t)‖X .

Note that ([11]) and ([1]) yield existence of γ, 1 < γ < 2 such that

(2.12) D ↪→↪→ W γ,2(Ω)2 ↪→ W 1,2+2δ(Ω)2,

where δ = γ−1
2−γ .

Definition 2.1. Let 0 < T ∗ ≤ T , f ∈ L2(0, T ∗; H), u0 ∈ V . Then u is called a
generalized solution of the Stokes problem with the mixed boundary conditions and with
data f and u0 on (0, T ∗) (problem (1.2)−(1.7) for T = T ∗) if u ∈ L2(0, T ∗; D) ∩
L∞(0, T ∗; V ), u′ ∈ L2(0, T ∗; H) and

(2.13)
((

u′(t), v
))

H
+

((
u(t),v

))
V

=
((

f(t), v
))

H

holds for every v ∈ V and for almost every t ∈ (0, T ∗).
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Theorem 2.1. Let f ∈ L2(0, T ; H), u0 ∈ V . There exists a unique generalized solution
u of the Stokes problem with the mixed boundary conditions and with data f and u0 on
(0, T ). Moreover u ∈ C([0, T ]; V ) and

(2.14) ‖u‖L2(0,T ; D) +‖u‖L∞(0,T ; V ) +‖u′‖L2(0,T ; H) ≤ c1(‖f‖L2(0,T ; H) +‖u0‖V ).

Proof: Since f ∈ L2(0, T ; H) and u0 ∈ V , we have

(2.15) f =
∞∑

k=1

µk(t)φk, u0 =
∞∑

k=1

akφk,

where

(2.16)
∞∑

k=1

∫ T

0

µ2
k(t) dt +

∞∑

k=1

a2
k < ∞.

Let ϑk be a solution of the ordinary differential equation

(2.17) ϑ′k(t) + λkϑk(t) = µk(t)

with the initial condition

(2.18) ϑk(0) = ak

for k = 1, 2, . . . Then

ϑk(t) =
∫ t

0

eλk(s−t)µk(s) ds + ake−λkt

for almost every t ∈ (0, T ). Hence ϑk ∈ W 1,2((0, t)).
Multiplying (2.17) by 2ϑ′k and integrating over (0, t) we get

2
∫ t

0

ϑ′k
2(s) ds + λkϑ2

k(t) = λkϑk
2(0) + 2

∫ t

0

µk(s)ϑk
′(s) ds ≤

≤ ϑ2
k(0) +

∫ t

0

ϑk
′2(s) ds +

∫ t

0

µ2
k(s) ds

for k = 1, 2, . . . and for almost every t ∈ (0, T ) and therefore
∫ t

0

ϑ′k
2(s) ds + λkϑ2

k(t) ≤ ϑ2
k(0) +

∫ t

0

µ2
k(s) ds.(2.19)

Thus (2.19) yields

∞∑

k=1

∫ t

0

ϑ′k
2(s) ds +

∞∑

k=1

λkϑ2
k(t) ≤

∞∑

k=1

∫ T

0

ϑ′k
2(s) ds +

∞∑

k=1

λkϑ2
k(t) ≤(2.20)

2
∞∑

k=1

ϑ2
k(0) + 2

∞∑

k=1

∫ T

0

µ2
k(s) ds

for almost every t ∈ (0, T ) (remind that k doesn’t depend on t) and therefore we
get

(2.21) u =
∞∑

k=1

ϑk(t)φk ∈ L∞(0, T ; V ), u′ ∈ L2(0, T ; H)



36 Michal Beneš, Petr Kučera

and

(2.22) ‖u‖L∞(0,T ; V ) + ‖u′‖L2(0,T ; H) ≤ 2‖f‖L2(0,T ; H) + 2‖u0‖V .

(2.17) yields also inequalities

λ2
kϑ2

k(t) ≤ 2µ2
k(t) + 2ϑ′2k(t)

for every k = 1, 2, . . . and for almost every t ∈ (0, T ). Therefore we get
∞∑

k=1

λ2
k

∫ t

0

ϑ2
k(s) ds ≤

∞∑

k=1

λ2
k

∫ T

0

ϑ2
k(s) ds ≤ 2

∞∑

k=1

∫ T

0

µ2
k(s) ds+2

∞∑

k=1

∫ T

0

ϑ′2k(s) ds.

The last inequality and (2.20) yield

(2.23)
∞∑

k=1

λ2
k

∫ t

0

ϑ2
k(s) ds ≤

∞∑

k=1

λ2
k

∫ T

0

ϑ2
k(s) ds ≤ 6

∞∑

k=1

∫ T

0

µ2
k(s) ds+4

∞∑

k=1

ϑ2
k(0)

for almost every t ∈ (0, T ). Therefore we get

(2.24) u ∈ L2(0, T ; D)

and

(2.25) ‖u‖L2(0,T ; D) ≤ c(‖f‖L2(0,T ; H) + ‖u0‖V ).

The last inequality and (2.22) imply (2.14). It is easy to see that
((

u′(t), v
))

H
+

((
u(t),v

))
V

= 〈f(t), v
))

H

for every v ∈ V and for almost every t ∈ (0, T ) and that

u(0) = u0.

Since d
dt (‖u(s)‖2V ) =

∑∞
k=1 2λkϑk(t)ϑ′k(t) for almost every t ∈ (0, T ) and

∞∑

k=1

2
∫ T

0

|λkϑk(s)ϑ′k(s)| ds ≤

≤ λ2
k

∫ T

0

ϑk
2(s) ds +

∫ T

0

ϑ′2k(s) ds < ∞
we get

(2.26) ‖u(.)‖V ∈ C([0, T ]).

(2.21), (2.26) and the fact that V is a Hilbert space imply u ∈ C([0, T ]; V ).
Suppose that u1, u2 are two solutions of our problem. Denote u = u2 − u1.

Then ((
u′(t), v

))
H

+
((

u(t), v
))

V
= 0

for every v ∈ V and for almost every t ∈ (0, T ) and

u(0) = 0V .

Then
((

u′(t), u(t)
))

H
+

((
u(t),u(t)

))
V

=
1
2

d

dt
‖u(t)‖2H + ‖u(t)‖2V = 0
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for almost every t ∈ (0, T ). Therefore ‖u‖2L2(0,T ; V ) = 0. The theorem is proved.

If θ, ψ, v ∈ V , then b(θ,ψ, v) denotes the trilinear form

(2.27) b(θ,ψ, v) =
∫

Ω

θj
∂ψi

∂xj
vi d(Ω).

Remark 2.1. Let θ, ψ ∈ D. Then (2.12) yields that b(θ, ψ, .) ∈ H . If u,w ∈
L2(0, T ∗; D) ∩ L∞(0, T ∗; V ) then b(u, w, .) = b(u(t),w(t), .) ∈ L2(0, T ∗; H).

Now we define a generalized formulation of the Navier-Stokes problem.

Definition 2.2. Let 0 < T ∗ ≤ T , f ∈ L2(0, T ; H), u0 ∈ V . Then u is called a
generalized solution of the problem (1.1) − (1.6) on (0, T ∗) (a generalized solution of
the Navier-Stokes problem with the mixed boundary conditions) with data f and u0 if
u ∈ L2(0, T ∗; D) ∩ L∞(0, T ∗; V ), u′ ∈ L2(0, T ∗; H),

(2.28)
((

u′(t), v
))

H
+

((
u(t),v

))
V

+ b(u, u, v) =
((

f(t), v
))

H

holds for every v ∈ V and for almost every t ∈ (0, T ∗), and

(2.29) u(0) = u0.

3. THE MAIN RESULT

Our aim is to prove the following result:

Theorem 3.2. Let u0 ∈ D, f ∈ L2(0, T ; H). Then there exists T ∗ and
u ∈ L2(0, T ∗; D) ∩ L∞(0, T ∗; V ), u′ ∈ L2(0, T ∗; H) such that u is a generalized
solution of the Navier-Stokes problem on (0, T ∗).

Let 0 < T ∗ ≤ T . We make use the following reflexive Banach spaces.

X1,T∗ =
{
ϕ; ϕ ∈ L2(0, T ∗, W 1+2δ,2(Ω)2) ∩ L9

(
0, T ∗; V )

}

and
X2,T∗ =

{
ϕ; ϕ ∈ L2(0, T ∗; D),ϕ′ ∈ L2(0, T ∗; H)

}
,

respectively, with norms

‖ϕ‖X1,T∗ = ‖ϕ‖L2(0,T∗,W 1+2δ,2(Ω)2) + ‖ϕ‖L9(0,T∗;V )

and
‖ϕ‖X2,T∗ = ‖ϕ‖L2(0,T∗; D) + ‖ϕ′‖L2(0,T∗; H).

Since
X2,T∗ ↪→↪→ L2(0, T ∗,W 1+2δ,2(Ω)2)

and
X2,T∗ ↪→↪→ L9

(
0, T ∗; V )

the embedding

(3.30) X2,T∗ ↪→↪→ X1,T∗
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holds.

Let u be a generalized solution of problem (1.1)−(1.6) with a right hand side
f ∈ L2(0, T ; H) and initial condition

(3.31) u0 ∈ D.

Let

(3.32) u = u0 + w.

Then w ∈ L2(0, T ; D) ∩ L∞(0, T ; V ), w′ ∈ L2(0, T ; H), the form
((

w′, v
))

H
+

((
w,v

))
V

=(3.33)

=
((

f , v
))

H
− ((

u0,v
))

V
− b(u0,u0,v)− b(w, u0,v)− b(u0, w, v)− b(w, w, v)

holds for every v ∈ V and for almost every t ∈ (0, T ) and

(3.34) w(0) = 0.

Let F : X1,T∗ → L2(0, T ; H) be an operator such that
((

F (φ), v
))

H
=

((
F (φ)(t),v

))
H

=
((

f(t),v
))

H
− ((

u0, v
))

V
− b(u0, u0, v)−

− b(φ(t),u0, v)− b(u0, φ(t),v)− b(φ(t), φ(t), v).

Remark 3.2. Note that u = w + u0 is a generalized solution of the problem (1.1)−(1.6)
if and only if the equality

(3.35)
((

w′,v
))

H
+

((
w, v

))
V

=
((

F (w), v
))

H

holds for every v ∈ V and for almost every t ∈ (0, T ) and (3.34) holds.

We prove the following lemma:

Lemma 3.1. F is a continuous operator from X1,T∗ into L2(0, T ∗; H). Moreover there
exists K > 0 such that the inequality

(3.36) ‖F (ϕ)‖L2(0,T∗; H) ≤ c2(T ∗)1/12‖ϕ‖2X1,T∗ + c3(T ∗)1/6‖ϕ‖X1,T∗ + K

holds for every ϕ ∈ X1,T∗ .

Proof of Lemma 3.1: It is easy to see that there exists K > 0 such that

(3.37) ‖((f(t), .
))

H
− ((

u0, v
))

V
− b(u0, u0, v)‖L2(0,T∗; H) ≤ K.

Further the inequality

‖b(ϕ, u0, .)‖L2(0,T∗; H) ≤ ‖u0‖W 1,2+2δ(Ω)2

(∫ T∗

0

‖ϕ‖2Lp(Ω)2

)1/2

≤(3.38)

≤ ‖u0‖W 1,2+2δ(Ω)2

(∫ T∗

0

‖ϕ‖3Lp(Ω)2

)1/3

(T ∗)1/6 ≤

≤ c‖u0‖W 1,2+2δ(Ω)2‖ϕ‖X1,T∗ (T
∗)1/6
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holds for sufficiently large p. Similarly we obtain the inequality

‖b(u0, ϕ, .)‖L2(0,T∗; H) ≤ ‖u0‖L∞(Ω)2

(∫ T∗

0

‖ϕ‖2V
)1/2

≤(3.39)

≤ ‖u0‖W 1,2+2δ(Ω)2

(∫ T∗

0

‖ϕ‖9V
)1/9

(T ∗)7/9 ≤

≤ c‖u0‖W 1,2+2δ(Ω)2‖ϕ‖X1,T∗ (T
∗)7/9.

Since
‖ϕ‖W 1,2+δ(Ω)2 ≤ ‖ϕ‖1/2

V ‖ϕ‖1/2

W 1,2+2δ(Ω)2

we get the inequality

‖b(ϕ, ϕ, .)‖L2(0,T∗; H) ≤
(∫ T∗

0

‖ϕ‖3V ‖ϕ‖W 1,2+2δ(Ω)2

)1/2

≤(3.40)

(∫ T∗

0

‖ϕ‖2W 1,2+2δ(Ω)2

)1/4(∫ T∗

0

‖ϕ‖9V
)1/6

(T ∗)1/6 ≤ ‖ϕ‖2X1,T∗ (T
∗)1/12.

The inequalities (3.37)−(3.40) yield F (ϕ) ∈ L2(0, T ; H) and the inequality (3.36).

Let ϕ1, ϕ2 ∈ X1,T∗ and ϕ = ϕ2 −ϕ1. Then

F (ϕ2)− F (ϕ1) = b(ϕ, u0, .) + b(u0, ϕ, .) + b(ϕ2, ϕ, .) + b(ϕ, ϕ1, .)

and

(3.41)

‖b(ϕ2, ϕ, .)‖L2(0,T∗; H) ≤
(∫ T∗

0

‖ϕ2‖2V ‖ϕ‖2W 1,2+δ(Ω)2

)1/2

≤

≤
(∫ T∗

0

‖ϕ2‖2V ‖ϕ‖W 1,2+2δ(Ω)2‖ϕ‖V

)1/2

≤

≤
(∫ T∗

0

‖ϕ2‖9V
)1/9(∫ T∗

0

‖ϕ‖9V
)1/18(∫ T∗

0

‖ϕ‖2W 1,2+δ(Ω)2

)1/4

(T ∗)1/6 ≤

≤ ‖ϕ‖X1,T∗ ‖ϕ2‖X1,T∗ (T
∗)1/6.

Similarly

(3.42) ‖b(ϕ, ϕ1, .)‖L2(0,T∗; H) ≤ ‖ϕ‖X1,T∗ ‖ϕ1‖X1,T∗ .

Inequalities (3.38), (3.39), (3.41) and (3.42) yield that F is a continuous operator
from X1,T∗ into L2(0, T ∗; H). The proof is complete.

Definition 3.3. Let T : X1,T∗ → X2,T∗ be an operator such that T (ϕ) = w if and
only if

(3.43)
((

w′, v
))

H
+

((
w,v

))
V

=
((

F (ϕ), v
))

H
,

holds for every v ∈ V and w(0) = 0.
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Lemma 3.2. The operator T is a continuous operator from X1,T∗ into X2,T∗ . Moreover,

(3.44) c1‖T (ϕ)‖X1,T∗ ≤ ‖T (ϕ)‖X2,T∗ ≤ c2‖F (ϕ)‖L2(0,T∗; H).

Proof of Lemma 3.2: Inequality (2.14) and Lemma 3.1 imply that T is a continu-
ous operator from X1,T∗ into X2,T∗ .

Proof of Theorem 3.2: Let

BR = {ϕ ∈ X1,T∗ ; ‖ϕ‖X1,T∗ ≤ R}.
Lemma 3.1 and Lemma 3.2 imply that for a sufficiently small T ∗ and for a suf-
ficiently large R, T maps BR into itself. By Lemma 3.2 and (3.30), T is totally
continuous operator from X1,T∗ into X1,T∗ . Moreover, the Banach space X1,T∗ is
reflexive. Therefore there exists w ∈ BR such that T (w) = w. Set u = w+u0. By
Remark 3.2, u is a generalized solution of the problem (1.1)−(1.6). The theorem
is proved.
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