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The free-boundary flow past an obstacle. Qualitative
and numerical results

ADRIAN CARABINEANU

ABSTRACT. The investigation of the free boundary flow of an ideal fluid past a smooth obstacle
is reduced herein to the study of a system of non-linear integro-differential equations. We study the
existence and uniqueness of the solution in case that the obstacle is an arc of circle (symmetrical with
respect to Ox - axis which is assumed to have the direction of the fluid flow at infinity upstream) and
we calculate it numerically by means of the successive approximations method. We also calculate the
drag coefficient and the free lines.

1. INTRODUCTION

Usually, in the papers dealing with the classical theory of the 2d potential flow
of an ideal incompressible fluid, d’Alembert’s paradox is explained by the ne-
glect of the viscosity. Helmholtz noticed in 1868 (like Kirchhoff in 1869) that
d’Alembert’s paradox may be avoided (even if ones assumes that the fluid is
ideal) if we consider that a wake, a ”stagnation zone” (where the velocity van-
ishes and the pressure is constant) appears behind the obstacle. At the beginning
of the XX-th century, Levi-Cività [5] and H. Villat [8] developed the mathemati-
cal fundamental of the wake flow. In 1934 J. Leray [4] utilized functional meth-
ods (like topological degree teory) for investigating the free-boundary flow past
a class of curvilinear obstacles. Later the method was extended by Chaplygin,
Riabouchinsky [7], C. Jacob [3], S. Popp [6] to the free-boundary subsonic com-
pressible flow past obstacles. In order to enlarge the class of obstacles for which
one may obtaint analytical results, one employed inverse methods. In our paper
the problem of the free-boundary flow past a smooth obstacle is reduced to the
study of a system of integral equations. We utilize the successive approximations
method for studying the flow past the circular obstacle. Then we calculate the
drag coefficient and the free-lines. We compare the value of the drag coefficient
with values calculated by other authors and we find a very good agreement.

2. HELMHOLTZ’S MODEL

According to this model, behind the fixed obstacle there is a wake where the
fluid is at rest and the pressure is constant. According to Bernoulli we have

(2.1) p+
1
2
ρV 2 = p0 +

1
2
ρV 2

0 = pmax
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where p is the pressure, ρ is the density, V is the modulus of velocity, p0 is the
pressure at infinity upstream, V0 is the modulus of velocity at infinity upstream
and pmax is the maximum value of the pressure. In fig.1 we present an obstacle
with the wake and the two free lines λ1 and λ2. Q is an isolated stagnation point
and A and B are the detachment points.

Helmholtz model

Helmholtz’s model leads to a free-boundary value problem for a domain D
from theOxy - plane. The unknowns are the coordinates of the velocity u, v : D →
R which are assumed to be differentiable, with continuous derivatives. We also
utilize the complex potential ϕ and the stream function ψ which are connected
through the relations

(2.2) u =
∂ϕ

∂x
=
∂ψ

∂y
, v =

∂ϕ

∂y
= −∂ψ

∂x
,

which arise from the condition of irrotationality and from the equation of conti-
nuity (mass conservation):

rotv = 0, div v = 0, v = (u, v).

We deduce that the functions ϕ are ψ harmonic in D. The obstacle $ and the free
lines λ1 and λ2 are stream-lines i.e.

v · n =
∂ϕ

∂n
=
∂ψ

∂s
= 0,

(where n is the normal and
∂

∂n
and

∂

∂s
are the normal respectively tangential

derivative) and we have

(2.3) ψ(x, y) = const. = 0, ∀(x, y) ∈ $ ∪ λ1 ∪ λ2.

Since the free lines are not apriori known, for determining them we have to
impose a supplementary condition, arising from the continuity of the pressure
p = p0. According to Bernoulli’s equation (2.1 ) it follows

(2.4)
(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2

= u2 + v2 = V 2 = V 2
0 , ∀ (x, y) ∈ λ1 ∪ λ2.

At infinity upstream the flow is supposed to be uniform, i.e. denoting by α the
angle of the velocity with the Ox - axis, we have:

(2.5) lim
∞

(u, v) = (V0 cosα, V0 sinα).

3. LEVI - CIVITÀ’S METHOD

It relies on the conformal mappings method. One introduces the complex vari-
able z = x+ iy and the complex potential f(z) = ϕ(x, y) + iψ(x, y). The complex
velocity is

(3.6) w =
df

dz
= u− iv = V cos θ − iV sin θ = V exp(−iθ)
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where θ is the angle of the velocity with theOx - axis.Hence V and θ are the polar
coordinates in the hodographic plane Ouv.

Levi-Cività introduces the complex analytical function ω(z) by means of the
relation

(3.7) w(z) = V0 exp(−iω(z)).

From (3.6) and (3.7) we get

(3.8) ω = θ + iτ , τ = ln
V

V0
.

From (2.4) and (3.8) it follows the boundary condition

(3.9) τ(x, y) = 0 , ∀(x, y) ∈ λ1 ∪ λ2.

At infinity upstream we have

(3.10) lim
z→∞

w(z) = V0 exp(−iα) , lim
z→∞

ω(z) = α.

Taking into account the boundary condition we may conclude that the com-
plex potential maps conformally the domain of motionD (from the z - plane)onto
a domain G from the plane of the complex variable f = ϕ+ iψ, namely the com-
plex plane with a cut along the positive real semi-axis (fig.2).

From the relations (3.6) and (3.7) we deduce

(3.11) V0(z − z0) =
∫ f

0

exp(iω(f))df

where z0 is the affix of the stagnation point Q where one considers f = 0.
It would be sufficient to know ω( f) for finding f(z). The function ω(f) satisfies

the following conditions

(3.12) lim
f→∞

ω(f) = α , τ(ϕ,−0) = 0,∀ϕ > f1 , τ(ϕ,+0) = 0,∀ϕ > f2

because (f1,∞) is the image of the free - line λ1 and (f2,∞) is the image of the
free - line λ2.

In order to determine ω(f) it is sufficient to know the restrictions of its real part
θ to the segments (0, f1) respectively (0, f2):

(3.13) θ(ϕ,−0) = θ1(ϕ),∀ϕ ∈ (0, f1) , θ(ϕ,+0) = θ2(ϕ),∀ϕ ∈ (0, f2).

4. THE INTEGRAL REPRESENTATION OF LEVI-CIVITÀ’S FUNCTION

We determine the solution of the boundary value problem (3.7), (3.12), (3.13)
for ω(f) under the parametric form ω = ω(ζ) , f = f(ζ) where f(ζ) has an
explicit expression and ω(ζ) has an integral representation associated to another
boundary value problem. We denote by U the unit half-disk.

(4.14) U = {ζ = ξ + iη ∈ C; η > 0, | ζ |< 1} .
We consider the apriori unknown parameters L (which has the significance of

a characteristic length of the obstacle) and a0 ∈ (0, π). The function f : U → G,
defined by

(4.15) f(ζ) = LV0

(
ζ +

1
ζ
− u0 −

1
u0

)2

, ζ ∈ U ,
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where

(4.16) u0 = exp(ia0) , u0 +
1
u0

= 2 cos a0

maps conformally the superior half-disk U onto the plane with a cut G (fig. 3).
When the parameters L and a0 are determined by the relations

(4.17) f(1) = 4LV0(1− cos a0)2 = f1 , f(−1) = 4LV0(1 + cos a0)2 = f2

to the radii (0, 1) and (−1, 0) of the unit half-disk it correspond the half-lines
(f1,∞) respectively (f2,∞), which are images of the free-lines λ1 and λ2. To the
arcs of the unit half-circle it corresponds the segments (0, f1) respectively (0, f2)
which are images of the arcs AQ and QB according to the relation

(4.18) f(exp(iσ)) = 4LV0(cosσ − cos a0)2.

Derivating and integrating we have

(4.19)
df

dζ
= 2LV0

(
1
ζ
− 1
u0

)
(1− ζu0)

(
1− 1

ζ2

)
,

(4.20)
dz

dζ
=

1
w

df

dζ
= 2L exp(iω(ζ))

(
1
ζ
− 1
u0

)
(1− ζu0)

(
1− 1

ζ2

)
,

(4.21) z = z(ζ) = zA +
∫ ζ

1

dz

dζ
dζ.

The formulae (4.15), (4.20) and (4.21) are the parametric representations of the
complex potential f(z). In this manner the initial problem was reduced to the
determination of the function ω (ζ). The imaginary part of this function vanishes
on (−1, 1)

(4.22) τ (ξ, 0) = 0, ∀ξ ∈ (−1, 1).

For determining ω (ζ) it suffices to know the real part on the half-circle AQB :

(4.23) θ(cosσ, sinσ) = θr(σ), σ ∈ (0, π).

We prolong the functions f (ζ) and ω (ζ) in the inferior unit half-disk by means
of the relations

(4.24) f
(
ζ
)

= f(ζ), ω
(
ζ
)

= ω (ζ), | ζ |≤ 1.

Hence we have
θr(−σ) = θr(σ), σ ∈ (0, π).

According to Schwarz-Villat ([3]) formula we have the integral representation

(4.25) ω (ζ) =
1
2π

∫ π

−π

θr(σ)
(

2ζ
exp(iσ)− ζ

+ 1
)
dσ, | ζ |< 1.

Since θr(σ) is an odd function, from (4.25) we deduce

(4.26) ω (ζ) =
1
π

∫ π

0

θr(σ)
(

ζ

exp(iσ)− ζ
+

ζ

exp(−iσ)− ζ
+ 1

)
dσ, | ζ |< 1.
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and from (4.26), (3.12) and (4.15)

(4.27) ω (0) =
1
π

∫ π

0

θr(σ)dσ = α.

We consider the complex function N(·, ·) :

(4.28) N (ζ, a) = ln
1− ζ exp (ia)

1− ζ exp (−ia)
= −2i

∑
m≥1

1
m
ζm sinma, | ζ |< 1, a ∈ (0, π)

with N (ζ, 0) = N (ζ, π) = 0.
We also introduce the real şi simmetric kernel K(·, ·) :

(4.29) K(t, a) = K(π − t, π − a) = ReN(exp(it), a) = ln
sin t+a

2

| sin t−a
2 |

, a, t ∈ (0, π)

(4.30) K(t, a) = 2
∑
m≥1

1
m

sinma sinmt.

Employing the new notations we may write:

(4.31) ω (ζ) = α+
i

π

∫ π

0

θr (σ)
∂

∂σ
N (ζ, σ) dσ.

5. THE SECOND INTEGRAL REPRESENTATION

Let S be the curvilinear coordinate on the obstacle and g(S) (which is supposed
to be derivable with a continuous derivative), the angle between theOx−axis and
the tangent to the obstacle AQB (fig.1). In the stagnation point Q the streamline
bifurcates. The angle θr of the velocity is equal to the angle g(S) on the arc QB
and it is equal to the angle g(S)− π on the arc AQ :

(5.32) θr = α0 + g(S), α0 =
{
−π, σ ∈ (0, a0)
0, σ ∈ (a0, π).

Hence we have the representation

(5.33) ω = ω0 + ωg

with

(5.34) ω0 = α− iN (ζ, a0) = α+ i ln
1− ζ

u0

1− ζu0
,

(5.35) ωg =
i

π

∫ π

0

g(S(σ))
∂

∂σ
N (ζ, σ) dσ.

From (4.27) and (5.32) we get the condition a0 = 1
π

∫ π

0
g(S(σ))dσ − α.

From the formulas (3.7), (4.20) and (5.34) we get:

(5.36) w0 (ζ) = V0 exp (−iω0 (ζ)) = V0 exp (−iα)
1− ζ

u0

1− ζu0
,

(5.37) w (ζ) = w0 (ζ) exp (−iωg (ζ)) ,
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dz0
dζ

= 2L exp(iω0)
(

1
ζ
− 1
u0

)
(1− ζu0)

(
1− 1

ζ2

)
(5.38)

= 2L exp(iα) (1− ζu0)
2

(
ζ − 1

ζ

)
1
ζ2
,

dz

dζ
=
dz0
dζ

exp (iωg (ζ))(5.39)

= 2L exp(iα)u0

(
ζu0 +

1
ζu0

− 2
) (

ζ − 1
ζ

)
1
ζ

exp (iωg (ζ)) .

The parametric representation of the arc AQB with respect to the parameter σ
follows from the relations

(5.40)
dz0
dσ

=
dz0
dζ

dζ

dσ
= iζ

dz0
dζ

= 8L exp (i (α+ a0)) [1− cos (σ + a0)] sinσ,

(5.41)
dS

dσ
=| dz

dσ
|= 8L | exp [iωg (exp (iσ))] | [1− cos (σ + a0)] sinσ.

Integrating we obtain

(5.42) SB−SA =
∫ π

0

dS

dσ
dσ=8L

∫ π

0

| exp [iωg (exp (iσ))] | [1−cos (σ+a0)] sinσdσ.

In case that the detachment points are known, this relation allows to find the
parameter L.

6. THE SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS

The parametric equations of the arc AQB follow from

(6.43)
dx

dS
= cos g(S),

dy

dS
= sin g(S), S ∈ (SA, SB).

The curvature −h(S) of the arc AQB is:

(6.44) − h(S) =
dg

dS
.

Passing to the limit on the unit circle we get

(6.45) ωg (exp (it)) = G(t) + iT (t) =
i

π

∫ π

0

N (exp (it) , σ)h(S(σ))
dS

dσ
dσ.

Separating the imaginary parts and taking into account (4.29), we get the sys-
tem of nonlinear integro-differential equations for the functions T (·) and S(·):

(6.46) T (t) =
1
π

∫ π

0

ln
sin t+σ

2

| sin t−σ
2 |

K(t, σ)h(S(σ))S′(σ)dσ,

(6.47) S′(σ) = 8L [1− cos (σ + a0)] sinσ exp (−T (σ)) .

The function −h(·) is the known curvature of the obstacle. Obviously we have

(6.48) S(σ) = SA + 8L
∫ σ

0

exp (−T (t)) [1− cos (t+ a0)] sin tdt.
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7. THE SYMMETRIC OBSTACLE HAVING THE SHAPE OF AN ARC OF CIRCLE

In this case the curvature is constant and we have:

(7.49) α = 0, a0 =
π

2
, λ = 8Lh(S) = const. ≥ 0.

Substituting S′ from (6.47) to (6.46) we obtain the nonlinear integral equation

(7.50) T (t) = F (T (t)) =
λ

π

∫ π

0

exp(−T (σ)) ln
sin

t+ σ

2

| sin t− σ

2
|
(1 + sinσ) sinσdσ.

The operator F is defined on C ([0, π]), the space of continuous functions on
[0, π] , endowed with the norm

(7.51) ‖T‖ = sup {|T (t)| ; 0 ≤ t ≤ π} .

The kernel of this operator has a positive values and it also has a logarithmic
singularity. Denoting F0(t) = F (0)(t) we get

(7.52) 0 ≤ F0(t) ≤
2λ
π

∫ π

0

K(t, σ) sinσdσ = 2λ sin t ≤ 2λ.

The images of the functions are minorized by 0 and the images of the positive
functions are majorized as follows

(7.53) T ≥ 0 =⇒ 0 ≤ F (T ) ≤ F (0) ≤ 2λ sin(·).

Since

(7.54) T, Y ≥ 0 =⇒ |exp(−T )− exp(−Y )| ≤ |T − Y | ≤ ‖T − Y ‖

we get

(7.55) T, Y ≥ 0 =⇒ |F (T )− F (Y )| ≤ ‖T − Y ‖F (0) ≤ 2λ ‖T − Y ‖ sin(·).

We deduce that for λ ∈ [0, 1
2 ) the operator F is a contraction, therefore the

integral equation (7.50) has a unique solution which may be calculated with the
successive approximations method.

The case of this obstacle is also studied in [3], page 584-587. We notice that

t, σ ∈ (0, π); we have therefore ln
sin

t+ σ

2
| sin

t− σ

2
|
≥ 0, whence it follows

T̃ (t) ≥ T̂ (t) ,∀t ∈ (0, π) ⇒ F (T̃ (t)) ≤ F (T̂ (t)),∀t ∈ (0, π) .

Starting with the initial function T0(t) ≡ 0, denoting Tn = F (Tn−1) and taking
into account that T0 (t) ≤ T2 (t) ≤ T1 (t), we get

T0 (t) ≤ T2 (t) ≤ ... ≤ T2n (t) ≤ ... ≤ T2n+1 (t) ≤ ... ≤ T3 (t) ≤ T1 (t) .

Since the sequences {T2n (t)}n≥0 and {T2n+1 (t)}n≥0 are monotone and bounded,
we get

T (0) (t) = lim
n→∞

T2n (t) , T (1) (t) = lim
n→∞

T2n+1 (t) , T (0) (t) ≤ T (1) (t) .
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We obviously have

F
(
T (0)

)
= T (1), F

(
T (1)

)
= T (2).

If we obtain by means of some numerical experiments that T (0) (t) = T (1) (t) ,
we conclude that F (T ) = T where

(7.56) T (0) (t) = T (1) (t) = T (t) = lim
n→∞

Tn(t), Tn = Fn(T0).

(7.57) Fn(T0(t)) = F (Fn−1(T0(t))), n ≥ 2.

The function F (T0(t)) is calculated approximatively as follows: one considers
an equidistant grid {t1 = 0, t2, ..., tN , tN+1 = π} of the interval [0, π] and using a
certain quadrature formula, one calculates {T1(ti); i = 1, ..., N +1} and repeating
the procedure,{Tn(ti); i = 1, ..., N + 1}. We stop the iterative process when for a
certain 0 < ε << 1,

(7.58) |Tn+1(ti)− Tn(ti)| ≤ ε, i = 1, ..., N + 1.

Since T (t) = Re [−iωg(exp(it))] and T (−t) = −T (t), we have according to
Schwarz-Villat formula

(7.59) ωg (ζ) =
2ζ
π

∫ π

0

T (t)
sin t

1− 2ζ cos t+ ζ2
dt

whence, derivating we get

(7.60) ω′g(ζ) =
2
π

∫ π

0

T (t)
sin t

1− 2ζ cos t+ ζ2
dt− 4ζ

π

∫ π

0

T (t)
ζ − cos t

(1− 2ζ cos t+ ζ2)2
dt

(7.61) ω′g(0) =
2
π

∫ π

0

T (t)dt.

After calculating {T (ti); i = 1, ..., N +1}, one may calculate numerically ω′g(0).
In our paper we considered N + 1 = 41 equidistant nodes on the interval [0, π]

and we utilized Simpson’s formula for the approximate calculus of the integrals.
Finally we compute

(7.62) ω′(0) = ω′0(0) + ω′g(0) = −2 + ω′g(0).

We performed some numerical calculations for λ = 1.1372. From (5.42) it fol-
lows that for this parameter the length of the arc of circle with radius1, symmetric
with respect to the Ox-axis este 1.9222, corresponding to the detachment angle
55.04◦.

The free-boundary flow past this obstacle was studied through various meth-
ods by J. Hureau et al. [2], G. Birkhoff and E. H. Zarantonello [1], Brodetski,
Schmieden (for the last two authors some references may be found in [3], page
593). In their papers the following drag coefficient was calculated

(7.63) CD =
πλ(ω′(0))2

8
.

In the table below we present the values of the drag coefficient calculated by
various authors

Hureau Birkhoff Brodet ski
CD 0.4986 0.499 0.493
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Utilizing the method presented herein we found CD = 0.4986. Employing the
relations (4.20) (where u0 = i), (4.21), (5.34), (7.50) and (7.59) we can calculate
various points z(ζ), ζ ∈ [−1, 1] on the free lines. In fig.4 we present the free lines
by continuous lines and the obstacle by (+).

8. CONCLUSIONS

The 2d free-boundary incompressible flow past a smooth convex obstacle was
reduced to the study of a system of two non-linear integro-differential equations.
In case that the obstacle is an arc of circle one has to solve only a non-linear inte-
gral equation. We proved that the integral equation has a unique solution which
may be found by means of the successive approximations method. We have cal-
culated the drag coefficient for the obstacle consisting in an arc of circle and we
have compared the result with results obtained in other papers. The position of
the free lines was also calculated.
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