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The fixed points method for the stability of some
functional equations

LIVIU CĂDARIU and VIOREL RADU

ABSTRACT. We use the fixed point method to obtain stability theorems of Ulam-Hyers type for
some functional equations. The method uses the fixed point alternative as a meaningful device on
the road to a better understanding of the stability property, plainly related to some fixed point of a
concrete operator.

1. INTRODUCTION

The study of stability problems for functional equations originated from a
question of S. M. Ulam concerning the stability of group homomorphisms:

Let G be a metric group with a metric d. Given ε > 0, does there exist a k > 0 such
that for every function f : G→ G satisfying the inequality

d(f(x · y), f(x) · f(y)) < ε,∀x, y ∈ G,

there exists an automorphism a of G with

d(f(x), a(x)) < kε,∀x ∈ G ?

D. H. Hyers gave an affirmative answer to the question of Ulam for Cauchy
equation, in Banach spaces. Then T. Aoki, D. Bourgin as well as other authors
considered the stability problem with unbounded Cauchy differences (see e.g.
[12] and [17]). Their results include the following

Theorem 1.1. (Hyers-Aoki-Gajda). Suppose that E is a real normed space, F is a real
Banach space and f : E → F is a given function, such that the following condition holds

(1p) ‖f(x+ y)− f (x)− f (y)‖F ≤ θ(‖x‖pE + ‖y‖pE),∀x, y ∈ E,

for some p ∈ [0,∞)\{1}. Then there exists a unique additive function a : E → F such
that

(2p) ‖f (x)− a (x)‖F ≤ 2θ
|2− 2p|

‖x‖pE ,∀x ∈ E.

This phenomenon is called generalized Ulam-Hyers stability and has been exten-
sively investigated for different functional equations. It is worth mentioning that
almost all proofs used the idea conceived by D. H. Hyers. Namely, the additive
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function a : E → F is constructed, starting from the given function f , by the
following formulae

(2p<1) a(x) = lim
n→∞

1
2n
f(2nx), if p < 1;

(2p>1) a(x) = lim
n→∞

2nf
( x

2n
)

, if p > 1.

This method is called the direct method or Ulam’s method. It is often used to con-
struct a solution of a given functional equation and is seen to be a powerful tool
for studying the stability of many functional equations ( cf. [12] and [17] for de-
tails). On the other hand, in [20], [8] and [6] a fixed point method was proposed, by
showing that many theorems concerning the stability of Cauchy and Jensen equa-
tions are consequences of the fixed point alternative. Subsequently, the method
has been successfully used, e.g., in [7], [9], [11], [21] or [19].

Our aim is to highlight generalized stability results (of Hyers-Aoki-Bourgin type)
for some functional equations obtained by using the fixed point alternative. The
method introduces a metrical context and better clarifies the ideas of stability,
which is seen to be plainly related to some fixed point of a suitable operator:
our control conditions (below denoted by (Hi) and (H∗

i ) or (Hj) and (H∗
j )), are

responsible for the following fundamental facts: They ensure
1) the contraction property of a Schröder type operator J and
2) the first two successive approximations, f and Jf , to be at a finite distance.

Moreover,
3) they force the fixed point of J to be a solution of the initial equation.

Some illustrative applications to concrete (quadratic and monomial) functional
equations are also given.

2. A SIMPLE FIXED POINT METHOD

For the sake of convenience, we recall the following.

Theorem 2.2. (The alternative of fixed point [18], see also [23], ch. 5]). Suppose we
are given a complete generalized metric space (E , d) -i.e. one for which d may assume in-
finite values- and a strictly contractive mapping A : E → E , with the Lipschitz constant
L. Then, for each given element f ∈ E ,
either
(A1) d(Anf,An+1f) = +∞ , ∀n ≥ 0,
or
(A2) There exists a natural number n0 such that

(A20) d(Anf,An+1f) < +∞, ∀n ≥ n0 ;
(A21) The sequence (Anf) is convergent to a fixed point f∗ of A ;
(A22) f∗ is the unique fixed point of A in the set E? = {g ∈ E , d (An0f, g) < +∞} ;
(A23) d (g, f∗) ≤ 1

1−Ld (g,Ag) ,∀g ∈ E?.

Remark 2.1. The fixed points f∗, if any, need not be uniquely determined in the
whole space E and do depend on the initial guess f .
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2.1. A simple proof of Theorem 1.1. We consider the set

E := {g : E → F, p · g (0) = 0}

and introduce the generalized metric d = dp : E × E → [0,+∞] by the formula

dp (g, h) = sup
x6=0

‖g (x)− h (x)‖F
‖x‖pE

It is well-known and easy to verify that (E , d) is complete.
Now we will consider the (linear) mapping

A : E → E , Ag (x) :=
1
q
g (qx)

where q = 2 if p < 1, and q = 2−1 if p > 1. Obviously, for any g, h ∈ E :

‖Ag (x)−Ah (x)‖F
‖x‖pE

=
1
q

‖g (qx)−h (qx)‖F
‖x‖pE

=qp−1 ‖g (qx)−h (qx)‖F
‖qx‖pE

≤qp−1d (g, h),

for all g, h ∈ E . Therefore

d (Ag,Ah) ≤ qp−1d (g, h) ,∀g, h ∈ E ,

so that A is strictly contractive with the Lipschitz constant L = qp−1.
Now, if we set y = x in the hypothesis (1p) , then

‖2f (x)− f(2x)‖ ≤ 2θ ‖x‖p ,∀x ∈ E,

which says that

d (f,Af) ≤ θ <∞, for p < 1, and

d (f,Af) ≤ θ

2p−1
<∞, for p > 1

Using the fixed point alternative we obtain the existence of a mapping a : E → E
such that:

10 a is a fixed point of A:

(2.1) a (2x) = 2a (x) ,∀x ∈ E.

The mapping a is the unique fixed point of A in the set

F = {g ∈ E , d (f, g) < +∞} .

This means that a is the unique mapping g : E → F verifying both (2.1) − (2.2),
where

(2.2) ∃ c ∈ [0,∞) such that ‖g (x)− f (x)‖F ≤ c ‖x‖pE , ∀x ∈ E.

20 d(Anf, a) → 0, which implies

(2.3) lim
n→∞

f (qnx)
qn

= a(x), ∀x ∈ E.

Therefore at least one of the statements (2p<1) and (2p>1) is seen to be true.
30 d(f, a) ≤ 1

1−qp−1 d (f,Af) ≤ 2θ
|2−2p| , that is the inequality (2p) takes place.
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Finaly, as it is well-known, the additivity of a follows immediately from (1p)
and (2.3):
If in (1p) we replace x by qnx and y by qny, then we obtain∥∥∥∥f(qn (x+ y))

qn
− f(qnx)

qn
− f(qny)

qn

∥∥∥∥
F

≤ Lnθ(‖x‖pE + ‖y‖pE),∀x, y ∈ E,

and, letting n→∞, we get

a(x+ y) = a (x) + a (y) ,∀x, y ∈ E.

3. A GENERAL FIXED POINT METHOD

Firstly, we prove an auxiliary stability result (compare with [1], [3] and [14])
for the single variable equation w ◦ g ◦ η = g, where

1. the unknown is a mapping g : G→ Y .
2. η is a self-mapping of the Abelian group G;
3. w is a Lipschitzian self-mapping (with Lipschitz constant `w) of the β−normed

space Y , where, as usual, a mapping || · ||β : Y → R+, with β ∈ (0, 1], is called
a β−norm iff it has the properties (nIβ) : ||y||β = 0 ⇔ y = 0, (nIIβ ) : ||λ · y||β =
|λ|β · ||y||β , and (nIIIβ ) : ||y + z||β ≤ ||y||β + ||z||β , for all y, z ∈ Y, and λ ∈ K.

Theorem 3.3. Suppose that f : G→ Y satisfies

(Cψ) ‖(w ◦ f ◦ η)(x)− f(x)‖β ≤ ψ(x), ∀x ∈ G,

with some fixed mapping ψ : G→ [0,∞). If there exists L < 1 such that

(Hψ) `w · (ψ ◦ η)(x) ≤ Lψ(x),∀x ∈ G,
then there exists a unique mapping c : G→ Y which satisfies both
the equation

(Ew,η) (w ◦ c ◦ η)(x) = c(x),∀x ∈ G
and the estimation

(Estψ) ‖f(x)− c(x)‖β ≤
ψ(x)
1− L

,∀x ∈ G.

Namely, the solution mapping c can be acquired through the Hyers method:

c(x) = lim
n→∞

(wn ◦ f ◦ ηn) (x),∀x ∈ G.

Proof. Let us consider the set E := {g : G→ Y } and introduce a complete general-
ized metric on E (as usual, inf ∅ = ∞):
(GMψ)

d (g, h) = dψ (g, h) = inf
{
K ∈ R+, ‖g (x)− h (x)‖β ≤ Kψ(x),∀x ∈ G

}
.

Now, define the mapping

(OP) J : E → E , Jg (x) := (w ◦ g ◦ η)(x).
Step I. Using the hypothesis (Hψ) it follows that J is strictly contractive on E .

Indeed, for any g, h ∈ E we have:

d(g, h) < K =⇒ ‖g (x)− h (x)‖β ≤ Kψ(x),∀x ∈ G
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and

‖Jg(x)− Jh(x)‖β = ‖w (g(η(x)))− w (h(η(x)))‖β ≤ `w · ‖g(η(x))− h(η(x))‖β .
Therefore

‖Jg(x)− Jh(x)‖β ≤ `w ·K · ψ(η(x)) ≤ K · L · ψ(x),∀x ∈ G

so that d (Jg, Jh) ≤ LK, which implies

(CCL) d (Jg, Jh) ≤ Ld (g, h) ,∀ g, h ∈ E .
This says that J is a strictly contractive self-mapping of E , with the constant L < 1.

Step II. Obviously, d (f, Jf) <∞. In fact, using the relation (Cψ) it results that
d (f, Jf) ≤ 1.

Step III. We can apply the fixed point alternative (see [18], [23] or [6]), and we
obtain the existence of a mapping c : G→ Y such that:
• c is a fixed point of J , that is

(Ew,η) (w ◦ c ◦ η)(x) = c(x) ,∀x ∈ G.
The mapping c is the unique fixed point of J in the set

F = {g ∈ E , d (f, g) <∞} .
This says that c is the unique mapping verifying both (Ew,η) and (3.4), where

(3.4) ∃K <∞ such that ‖c (x)− f (x)‖β ≤ Kψ(x),∀x ∈ G.

• d(Jnf, c) −−−−→
n→∞

0, which implies

c(x) = lim
n→∞

(wn ◦ c ◦ ηn) (x),∀x ∈ G.

• d(f, c) ≤ 1
1−Ld (f, Jf) , which implies the inequality

d(f, c) ≤ 1
1− L

,

that is (Estψ) is seen to be true. �

3.1. Applications to the quadratic equation. We will consider the following equa-
tion, where the ”unknowns” are functions f : X → Y, between two vector spaces:

(3.5) f(x+ y) + f(x− y) = 2f(x) + 2f(y), for all x, y ∈ X.
Since the real functions defined on R by x → kx2 satisfy the equation (3.5), the
above functional equation is called quadratic. Every solution of a quadratic func-
tional equation is called a quadratic function.

Recall that a 2-divisible group is an Abelian group (X,+) such that for any
x ∈ X there exists a unique a ∈ X with the property x = 2a ; this unique element
a is denoted by x

2 .

Theorem 3.4. Let X be a 2-divisible group, Y a Banach space, and ri =
{

2, i = 0
1
2 , i = 1 .

Suppose that the mapping f : X → Y satisfies the condition f (0) = 0 and an inequality
of the form

(Qϕ) ‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖Y ≤ ϕ(x, y),∀x, y ∈ X,
where ϕ : X ×X → [0,∞) is a given function.
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If there exists L = L(i) < 1 such that the mapping

x→ Ω(x) = ϕ
(x

2
,
x

2

)
has the property

(Hi) Ω(x) ≤ L · r2i · Ω
(
x

ri

)
,∀x ∈ X,

and if the mapping ϕ has the property

(H∗
i ) lim

n→∞

ϕ (rni x, r
n
i y)

r2ni
= 0,∀x, y ∈ X,

then there exists a unique quadratic mapping q : X → Y which satisfies the functional
equation (3.5) and the inequality

(Esti) ‖f(x)− q(x)‖Y ≤ L1−i

1− L
Ω(x),∀x ∈ X.

Proof. Note that r0 = 2 if (H0) holds, and r1 = 2−1 if (H1) holds.
If the hypothesis (H0) holds, and we set x = y in the relation (Qϕ) , then we see
that

(QΩ,0)
∥∥∥∥f (2x)

4
− f(x)

∥∥∥∥
Y

≤ Ω(2x)
4

,∀x ∈ X.

If the hypothesis (H1) holds, and we replace both x and y by x
2 in the relation

(Qϕ) , then we obtain

(QΩ,1)
∥∥∥4f (x

2

)
− f(x)

∥∥∥
Y
≤ Ω(x),∀x ∈ X.

Now we can apply Theorem 3.3 (for β = 1), with w : X → Y , η : X → X ,
ψ : X → [0,∞),

w(x) :=
x

ri2
, η(x) := rix, ψ(x) :=

Ω(21−ix)
22(1−i)

and ri =
{

2, i = 0
1
2 , i = 1 . Clearly, lw = 1

r2i
and, by using (QΩ,i) and the hypothesis

(Hi), we obtain that (Cψ) and (Hψ) hold.
Then there exists a unique mapping q : X → Y ,

(3.6) q(x) := lim
n→∞

(wn ◦ q ◦ ηn) (x) = lim
n→∞

q (rinx)
ri2n

,∀x ∈ X,

which satisfies the following equation

(w ◦ q ◦ η)(x) = q(x) ⇔ q (2x) = 22q (x) , ∀x ∈ X

and the inequality

‖f(x)− q(x)‖Y ≤ ψ(x)
1− L

=
1

1− L
· Ω(21−ix)

22(1−i) ≤ L1−i

1− L
· Ω(x),∀x ∈ X.
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The statement that q is a quadratic mapping follows immediately from (Qϕ) and
(3.6): If in (Qϕ) we replace x by rinx and y by riny, then we obtain∥∥∥∥f(rin (x+ y))

ri2n
+
f(rin (x− y))

ri2n
− 2

f(rinx)
ri2n

− 2
f(riny)
ri2n

∥∥∥∥
Y

≤ ϕ (rinx, riny)
ri2n

,

for all x, y in X.
Taking into account the hypothesis (H∗

i ) and letting n→∞, we get

q(x+ y) + q(x− y)− 2q(x)− 2q(y) = 0,∀ x, y ∈ X.
which ends the proof. �

3.2. The general case of the monomoial equation and β−normed spaces. For
an Abelian group X and a vector space Y consider the difference operators de-
fined, for each y ∈ X and any mapping f : X → Y , in the following manner:

∆1
yf(x) := f(x+ y)− f(x), for all x ∈ X,

and, inductively, ∆n+1
y = ∆1

y ◦∆n
y , for all n ≥ 1.

A mapping f : X → Y is called a monomial function of degree N if it is a solution
of the monomial functional equation.

(3.7) ∆N
y f(x)−N !f(y) = 0, ∀ x, y ∈ X.

Notice that the monomial equation of degree 1 is exactly the Cauchy equation,
while for N=2 the monomial equation has the form f(x+2y)−2f(x+y)+f(x)−
2f(y) = 0, which is equivalent to the well-known quadratic functional equation.

In the sequel, the positive integer N will be fixed.
Let X be a 2-divisible group, let Y be a (real) complete β-normed space and

assume we are given a function ϕ : X ×X → [0,∞) with the following property:(
H∗

j

)
lim
m→∞

ϕ
(
rmj x, r

m
j y
)

rmNβj

= 0,∀x, y ∈ X, for rj := 21−2j , j ∈ {0, 1}.

Theorem 3.5. Suppose the mapping f : X → Y , with f (0) = 0, verifies the control
condition

(3.8) ‖∆N
y f(x)−N ! · f(y)‖β ≤ ϕ(x, y) , ∀x, y ∈ X.

If there exists a positive constant L < 1 such that the mapping

x→ Θ(x) =
1

(N !)β

(
ϕ(0, x) +

N∑
i=0

(
N

N − i

)
· ϕ
(
ix

2
,
x

2

))
, ∀x ∈ X,

satisfies the inequality

(Hj) Θ(rjx) ≤ L · rNβj ·Θ(x) ,∀x ∈ X,
then there exists a unique monomial mapping g : X → Y with the following fitting
property:

(Estj) ‖f(x)− g(x)‖β ≤
L1−j

1− L
Θ(x),∀x ∈ X.

For the proof of our theorem, we need the following fundamental lemma (cf.
[10]:
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Lemma 3.1. Let us consider an Abelian group X , a β−normed linear space Y and a
mapping ϕ : X × X → [0,∞). If the function f : X → Y satisfies (3.8) then, for all
x ∈ X,

(3.9)
∣∣∣∣∣∣∣∣f(2x)

2N
− f(x)

∣∣∣∣∣∣∣∣
β

≤ 1
2Nβ · (N !)β

·

(
ϕ(0, 2x) +

N∑
i=0

(
N

N − i

)
· ϕ(ix, x)

)
.

Proof of Theorem 3.5. For j=0, by Lemma 3.1, we have, ∀x ∈ X :
(QΘ,0)∣∣∣∣∣∣∣∣f(2x)

2N
−f(x)

∣∣∣∣∣∣∣∣
β

≤ 1
2Nβ · (N !)β

(
ϕ(0, 2x)+

N∑
i=0

(
N

N − i

)
· ϕ(ix, x)

)
=

Θ(2x)
2Nβ

.

For j=1, one can show, for all x ∈ X
(QΘ,1)∣∣∣∣∣∣f(x)−2Nf

(x
2

)∣∣∣∣∣∣
β
≤ 1

(N !)β

(
ϕ(0, x)+

N∑
i=0

(
N

N − i

)
· ϕ
(
ix

2
,
x

2

))
=Θ(x).

Now we can apply Theorem 3.3, with w : X → Y , η : X → X , ψ : X → [0,∞),

w(x) :=
x

rjN
, η(x) := rjx, ψ(x) :=

Θ(21−jx)
2Nβ(1−j)

and rj =
{

2, j = 0
1
2 , j = 1 . Cleary, lw = 1

rNβ
j

and, by using (QΘ,j) and the hypothesis

(Hj), we obtain that (Cψ) and (Hψ) hold.
Then there exists a unique mapping g : X → Y ,

(3.10) g(x) := lim
m→∞

(wm ◦ g ◦ ηm) (x) = lim
m→∞

g (rjmx)
rjmN

,∀x ∈ X,

which satisfies the following equation

(w ◦ g ◦ η)(x) = g(x) ⇔ g (2x) = 2Ng (x) , ∀x ∈ X

and the inequality

‖f(x)− g(x)‖β ≤
ψ(x)
1− L

=
1

1− L
· Θ(21−jx)

2Nβ(1−j) ≤ L1−j

1− L
·Θ(x),∀x ∈ X.

We show that g is a monomial function of degree N . To this end, we replace x
with rmj x and y with rmj y in relation (3.8), then divide the obtained relation by
rmNj and we obtain∣∣∣∣∣

∣∣∣∣∣∆
N
rm

j y
f(rmj x)

rmNj
−N !

f(rmj y))
rmNj

∣∣∣∣∣
∣∣∣∣∣
β

≤
ϕ(rmj x, r

m
j y)

rmNβj

, ∀x, y ∈ X.
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On the other hand,

∆N
rm

j y
f(rmj x)

rmNj
=

N∑
k=0

(−1)N−k
(
N
k

)
f(rmj x+ krmj y)

rmNj
=

=
N∑
k=0

(−1)N−k
(
N
k

)
gm(x+ ky) =

= ∆N
y gm(x),∀x, y ∈ X.

And we get ∣∣∣∣∆N
y gm(x)−N ! · gm(y)

∣∣∣∣
β
≤
ϕ(rmj x, r

m
j y)

rmNβj

, ∀x, y ∈ X.

By letting m→∞ in the above relation and using
(
H∗

j

)
, we obtain

∆N
y g(x)−N ! · g(y) = 0, ∀x, y ∈ X. �

Remark 3.2. ForN = 1 in Theorem 3.5, we obtain a generalized stability result for
the additive Cauchy equation and functions with values in complete β-normed
spaces, with

Θ(x) = ϕ (0, x) + ϕ
(
0,
x

2

)
+ ϕ

(x
2
,
x

2

)
,∀x ∈ X.

If N = 2 in the above theorem it results (as in Theorem 3.4 for β = 1) that
the quadratic functional equation (again for functions with values in complete
β-normed spaces) is stable in the Ulam-Hyers-Bourgin sense, with

Θ(x) =
1
2β
(
ϕ (0, x) + ϕ

(
0,
x

2

)
+ 2ϕ

(x
2
,
x

2

)
+ ϕ

(
x,
x

2

))
,∀x ∈ X.

It is worth noting that the estimations obtained directly for particular values of
N (as in [6], [7], [8] or [11]) are generally better than those resulting from (Estj),
which in its turn is applicable for all N .
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